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On the error function in the asymptotic formula
for the counting function of k-full numbers

by

R. BarasuBraMaNIAN, K. RamacHaNDRA (Bombay)
and M, V. Sussarao (Edmonton, Alb.)

To the memory of Professor D. Suryanarayona

1. Introdection. Let k& be an integer > 2. We say that a positive integer n
is kfull if either n = 1 or for every prime p dividing r, p* also divides n. We
are interested in the @ results for the error function mentiored in the title, It
is nice to recall that the asymptotic formula was first considered by Erdds
and Szekeres in 1935 ([8]).

2. Statement of the theorem. Let g, = a,(k) = 11 if n is kfull; O other-

F.(s)= 3 a/n° has an
n=1

analytic continuation in ¢ > 1/(4k+4) and further, in the region o > 1/(2k),_
it has only simple poles at 1/k, 1/(k+1), ..., 1/2k—1) (see §5). For k <]

< 2k—1, let b;x'¥ be the residuc of F(s)x%s at the pole s =1/j. Let
Mx= and  E(x)= ) a,~M(x).

k€ S 2k~ 1 n<x

wise}. We write as usval s=o-it, Then F(s) =

b;x'

Let g, be the preatest lower bound for {p: E(x) = O(x9}. Then we prove

roughly that g, = (EE—:_ B for any integer r > 1. Since the maximum of

(r—1)/r(2k-+r~—1) is obtained, for integer r > 1, at [\/_k] or [Jzk]-H we
can assume that r = [\/ékj or [\/_ k]+1. Mote precisely we prove
THEoREM 1. For suitable constants B >0 and C > 0, we have

[lE( )lzexp( wTHduz ClogT

uch +1
T

where o= (r— 1)/r(2k+r—1) for k23 and o =1/10 for k=2
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In case, 20(k-+r) is an integer, one can improve Theorem 1 to
TuroreM 2. For suitable constants B > 0 and C > 0, we have

o0 )
I“E‘g}!i‘ exp(—~u/Tduz Clog*T
U

T
where o = (r—1)/r(2k+r—1) and k= 3.

CoroLLARY. If k = 3, then E(x) = Q(x/2k+m \/lc;é x) where r is the least
integer such that r(r—1) z 2k.

3. Remarks. We now record a few O and 2 results known in this
direction. The earlier O-results are due to Erdds and Szekeres [8], Bateman
and Grosswald [7], Kritzel [12] and Ivi¢ [9], [10]. The best known results
are due to Ivic and Shin [11], who proved, among other things thal
0 < 1/(2k) for k < 13. As s to be expected, these results could be improved if
one assumes some unproved hypothesis. For example, it easily follows from
the Lindelsf hypothesis for the Riemann zeta-function that g, € 1/(2k) for all
k = 2. Further, on the Riemann Hypothesis, we know that g, < 13/81 ([16])
which can be improved to g, < 11/72 ([2]). About £ results, it was noted in
[7] that o, > (Reg)/s if {(e) = 0. {(0/2) # 0 and {(g/3) = 0.

Now about the theorem. The method of proof extends to other cases
also. What we prove amounts roughly to the following. Tf F(s} is given by a
Dirichlet’s series, convergent in some half plane, and admits an analytic
continvation and if M{x) and E{x) are defined suitably, then

|E (x)|

lim supT

W

0

IN)

r

where =« is such that [ |[F(x-+it)|®dt> T for all T2 0.
T

Thus this method can be used for
(s Clas){(bs)y  Llas){(bs) {(s)E(28){(3s)
T L2ksy T L(abs) {(bs)

and other similar functions under suitable conditions on ¢ and b. In this
connection, we refer the reader to [3], [4] and [5] also.

4. Notations. Let {a,} be the special sequence
a, = d, (k) =1 if n is k-full;

o

F(s)= Fy(s) = Y, a/n.

n=1
{(s) is the Riemann zeta function, p denotes a (general) prime. r = [\/ if;] or

[2k]+1; a= (rél)/r (2k+7r—1); 4 is a big constant, not necessarily same
at each occurrence. T is a real number sufficiently large. For any complex

0 otherwise.
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number z, we denote the real part by Rez and the imaginary part by Imz:
y=T® where B is a sufficiently large constant;
J={T'""<t<2T: for any complex number z with Rez > 1/{4k+3),
and [Imz—1 < (log T)*°, I {(jz) # 0};
2k+25€4k+3
Jy={T'""" <1< 2T: for any complex number z with Rez = 1/(4k+3)

and |Imz—1| € {log T)'3, I1 L(jz) # 0}
. . 2k+2€5<4k+3
{An interpretation about J is given below Lemma 14.)

Note that, if teJ, then t+weJ if |of € (log T)*. Throughout the proof,
we assume that k 2 3. The case k=2 is similar and easy.

5. Analytic continuation. In this section, we deal with the amalytic
continuation of Fy(s).
ProrosiTioN 1. (a) We have

Py = L2900

£(6s)
{b) For k =3,

F= JI s I

kS j€2k-1 2kt 2%/€4k+ 3

oy I

2k+2<j<4k+3

(£ (2i9)) G(s)
where e;, 2k-+2 < j < dk+3, are suitable nonnegative integers and G(s} is
absolutely convergent in o > 1/(dk+4).

Proofl. Proposition 1{a) is standard. We now prove 1(b). One checks by
direct verification that

(Iexbx*1 4 ) T

(I-x)=14+ 3 c,x"

kEjE 21 nz2k+2

for suitable integers c,. Here ¢, <0 for n <4k+3 and since
(L Xk xd 14 (1 —x%)

is a polynomijal, ¢, == 0 for all large=n. Now

(] + Z C,,X") (1+x")~c" =1 + Z dn x"
a2kt 2 2k 2€EnSsdkt3 nzd4k+4
with 4, = 0 for all large n. Hence
(T xtt x4 L)
= J] (=% A+x)7(1 + ¥ d,x")
k€j€2k—~1 2+ 2L jS4k+3 RE AR+ 4
= H (l—xj)“1 (1_xj)“°j
k€jE€2k~1 U+ 2Ej Skt 3
% 11 (1—x*)3(1 + d, x").
2k+25j€4k+3 n=dk+4
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We now put x = p~° and take the product over all primes. This vields the
proposition. Since d, is bounded by a function of k, the absolute convergence
of G(s) =J[(t+ 3 d,p~™) is guaranteed.

P nz4k+4

6. A trivial upper hound for F(s). We recall the definition of J, (see § 4}

We now prove
ProrosiTioN 2. If Res > 1/(4k+3) and tel, then

F{sy=0((]+2*) for a suitable A >0,
We need
LeMMA 1. There holds the following inequality: For any & > 0,

=0,((01+2F) in Res=3+¢,

1
£(s)
provided {(z) # 0 for Rez >4+¢ and |Imz—Ims| < (log T and HIms| = 1.

Proof. This is a standard result. One can refer to Theorem 14.2 of [17]*

where a similar result has been proved.
LemMma 2. The following inequalities are true:
(a) If Res > 0 and |Ims| 2 1 then {(Is) = O((Jt| + 2)4) for a suitable A > 0,
(b) If Res = 1/(4k+3) and 1 = 2k+2 and teJ,, 1/§(ls)m0((|t|+2)).

(c) For Res = 1/(d4k+3), G(s) is bounded by a function of k.

Proof. (a) follows from Chapter 5 of [17]. (b) is a consequence of
Lemma 1. (¢} is true because of the absolute convergence of G(s).
Now Proposition 2 follows from Proposition 1 and Lemma 2.

7. A mean value upper bound for F(s). Since our aim is to prove the
result that

|E(u)|? u .

P exp{ =2 Y is 1

et exp N e 18 large,
T

we can assume that

oo

N2
) e
T

‘Our aim in this section is to prove, under the assomption (),

Xp (——';)du <log?T
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ProrosiTioN 3. We have

ol

F. 2
l—l—gi?—dréHJ
g G

|E ()]

— 2ufy
Txt1 € du.

U

LEvMa 3, IF 0 Rez €1 and |Imz| = (log T)3, then

e—-u,’y 1-z

+0(T™19).

—Z

Nt — s
=
i
o
=
i

and hence the result.
LeMMa 4. Under the assumption (%), there exists T,, T< Ty < 2T such
that
~Toly
E(Ty)e _0

T (log 7).

(a)

f —ufy
@1jﬁﬂé~m=mmﬂ.
¥y it
TO ’

Proof. Because of (%),

2r
Ew)? u
log* T > .E‘%exp (—;)du

T
2T
4 2 b
S Cﬁgmexp(qg)) f_g
Teu<2T \ M y u
s

and hence (a).
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1
)(372' f e—uf»udu)
Ty

To prove (b), observe that

( JJE(u)ie“‘”’ ) ( fIE (WEe
¥ Wl 20+ 1

To
= O(log? T).
Lemma 5. If teJ and Res = o, then

1

F= 3 %e-nfusf y Sty
0

5 1
n<T n>T0(n+u’

e~ 4 O ((log T)29).

Proof. We start with

oo = njy 1
; =5 JF(s+w)y I'(wydw.

Rew=2

Now we break off the portion of the integral Tmw| z (log T)* with a small

1
error and move the line of integration to Rew = PP
estimate of F(s) given in Proposition 2 (and assuming that B is large enough)
and using the fact that, since reJ, r+ImweJ, we see that the value of
the integral on the horizontals t~+sinweJ,, as well as the vertical Rew

1 . i 2 oa '
=Jre3 s small. This proves that 3 —e~"” equals nearly the sum of
n=1 1
the residues inside the contour. Thus we have

o; now, using the

o

F(s) = Z Brg=mr 1 0(T19) = 2+ oy FO(TY),
n= nE Ty n=Tg
Now
§ e j Fea(T @)= j Lea(v+5w)
J!}Ton

1 1

Y At ; —uly
J.us e M’ (u) du+ f_u* e d(E (u))
T, . T

=S’]_"'S2.J say. .
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Since M (u) is of the form Y ¢;u'¥, the first integral §; is of the form
considered in Lemma 3 and hence small. Now S, is {on integration by parts)

o

- —ufy " |w K o Y t —ufy
Etwe ™ +3 Ew_#(u): —du -|—l j %)f du
u Tg w u

To Ty

Hence, using Lemma 4,

oy

S, =3 J -Eh—,(qg%e"“”’du+0(log7‘)

To
1
(1) iy
- w00y gy 4 0 (log T).
'5 L}
RZZ'I'G J(n+u) ¥ 1

This proves the lemma.
LemMa 6. We have, for any sequence of complex numbers b,

[ |Z b, n“|2 &t =

provided the right side is convergent.
Proofl. For the proof of this letima, we refer the reader to [13] or [14].

T
Res=u

T+0(n))(lb %),

Lemma 7. We have

2 dt

tl
t—2-€1.

:e—n/.v
n

2

n&Tq

Proof. It is sufficient to prove that
27

2 dt
'E'ﬁ‘<1-

Z 9’1 gy
5

hsTg 1t

.’,1 )

By Lemma 6, we have

aml I |
. 2 a
( Y G = oiv| gp = ¥ (2”‘+O(n)) :
. ns.T(,”ac n$Tg
‘zm

(2m 2m Tl Za_l_ T2 Za

<3

r<Ty
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Hence

amt1
m

Now summing over m, T1 %2 < 2" £ 47, it follows that

2r

Zdt Tl 2z T02~2u
<- i + 21m

Z i".e—n.’y
S

nsTg "

" 2
Y n o=y ﬂ@ L.
né‘I‘o J’l" 1.2
TI*&
Lemma 8. We have
. "
E(n-+uye tntun 2 [E ()] ~ 24y
2 | dt € | e M du.
J ety () o
50 . T

Res=y

Proof. By Hdlder's inequality,
1

1
' E n-u e‘('1+u)fy 2 ' E n+te —(n+ufy |2
U Brewe 7l < y 2o T g
wTy (Rt u) nETg  (nta)
0
Hence the integral on the left side of the lemma is bounded by
a1
' 2
dr ME—(H-M)/J’ du.
. HBTo(n‘i_u)s
[¢]

0

We now interchange the order of integration and use Lemma 5. Hence the
integral in question is bounded by

1

' (2T+O(n))fE(n+u)| JRCYRE
20+ 2 du
IIBTU (”+u)
0
1
‘ |E(”+“)l o 2t uy
< J To(n+u)2a+1 du_
nt1 .
E
= 3 J qu(i)l @ gy <Jl (”)! ™ 2y gy,
P!?To- u

T

Now Proposition 3 follows from Lemmas 5, 7 and 8.
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8. A mean value lower bound for F(s). In this section, we prove
Prorosimion 4. (a) If (k+r)a is not an integer then

2
| E e og
§

Res=a

(b) If (k+r)o is an integer, then

j |P;:|Sz)lz dt » (log T)*.

J
Rey=n

First we give the proof of Proposition 4(b).

Lemma 9. Let f(s) = Z b,/n® be convergemt in some half plane and

analytically continuable in o > 1/(4k+4), tg A+ H. Then
A+H
[ fla+inPdi>H Y |b)*n*,
A ngH12

provided H = (log A), b, = 1 and maximum of |f(s) in A<t < A+ H and Res
zals <el

Proof. This result, in slightly stronger forms, can be found in [6]
and [t5] and in a weaker form in [1] (Theorem 4). We define

¢ (n) 112L'lj Gf(s) = Z %’

n=1

fO=Fs JI U™ 1 GiUs) =2 br
KSjSk+r—1 k<sjsk+r—1
We are interested in the value of b,, when n is a {k+r)-th power.
Lemma 10, If 0= 2**" and u(d) # 0, then b, = 1.
Proof. We have

o) = H{U pTE e pTEE DN )

»

Clearly g(p**") =1 and this proves the result.
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Lemmua 11, There holds

A+H
[ [fla+ifdt> HlogAd if

A

H =z A%

Proof. By Lemma 9,

A+ H
2
1
[ [fla+in®dt>H Y, ’-'J =H Y -»HlogH3» HlogA.
P nsHl2 n* A 120kt
We now assume that H {(js) #0 for Res =0 and A <Ims

kSf<k+r—1

< A+ H. Then we have
LemMa 12, We have

A+H

[ [Fla+in?dt » AHlogd if

A

Proof. On Res=«, we note that [{(1—/s)| = |G;(js)]. Using the func-
tional equation {(s) = y(s){({1—3), we have

Fei=lr@l TT tos) T

J J
kS jsktr-1 k<j<ke—1

X JS)EIH€1 Js)IIHG 97

H o= A

(G0s) |
=/l

=TTl = 1S @[T = 1 )2
J J

and hence the lemma.
Now we need a few results about the set J. Define

J(xX)=Jn[x, 2x] for any x, T'"* € x<2T
Let N(x} be the number of zeros of [T <¢Us) with ¢e[x, 2x] and

kEjR2k~1
Res = x.

LeMMA 13. The aumber of zeros of {(s) in o =
O(xl—(lln,'IO))

Proof. By Theorem 9.19 (B
za t|<Tis

1/2+0 ond |t £ x is

) of [17], the number of zeros of {(9)ineo

3
O (T%=2" " (log T)°}

and hence the result.

icm

On the error funciion in the asymprotic formuia 117

LEmMa 14, We have

N(x) & xl*(llu;‘lﬂ).

Proof. This follows from Lemma 13 and the definition of N ().
We now give an interpretation for J(x). Consider the interval [x. 2x].
Corresponding 1o every zero g = fi+iy, f 2 1/2+e x—(log Ty <y < 2x
+(log T)?°, delete the portion [y—(log T)*°, y+(log T)*°] from the interval
[x, 2x]. The rest gives us J. Hence J(x) consists of at most N(x) disjoint
intervals and the total length of J(x) is » x. Now from J(x) delete the
connected components whose length is < x°. The total length of the deleted
portion is O (N () x*) = O (x*"#'9). Hence if J,(x) is the remaining portion,
the total length of J,(x) is » x. Now applying Lemma 12 to each connected
component of J,(x) and adding, we get

Levma 13, We have
[ IF(+it)de » x*log T.
JZ'(xJ
Hence there lollows
T F ()
Is|?

»logT
Jo(x)
Res=g
and consequently Proposition 4(b). Now Theorem 2 follows from Proposi-
tions 3 and 4(b).
The proof of Proposition 4(a) is similar and easy. We give the main
steps only.
Lemma 11 (a). There holds
AN
{ If(+it) de > H
A .
Proof. The result follows [rom Lemma 9 since by = 1.
Lemma 12 (a). We have

A+H

[ IF(a +it)*dt > AH.
A

if Hz A

Lemma 15 (a). We have

| |F(a+ie)?dt » x*.
J16x)

This proves Proposition 4(a), which together with Proposition 3, proves
Theorem 1.
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Note to a paper of Bambah, Rogers and Zassenhaus
by

G. Feies Tota (Budapest)

It is known [7] that the density of a packing of translates of a convex
domain C cannot exceed the density of the densest lattice packing of C. It is
conjectured ([5], p. 205) that an analogous statement holds for coverings:
The density of a covering of the plane with translates of a convex domain C
cannot be less than the density of the thinnest lattice covering with C.

For a closed convex domain C let a(C) denote the area of C, §(C) the
infimum of the lower densities of all coverings of the plane by translates of C
and h(C) the maximum area of a hexagon inscribed in C. According to a
general result of L. Fejes Téth [4] (see also [1]) we have

3(C) = 9_(52_
h(C)
This proves the truth of the above conjecture for centrally symmetric
domains. For, if C is centrally symmetric then, by a theorem of Dowker [3],
there is a centrally symmetric hexagon of area A(C) inscribed in C. There is a
lattice tiling of the plane by translates of this hexagon, and the corresponding
translates of C provide a lattice covering with C with density 9(C)
= a(C)yh(C).

The proof of the inequality 3(C) = a{C)/h(C) is based on a construction
which associates with each domain from the covering a convex polygon
inscribed in the respective domain such that these polygons form a tiling.
Carrying out this construction for a lattice covering with C we obtain
congruent centro-symmetric hexagons providing a lattice tiling of the plane.
It immediately follows that the density of the thinnest lattice covering with C
is equal to a(C)/h*(C), where h*(C) denotes the supremum of the areas of all
centrally symmetric hexagons contained in C. Thus the conjecture above can
be reformulated as follows:

Comecture. For any convex domain C in the plane we have
_ a©
=G

$HO)



