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. . . n(Sa(C
Thus the lower density dmhmmfi(};)(%)(—) of the covering satisfies the
8o
inequality
5 46
#(QC)

This completes the proof of our theorem. It should be mentioned that
one can further sharpen the bound 8(C) = a(CYy h(C) by considering e.g. for
each triangle of the triangulation the sum of the areas of those triangles
which are adjacent to the sides of the respective triangle, However, -it does
not seem to be possible to prove the inequality 8(C) = a(C)/A*(C) in this
way.
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Some inequalities for the sum of
two. sets of lattice points

by

Rosert D. Stautey (Corvallis, Or.)

1. Introduction. Let J be the set of all nonnegative integers and let 4 be
any nonempty set. With x = {(8, x;)} d=4} let

J4={x x;eJ for all (3, xz)ex}.
If xeJ* and x; =0 for all § €4, we write x = 0. For x, yeJd let

x+y = {8, xs+y)l se4}.

Assume that A, B = J4 and that 0c4, A#J% and B # @, and let
(= A+B = {at+b| acA, be B!, We obtain information about how sparse
7 is. Before describing our results more precisely, we give some more
uefinitions. ' 7

If x, yeJ4 then y—x = {8, ys—x;)| ded}. We write x =<y if y—xeJd?,
aud x <<y if also x % y. The family % consists of all finite nonempty sets
G =J* such that ¥ 1 <oo if xeG and also xeG if g, <x-<g, with

x5=0
g1, 9:,€G I SUT = J4 and T is finite, then S(T) denotes the cardinality of
S T. We obtain inequalities which give Jower bounds for C(G) where Ge 4.
The main result is Theorem 3 but attention is also called to Theorem 7
which is a companion to a theorem of Kvarda [5].
The family # is defined as {F| OcFe %}. The Erdds density ay of A is
defined by

A(F)—1
o ﬁglb{—}gz-ﬁ,ﬂ Fe, A(F) <J"(F)}.

This density is first used in Lemma 2. Later we obtain lower bounds for
certain “densities” of € one of which is a generalization of this density.
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Several more definitions are needed. If S < J4 then

minS = {x} x&8, if y<x then y¢S}

and

max S = {x| xe8, if x <y then y¢S}.
Also

L=l 0=5y=x}, H)={yl x=y}, and Q= H(x.
xeB

If xeJ4 Jed, x;=0for all 5e4\{1}, and x; = 1, then we write x = ;. If
A is finite we sometimes use the special notation 4 ={1,2, ..., n}, J'=1,
and for xeJ?,

x =10, x5 1 <6< nt=(x, X3, ..., Xp).

Our definition of §(7) differs slightly from that in the literature in that
we count the element 0. If 4 is finite and Fe %, then F\{0} is called a
findamental set in the literature. The density «; was first introduced by Erdds
[1] for the case in which 4 is a singleton. The construction in the proof of
Lemma 2 is that of Kvarda {5].

2. Two lemmas. We prove two lemmas which are needed in the proof of
Theorem 3. '

LeMmMA 1. A nonempty subset G of a member of ¥ is also a member of 4 if
xeG whenever g, <x<g, and g, g26G.

Proof This lemma follows immediately from the definition of %.

Note that B < C = and that in the next four results we also have
G <.

LemMma 2. If Ge 9, BAG# @, G\C #Q, and x <y for each xe BN G
and ye G\C, then

C(G) 2 o, Q(G)+B(G).
Proof. The set G is finite, and if xeG then Y, 1 <o0. Let 4* be the

x50

finite set of all &4 such that x; > 0 for some xeG and let G* be the set of
elements x in J4 such that x; = y; for all e 4* where ye G. We redefine G
as this set G* and use the notation introduced earlier for finite dimensional
spaces, Now we introduce a lexicographical ordering on I = J4 = J4, For
x,yel we have x <y if x; =y, for 1 <i <r and x, <y, for some r where
1<r<n Let e=(ey,e,, ..., e,) be the lexicographically largest vector in
BN G such that

n n
'Y ge=max{y xi xeBnG}.
i=1

i=1
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Let d =(dy, d,, ..., d,} be the lexicographically largest vector in G\ C such
that

Y dy=max{} y| ye G\C}.

i=1 ;= 1
Let

D = {d—x| xeBﬁG} and E={y—e| yeG\C}.

Finally, let

minG = {5; 1<j<ul, = {9l 9eG, 8, <g},

Gj=1{g-—6} geG;}, and G = | Gj

1<

First we prove that
(h ' DUE < G'\A.

By definition, DA =@ and En A = (. Suppose d—xeD. Then xeBnG
and so xeG; for somej Hence, since de G\C, then §; < x < d, and so de G;.
Therefore, d d;eGie F and 0 <d~ x=d-é;, and so d—xeG; c G Thus
DcG. Slmllarly, Ec« G’

Next, we prove that
2 DNE={d—e}.

We have d—esD E. Assume veDnE. Then d—x=v=y—e where
xeBnG and yeG\C. Hence x+y == e+d and so x;+y;, = g +dl, Igign
Summation over i yields

n
¥ ox+
i=1

uM;

—Latrd
Hence, by the definitions of e and d, we have

Y ox=3¢ and
i=1 i

=1 i=1 i=1

=
=
=

and so also x<e and v < d Hence

Xi+y ety e +dy =x+yy,

and so x; =e, and y; =d;. We may now proceed similarly to obtain
x; =e, and y, =d,. Continuing in this manner, we obtain x=¢ and
y=d, and so v=d—e.

Now, by (1) and (2), we have

(3) I(G'\4) = I(D)+I(E)—-1.
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By .deﬁnition,
G= ) Ge#F

1575u
By (3), we have I(G'\A) >0, and so
A(G) = HGY—=I{G'\A) < I{G).
Hence
4) AGY—1 z a 1{G).

Suppose G ¢ #. Kvarda [5] states and proves “Lemma 1. Q(S)+1
In our notation @ =I\{0}, §=G, and §=G'\
Q(S) = I(G)—1, and so

(5) HG) < 1(G).

If Ge %, then G' = G and again (5) holds. Hence, by (3), (4), and (5), we have

< Q(8)7
{0}, Thus Q(S)=I{G),

C(G) = 1{G)~1{(G\C) = I(G)~1(E)
> 1(G)—1{G\A)+I1(D)-1
= 1{G)—-L(6)-A(G)]+B(G)-~1
= A(G)-1+[I1(@~1(G)]+B(G)
> oy 1(G)+uy [1(G)~I(G)]+ B(G)
=, [ (G)+B(G) = 2, Q(G)+ B(G).

3. Fundamental theorems. The main theorem of this paper follows.

TeworeM 3. Let Ge %, If for each xe BN G there exist ye G\C and for
each ye G\ C there exist xe BnG such that x <y, then

{6) C{G) = o, Q(G)+B(G).

Procf. We use induction on B(G). It B(G) =0 then G\C = (, and so
C(G) = Q(G) = a, Q(G)+ B(G). Hence, let B(G)=k =1 and assume the
theorem valid for all G e ¥ such that B(G,) <k. Since BN G # (®, then

G\C # (. Thus if G\C c: (N H(x), then Lemma 2 gives inequality (6). The
xeB NG

case remains where g ¢ H (b) for some ge G\ C and some be B G. We have
C(G\H (b)) <Q(G\H(b)) and

C(6\ U Hx)=¢Q(G\ U H(x)

xeB nG xel

Let P be maximal where beP, P <« BnG, and
ce\y H(x) <Q(G\U H(x).
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Let H=|J H{x) and W = HnG. First we prove that inequality (6) holds

xeP
for W and then that it holds for G\W.
We have We ¥ by Lemma 1. Now P <(BnG)nH = B W. Suppose
xe B W, Then xz H and so Hu H{x) = H. Thus, since xe B G, we have
xe P by the maximality of P. Hence

(7 P=BnW.

If xeBr W then xeB G, and so there exist ye G\ C where x'<y. Since
xeH, then yeH, and so ye W\C. If yeW\C then y€H, and so x <y for
some xe P =B W. By (7) we have B(W) = Q(P) < B{G) =k, and so

®) C{W) = a, Q(W)+B(W).

Next we prove that inequality (6) holds for G\ W by using Lemma 2.
Since P# BnG, then W#G by (7). Hence, since WG, we have
G\W = (. Assume g¢,, g,eG\W and g, <x<g;. If xeW then since

W < H, we have g, H G =W, a contradiction. Hence xe G\ W and so
G\We=% by Lemma 1. Next, by (7), we have

(BAG\BNW)=(BNG\P#0.

Also, since C(G\H) < @Q(C\H) and G\W = G\H, then (G\W)\C # @. Fi-
nally, if xe B ~{G\ W) then xe(B nG)\P, and so by the maximality of P we
have

©) C(G\(H v H(x)) = Q(G\(H v H(x).
I ye(G\W)\C then ye(G\H)\C =(G\CO)\H. Since yeG\C, then by (9)

Bn(G\W) =

~ we have ye H U H(x). Hence, smce yeH, then ye H(x), and so x < y. Thus

by Lemma 2 we have
(10 C(G\W) 2 0, Q(G\W)+ B(G\W).

Since W < G, we obtain inequality (6) by adding inequalities (8) and (10).

Now we prove four related theorems.

Tueorem 4. If Ge %, then any of the following sets of conditions are
sufficient for inequality (6) to hold:

() minG =B and for each xe BNG there exist ye G\C such that
x <y;

(i) max GeG\C and for each ye G\C there exist xe BN G such that
x <y;

{iii) minG = B and maxG < G\C

(iv) There exists Gy e % such that Gy < G min G, < B, rnaxG1 < G\ C,
and G\G, = C\B;
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(v) There exists Gy e ¥ such that G = Gy, minG; < B, maxG; < G,\C,
and G\G = B,

Proof. Suppose conditions (i} hold and ye G\ C. Then x =y for some
xeminG. Hence xeB and so x~y. Thus inequality (6) follows from
Theotem 3. Conditions (ii) and (iii) may be shown to be sufficient in a similar
way. Suppose conditions (iv) hold. Then C(G,) = a; Q(G4)+B(G,) because
conditions (iii} hold for G,. Since G\ G, < C\ B, then C(G\Gy) = Q(G\Gy)
and B(G\G,) =0, and s0 C(G\G{) = oy Q(G\G,)+B(G\Gy). Thus since
G; « G then we obtain inequality (6) by adding the above two inequalities.
Conditions (v) may be shown to be sufficient in a similar way.

Tueorem 5. Conditions (iv) of Theorem 4 are equivalent to the hypotheses
of Theorem 3 if G\C # @ {or BN G # Q).

Proof. Suppose conditions (iv) of Theorem 4 hold. If xeB ~ G then
xe Gy, and so x =<y for some yemax G, = G;\C = G\C. Hence x <. If
yeG\C then yeGy, and so x =<y for some xeminG, c BnG, =« BnG.
Again x < y. Now suppose the hypotheses of Theorem 3 hold and G\C # .
Note that BN G # @ and let

G =(U LON{ U H(x)
yeG\C xeB NG
Then G, # @ and G, = G, and so by Lemma 1 we have G, % It follows
from the definition of G, that minG, = B and maxG, < G\ C. If either
xeBnG or xeG\C then xeG,. Hence G\G, < C\B.

ThHeorEM 6. If Fe F and maxF < F\C, then
C(F) > a, O (F)+ B(F).
Proof. Since Q(F\Q) =0, then C(F\Q)= B(F\Q) =0, and so

(11) C(F\Q) =ay Q(F\Q)+B(F\Q).

Thus if F nQ =@ then F\Q = F, and the theorem follows. Hence suppose
G=FnQ+#0. Then Ge% by Lemma 1 since G<F. Next minG
cmin@Q < B, Also maxG c maxF < F\C, and so

max G = G (F\C) = (G N F\C = G\C.

Thus by Theorem 4 (iii) we have inequality (6). Since F\Q and G form a
partition of F, where we note that F\Q may be empty, then addition of
inequalities (6) and (11) gives the theorem.

Results similar to Theorem 6 may be obtained in a similar way from
Theorem 4 using conditions (i), (iv), or (v).

- Theorems 3, 4, and 6 are particularly interesting when min B = {0} or
min B = {w,| Aec4}. In the first case Q = J4 In the second case Q = J4\ {0},
and so Q(F)=J4(F)—1 for Fe# and Q(G)=J4(G) for Ge ¥\#. For
example the following theorem follows from Theorem 6. :
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TueoreMm 7. If A =11,2, ..., n}, minB = {®,, 0y, ..., 0}, FeF, and
max F < F\C, then C(F) = a, [I(F)—1]+B(F).

If A = {1} and 0= B, then Theorem 7 reduces to a theorem of Mann [61.
If n =1, then Theorem 7 reduces to a theorem of Erdés [1]. f n =2, then
Theorem 7 reduces to a theorem of Morgali [7]. i n is finite, Oe B, and
Ge #, then Theorem 4 (i) reduces to a theorem of Kvarda [5].

4. Density theorems. We prove two density theorems. Suppose D < J%,
D+, and R = |J H(x). Then the density of D is defmed by
xel»

D(F)

d(D) =glb {R(F)

Let d(B) = $ and d(C) = y. Note that for the sets B and C we have R = (.
For 4 finite d(D) is a density of the author [8] and Freedman [31if OeD
and a density of Kvarda [4] if minD = {w,] Aed). (Kvarda's density is
Schnirelmann’s density if # = 1) Furthermore, d(D) = 1if D = R, butd() =1
implics D = R only when 4 is finite. The next lemma is needed in the proof

Fe#, maxF CR}A

~of Theorem 9.

Lemma 8. If v < 1, then

C(F)

! Q)

Proof. Let ¥ be the greatest lower bound of the lemma. Since y < P is
immediate, it remains to prove that y > y. Suppose F €#, maxF = (), and
C(F) < Q(F), and let M = | L(x). Then since M cF and F\M < C, we

xef\C

Fe#, maxF cQ\C}.

have

C(F) _CM+CEM) _CM+AF\M) cM)
Q(F) QM+QF\M)  QM+Q(F\M) "~ QM)

Hence, since Me % and max M < Q\C, we have C(M)/Q(M) 27, and so

¥ :glb{—g—g%l Fe#, maxF < @, C(F) < Q(F)} =9,

Tueorem 9. If v < |, then y z o4+ .
Proof. Suppose Fe # and max F < Q\C. Then C(F) = a4 Q(F)+B(F)
by Theorem 6, and so

W, 0,

om” ol T ™

since max F < Q. The desired inequality now follows from Lemma 8.
Suppose D = J4 D # @, D #J% and R is defined as before. Then the

+8
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Erdds density of D is defined by

dy (D) = g}b{g-(f_):—-l- ’ Fed, maxF c R, D(F) < R(FJ}.
R(F)
Let d; (B) = f}; and d,{C) = y,. We see that d,(A) is the ErdSs density «, of
A as defined earlier since for A we have R = J* The following lemma and
theorem are proved in the same way that Lemma 8 and Theorem 9 are
proved. In the proof of Theorem 11 we need to note also that B(F) < Q(F),
which follows from max F = Q\C = Q\B,

Lemma 10, If p, is defined, then

" :gib{%?ﬁi‘ Fe#, maxF Q\C}.

Tueorem 11. If y, is defined, then 7, > a,+p,.

If 4 = {1} then Theorem 9 reduces to a theorem of the author 8] when
0eB, and to a theorem of ErdSs [1] when minB = [1). If 4 is finite and
0eB, then Theorems 9 and 11 reduce to theorems of Freedman [2], [3]. For
the case 4 = {1} and Oe B Theorem 11 is fairly well known. It follows from
Theorem § that if &, +f > 1 then p = 1.

5. Remarks. The density o; may be improved in all our results of
Sections 2 and 3 by replacing the space J4 in its definition by the space J*
where as before 4* is the set of all Se4 such that x; >0 for some xeG.

~ Nontrivial examples miay be easily constructed where the case of equal-
ity helds in our theorems.

By an argument using translations we see that our results may be
extended to subsets 4 and B of a translate JA of J4 where for each 8 c4 the
integers x; for all {(8, x;)| dedle AU B are bounded below, “min A" is a
singleton, there exist xeJA\ 4 such that “min 4 < x", and as before B # Q.
Our results may be further extended in a similar manner by an argument
using reflections about the coordinate planes x; =0 where ded.
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