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1. Introduction. Let f(x) be a polynomial with integer coefficients and
set N =N, =gcd.(f(n), neZ). For computational reasons, we note that

(cf. [4]
n N=ged.(fim), nell, 2,...,g+1})

where g denotes the degree of the polynomial f(x). A long standing
conjecture of Bouniakowski [3] is the following:

ConiecTURE 1. A necessary and sufficient condition for a polynomial
F(x)eZ [x] to be irreducible is that there exist infinitely many integers m such
that f(m)/N is prime.

Here and throughout this paper, “prime” values of polynomials necessar-
ily refer to both positive and negative primes; however, the letter “p” will
always denote a positive prime. Also, every polynomial f(x) will-have integer
coefficients, and when we speak of f(x) as being irreducible, we shall mean
that f{x) is irreducible over the rationals.

Perhaps the most definitive result in the direction of resolving the above
conjecture is due to Richert [10] who showed that if f'(x) is irreducible, then
there exist infinitely many integers m such that f(m)/N is the product of at
most g+1 primes. There are also stronger comjectures of Schinzel and
Sierpifiski [11] and heuristic arguments for related density results given by
Bateman and Horn ([17], [2]).

On the other hand, the situation for reducible polynomials is much
simpler. It is a trivial matter to show that if f(x) is a reducible polynomial of
degree g, then there are at most 2g integers m such that f(m) is prime. More
precise results can also be obtained (cf. [8]); in particular, with f(x) a
reducible polynomial as above, there are at most g+4 integers m such that
f(m) is prime. With this in mind, we consider the following finite version of
Bouniakowski's conjecture.

CONIECTURE 2. A necessary and sufficient condition for a polynomial
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Fix)eZ[x] of degree g io be irreducible is that there exist g+5 integers m
such that f(m)/N is prime.

As we shall see in Section 2, it is a fairly straightforward matter to
show that Conjecture 1 and Conjecture 2 are actually equivalent. The proof
will be similar to what one might use to show that if every arithmetic
progression an-+b with (a, b) =1 contains at least one prime, then every
_ such arithmetic progression contains infinitely many primes. However, despite

the equivalence of these conjectures, partial results about one of them may
be far from being applicable to the other. For example, it is easy Lo verify
Conjecture 2 for “many” irreducible polynomials, but to the best of my
knowledge, no one has even established the mere existence of an irreducible
polynomial f(x) of degree >1 such that [or infinitely many integers m,
f(myN is prime. :

‘ We direct our attention to Conjecture 2. Our main goal is to prove that
Conjecture 2.is true for a positive proportion of the polynomials. To be more
specific, we introduce the following notation. For any positive integer g, set

. g
S(B)=8,(B) = {f(x)=Y a;x': |a| < B for j=0,1,..., g}
j=0

In other words, S,(B) is the set of all polynomials of degree < g with integer '

coefficients bounded in absolute value by B. In particular, we note that
|S,(B) = (2[B]+1y*! where [ ] denotes the greatest integer function. It can
be shown that (¢f. [9]) the number of reducible polynomials in S,(B) is
bounded by O,(B?log” B) so that (in some sense) almost all polynomials axe
irreducible. For related density results concerning irreducibility modulo
primes and algebraic number fields with Galois group the symmetric group
see [5] and [121

We will prove the following:

TueoreM 1. Let g be any positive integer, and let B be any positive
number sufficiently large (depending on g). Then the number of irreducible

polynomials f {x)eS,(B) such that there exist at least g+5 integers m for

which f(m). is prime is
= C@2B+1)y™?,

where C >0 is a computable constant. In particular, one may choose C
= 1/1800.

Let P(B, g) denote those polynomials in S,(B) which assume prime
values at least g+ 35 times. Then this theorem establishes the existence of a
positive computable constant C such that

e ofv . o [P(B, g '
I?f(hﬁg‘f(23+1)g+1)>c-
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The value of g+ 5 here plays a minor role in what follows; we use it only to
emphasize the connections to our work with the very plausible necessary and
sufficient condition for a polynomial to be irreducible given by Conjecture 2.
In the results above, one may replace g+5 with any function of g without
affecting the constant C. We shall give two different proofs that such a
constant exists. The second proof will not give as good an estimate on the
value of C: on the other hand, it will provide us some additional information
(see the comments following (6) in Section 4). No attempt here will be made
to get a sharp estimate on C; the value of C given above is only to
emphasize that C is computable.

The next two sections are devoted to preliminary results and the two
proofs of Theorem 1. In Section 4, we will discuss further consequences of
the methods of this paper and different ways of improving on the value of C
given in Theorem 1. In particular, we will show that the first proof may be
modified to permit the choice C = 1/193.

2. Preliminary remarks. We begin by establishing the equivalence of
Conjectures 1 and 2. From the comments in the introduction, it is clear that
this equivalence can be established from the following:

Tureorem 2. Let g be a positive integer and let N, be as defined by (1). If

{i) every irreducible polynomial f(x) of degree g is such that there exists
at least one integer m for which f(m)/N, is prime, .
then

li) every irreducible polynomial f(x) of degree g is such that there exist
infinitely many integers m for which f(m)/N; is prime.

Proof. Suppose (i) holds. Assume there is an irreducible pelynomial, say
f(x)e Z[x], of degree g such that

m* = max {m|: meZ, f(m)/N, is prime}
exists. Let p be a prime satisfying
' p > max {{f (m*+ 1, 20m* + 1)}
Define

g{x} = f{px+(m*+ 1)).

Clearly, g(x) is of degree g and is irreducible. Thus, to complete the proof,
we will obtain a contradiction to (i) by showing that there is no integer m for
which g(m)/N, is prime. :

We first establish that N, = N . Clearly, N;| N, since each value of g(x)
at an integral argument corresponds to a value of f(x) at an integral
argument, Suppose g is a prime and r is a positive integer such that ¢"|| N,.
Since p > |f(m*+1)| =lg(0). p¥N,. Hence, g# p. Now, since g|N,, we
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know that
g'lgim) Tfor mef0,1,...,q4—1}.
But g(m) = f (pm+(m* + 1)) so that
fpm+(m*+1))=0(mod 4 for

Let n be any integer. Since g # p, there exist an me {0, 1, ..., ¢"—1} such
that

mel0, 1, ...,¢—1}.

pm+(m*+ 1) = r (mod &').
11ence,
f(n) = f(pm-+(m*+1)) = 0 (mod ¢).

Since n was an arbitrary integer, we now get that ¢"| N, so that N,|N, and
finally

Ng:Nf‘

To finish the proof, it remains to show that g(m)/N, =g(m)/N, is
composite for any integer m. Fix an integer m. Since p > 2(m* + 1),

Ipm-+(m*+ 1) = m*+1.
Thus, by our definition of m* we now get that
g(myN, = f (pm+(m*+1))/N,

is composite, completing the proof.

We are now ready to consider 3 lemmas. Both proofs of Theorem 1 will
rely on the use of all three lemmas. We note, however, that the second proof
uses only the lower bound of Lemma 1 whereas the first proof uses both the
lower and the upper bounds. In both cases, Lemma 2 will clearly play the
major role.

For every positive integer g and every positive real numbers B, M,, and
M,, define '

T(B, My, My):= T,(B, My, M3):=|{{a,, ..., a1, ao, m):

flx) = i ayx'eS(B), me(M;, M;]nZ, and f(m) is prime}|,

=0
We now get the following: _
Lemma 1. Let g be a positive integer and let My and M, be any positive
real numbers satisfying

ISM IS M,.

Then there exist By, = By(g, M;) and an absolute constant B, such that. if
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B > B,, then
T(B, My, M3) > (1/3)(2B+ 1) (M, — M)/(log B);
and if B > By, then
T(B, My, M,) <3(2B+1y** (M, — M,)/(log B}.

Proof. We first establish the lower bound for T,(B, M,, M,). Fix an
integer me (M, M,] and consider any integer d with |d] < (B/2)m?. We note
that if m > 2, then one easily gets that for any choice of integers ay,
ay, ..., q-1£[—B, B],

(2) ld—(a,~ym*~ '+ ... +a, m+ap)| < Bm?.
We successively choose dq, 4y, ..., 4,; as above with g, = d (mod m) and
for j==1,2,...,9~1,
a;=(d—ap—... —a;_;m " H)fm (mod m).
Thus, the total number of choices for (aq, @y, ..., ,—1) i at least 29 [B/m]°.
We now choose a, so that
d=am+ ... +a m+ay.

By (2), it follows that a, is an integer in the interval [~ B, B]. Hence, there
are at least 29[ B/m}? different choices for

fx)= Eg:' aj-xjeS(B).

J=0

such that f{m) = d. Since m can be any integer in the interval (M,, M,] and
d can be any integer (and, in particular, any prime) in the interval
[—(B/2)m?, (B/2) m¥], we now get

T(B, M, My)= 3}
mE(Ml,Mz]

29 [B/m)? (2n (Bn/[2)).

For B sufficiently large (depending on both g and M,), we now get that
T(B, M;, M) > (1/3)(2B+1)*"} (M, — M,)f(log B).

To prove the upper bound in Lemma 1, choose any integers ay, ..., a2,
a,e[—B, B] and any integer me(My, M;] and consider the number of
choices of an integer ap e[~ B, B] such that (a,m?+ ... +a, mj+a, is prime.
By an application of Selberg’s sieve {(cf. [6], p. 124), for B sufficiently large
(independent of g, M, and M,) there are less than 3 (2B 1)/(log B) choices
of a, as above. Thus, for B sufficiently large, we get

T(B, M,, M,) <3(2B+1)**1(M,—M,)/(log B),

completing the proof.
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Before proceeding to Lemma 2, we note here that when using Lemma 1,
we will need a specific estimate on By (g, M,). More precisely, we will want

Bylg, My) > ™

where 7 is any positive constant. For fixed g and By(g, M,) as above, the
proof of Lemma 1 is easily seen to carry over. We are now ready to proceed
to our main lemma.

Lemma 2. Let g and B be positive integers and let m; and m, be any two
distinct integers < B. Then for B sufficiently large (independent of m, and m,),
the number of polynomials f(x)e§,(B) such that f(m,) and f(my) are both
prime is
(2B+1pt!
log?B

<32{ [ (-p) "’}

plima—mq)}

Proof. We give here only a sketch of the proof; the details are well
known in the theory of Brun’s sieve. We present our proof in a form which
can eagily be followed through with the aid of the excellent book of
Halberstam and Richert [6]. We first note that the rank of the 2 x(g+1)
matrix over Z,

‘g m‘i_l e My 1
nt mﬁ'l v omy 1
is 2 if p ¥(my—my) and is 1if p|{m, —m,). Thus, if p,{’(r:iz—-ml), then the
number of (g 1)-tuples {(a,, ..., a,, ao)ezg“ such that
Gemi+ ... +a;m;+a; =0 (mod p)
or
a, m4 + ....+a1 my+ay = 0 (mod p)

is p~!1(2p—1). ¥ p|{my—m,), then the number of solutions as above is p*.
- We are now ready to set up the Brun sieve. Let

A={fm)f(m: [(x)eS,(B)}.

For square-frec integers d, we define w(d)y as a multiplicative function such
that for a prime p

_=n i phme—my),
w(p)~—{1 il pl(my—m,).

Set x{(d) = y,(d) as defined in [€], p: 58, and
Ry =Y 1-{2B+1¢* w(dyd).
sd

a
dla
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By our previous comments, we know that .
R; <, {(2B+1)/d)+ 2} dw(d) < (B +d%) w(d).

Let z = B* where u is a positive real numBer to be chosen shortly. Let S
denote the number of elements of 4 which are divisible by no prime p < =.
The Brun sieve now gives that for any real number 1 with

0< ettt <1,

one has
(3) S <@B+1y¥7 [T (E—(w(p)/p})
¥z
x {1+(24% (1 — A% 2 *H))exp (¢, /A {log 2))}
+Oq(Bgz12+(z.01,t(e2— 1)):)

+O (zla* 1}2 +(2.01/e*— 0y
(2

where ¢; is some fixed constant. We take A= 1/4 and u = 1/(9.1). We also
rewrite the above product by noting that if p 4(m,—m,), then

1-(w(p)/p) = (1-(1/p))*, .

and if p|(m;~m,), then

L~(w(p)/p) = 1—=(1/p).
Using that
IT (1~(1/p)) ~ e "/log )

where y = 0.57721... is Euler’s constant, together with (3), we now get that
for B sufficiently large

S<3175( T (1—(/p) (2B +1¥*/log*B.

plimg—my)

To finish the proof, we note that as in the first part of the proof of
Lemma 1, one can show that the total number of pelynomials f'(x)eS,(B),
with |f(my)] or |f(m,) a prime <z i85 <4(2B+1y=n(z). Thus, for B
sufficiently large, the number of polynomials f(x)eS,(B) such that f(m,)
and f(m,) are both prime is

< S+40(2B + 1¥ (BY®V/(log B)),

whence the lemma now follows. .
The following lemma has a simple proof which we leave to the reader.

Lemma 3. Let U be a set of N elements, and let 8, o, and B be positive

3 — Acta Arithmstica 50.2
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real numbers with
a+f =0 <1
Let K be a positive integer and Vi, Vi, ..., Vg be subsets of U such that
Wl=z0N for j=12,..K.
Then for any positive integer v and for K 2 (1—a){r—1)/B, there exist
at least aN elements of U each of which is a member of at least r of the
subsets V. -

3. Two proofs of Theorem 1.
Proof 1. We begin with the equation

2
Yop=2 ¥ (X o+ 2 () )
S(x)eS(B) M| <m<Mj S(x)eS(BY My <mj <mySMjy Sx)eS(B) M| <msMy
Slmjprime £y yand f{m 3)prime S{mprime

By Lemma 1 and Lemma 2, this is

< 64(2B+ 1P+ /(log? B) { ¥ T (1+@/p)}
My <my <m2-‘éM2 p|(m2—m1)

+3(2B+ 1)1 (M, — M,)/(log B).
Now,

) )3 II

(1+(2/p)
My <my <my €My p|(m2—-m1)

< X X

My <mp <maEMy dl{my—my)

= ¥y @9a 3 1
dsMqa-My My <my <mgEMny
my =my (modd)

(@)

SM—-M+1) Y, (29 {(My~ M+ 1)/d)+1}

dEMay—My )
=M—-M+1)* 3 (29d)+M,—-M+1) 3 (294
dsMy— M, d€EMa— M,y

<3(M2‘_M1)2

where v(d) denotes the number of distinct prime divisors of d and where
M =M,—M, is sufficiently large. Thus, we now get that

12
FOIS(B) My <mSMy :
S{m)prime

<192{(2B 4—_1)"“”*/(log‘2 B} M,—M,)*+3{2B+ 1" (log B)} (M, — M)).
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We set
B=eM

Then, when M is sufficiently large and M, > 2, we get by Lemma 1 and the
Cauchy-Schwarz inequality,

(1/9)(2B+1)**2(M, —M,)*/log® B

(Y (¥ 1
J(SEB) My <m< iy
Jlm)prime

<( 2 DCyY (% 1)
Flx)eS(R) f(x)eS(B) M| <msMp
There is an me(My,Mq] Flmprime

such that f{m) is prime

Z 1) ((ZB+1)g+1(M2_M1)2)_-

< 195
( S8 log? B

There is an me(Mq, M1
such that f{m) is prime

We now choose M, = kM and M, = (k+1)M where ke{l, ..., K} and K is
a constant, possibly depending on g, which is to be chosen. The above
inequality implies for each ke {1, ..., K} that

1
> 1o (2B 1)1,
. J¥eSE) 1755
There is an me(kM,(k+ 1)M]
such that f (m) is prime

Theorem 1 now follows by taking K == x(g+4) where x is a sufficiently
large constant and using the above range on k together with Lemma 3.

Proof 2 (for C=1/7000). Consider a subinterval I < Rni(1, co} of
length (1/1164} (log B) in the interval {G, M. Thus, if s denotes the number of
integers in I, then

(1/1164)(log B)—2 < s < (1/1164}(log B) + 1.

By ILemma 2 we know that the total number of (g+ 3)-tuples

J=0

- o
(@gs ---» g, My, my) such that f(x)= Y @;x’eS(B) and both f{m;) and

f{m,) are prime is

<32 ¥ I'1

ml,mzel |(m2—m])

+1
(1~ B,

log? B

This can be estimated as in (4) to obtain the following 'upp'er ‘bound on the
number of (g+ 3)-tuples as above:

(96)s% (2B+ 1) log® B < (97)(1/1164)* (2B+ 11
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for B sufficiently large. Denote this final upper bound by W. Let u; denote
the number of polynomials f(x)eS(B) such that there exist exactly j integers
me1 such that f(m) is prime. Then the above estimates imply that

Lo i
J.;z ¥i (2) i

Now, let R denote the set of polynomials f(x)eS(B) such that there are at
least 2 integers mel for which f(m) is prime. Then the total number of
(g +2)¢-tuples (a,, ..., ap, m) sug'h that f(x)eR, mel, and f(m) is prime is

‘i 2215()

On the other hand, by Eemma 1, we see that the total number of (g+2)-
tuples (a,, ..., ao, m) such that f(x)eS(B), mel, and f(m) is prime is

= (1/3)(1/1164)(2B+1)F .

Thus, the number of polynomials f{x)eS(B) such that there exists exactly
one integer mel such that f(m) is prime is

> 1(1/3) (1/1164) — 2(97) (1/1164)2} (2B+ 1) ¥ L.

Theorem 1 now follows with the comstant C = 1/7000 by iterating the
interval 7 and. using Lemma 3 as in the previous proof.

4. Further comments. We begin by stating some comsequences of the
above methods.

CoroLrLary 1. Let g be a fixed positive integer. Then for B sufficiently
large there exist at least- (1/1800)(2B+1PT%  polynomials  f(x)

Z a;x'€ S(B) such that for some positive integer m < log max {lag}, one
sj<g

has thar F(my is prime.
Furrhermore there are at least (1/3600)(2B+1y"' polynomials f(x)

= Z a;x' e S(B) such that for g+35 integers m < 3600(g+4)log max {laj},

= Sty
one has that f{m) is prime.

Cororrary 2. Let ¢ be any positive real number and let B be sufficiently
large (depending on g). Then there exists a 6 >0, dependmg only on &, such

E a; xfeS(B) satis~

=

that there are at least 6(2B+10* polynomials f(x) =
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Sfying f(m) is prime for some positive integer

{5) m < glogmax {|agl, |, ..., la,l}.

We discuss only briefly the above results. Corollary 1 follows from a
combination of the first proof of Theorem 1 and Lemma 3. Corollary 2
follows from the first proof of Theorem 1 with the choice B = ¢*™ for some
sufficiently large. Note that Corol]ary 2 may be restated as: a positive

proportion of the polynomials f(x) = Z a;x’ € Z [x] are such that f(m) is

prime for some positive integer m sansfymg (5). Lemma 1 may be used to
show that this result is best possible; more precisely, if #(x) is any function
for which lim (u(x)/logx)=0, then almost all polynomials f(x)
P acd ]
g
=Y a;x'eZ[x] satisfy f(m)is composite for all m <u(max Haol, -y lagl )
j=0
’ We now turn to methods for improving on the constants contained in
this paper. We begin by noting that the first half of the proof of Lemma 1
can be extended to improve on both the upper and lower bounds for
T(B, M, M,). More precisely, we get
Levmma 1% Let g be a positive integer and let &, My, M,, and B be
positive real numbers. Then there exist M§ = M¥ (e, g) and B = Bf(e, g, M;)
such that whenever

M,z2M,+12M¢ and
we get

(1—e)(2B+ 1 "1 (M, — M,){(log B)
< T(B, My, My) <(14£)(2B+1)7"} (M, ~M,)/(log B).

A direct application of Lemma 1* will enable an immediate improve-
ment on the admissible choice for C given by the first proof of Theorem 1;
we may take

(6) | C = 1193,

Lemma 1* can also be used to improve on the constant C given by the
second proof of Theorem 1. But the second proof can also be modified in an
additional manner. In that proof, we estimated the number of polynomials
f(x)e §(B) such that there exists exactly one integer m, from a certain fixed
interval I, for which f(m) is prime. This is a merit of the second proof of
Theorem 1 which the first proof does not have, i.e., the second proof actually
shows that in certain intervals I with length of order logB (and with B
sufficiently large), a positive proportion of the polynomials f(x)eS(B} are
such that there exists exactly one integer mel for which f(m) is prime.
Hence, one may take into account the number of polynomials f(x)eS(B)
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such that more than one such integer m exists; such an estimate leads to
obtaining the choice C = 1/386, a value which is less than the value given in
(6).

We have only considered here some simple ideas for improving the
value of € given in Theorem 1. This value can undoubtedly be improved
further by using sieve techniques other than the Brun sieve for Lemma 2.

In conclusion, we note that Theorem 1 does not concern itsell with
polynomials f(x)eS(B) for which N, % 1. Since a positive proportion of the
polynomials f(x)eS(B) are such that N, # 1, the value of C in Theorem 1
must be < 1. Indeed, one can only hope to achieve

C

1
I1 (1 "}?) = 0.72199...

14

=l

We also note that we have only considered a particular type of density that
can be associated with polynomials. For example, a variation on a problem
posed by Odlyzko [7] is to determine whether for any choice of B2 1

.. S (x)eS{B): f(x) is irreducible}|
i inf “2BYIpT

18 positive.
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