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Disjoint covering systems with precisely one multiple modulus *
by

Mare A, BERGER, ALEXANDER FELZENBAUM and
Avizzrr S, FraenkeL (Rehovot, Israel)

L. Introduction. A disjoint covering system (R, ..
tion of the integers into residue sets

R = {keZ: k=a;(mod n)},

o R) t> 1,08 a parti-

1g<igr,

Two obvious necessary conditions for this to occur are

i
(1) Yoot=1 and (moa)>1, 1<ij<t.
i=1
One of the earliest results about such systems is that the moduli n; cannot all
be distinct. (See [2].) Zndm [9] and Newman [3] independently proved that
the largest' modulus, n, must be repeated at least p(n) times, where p(n)
denotes the least prime divisor of n. Thus if we order the moduli

SRS S
then necessarily
J=pn).

gt = B jrg = .0 =1y,

Berger, Felzenbaum and Fraenkel [1] give a geometric proof of this fact, and
of the extension discovered by Porubsky [5] to any maximal modulus n,
maximal in the sense of division. Thus if

(2) " *f'ﬂ-i, k+l (-i"-.{l‘,
then
(3) W ji1 = Mpjag = o= My, = plng).

The fact that some moduli of a disjoint covering system must be
repeated leads one naturally to enguire about systems with precisely one
multiple modulus. According to what we have just said the repeated modulus

* This research was supported by grant No, 85-00368 from the United States-Israel
Binational Seience Foundation (BSF), Jerusalem, lsrael,
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must be the largest, and so
(4) By <Hy <o Syl = Mpopaz = -0 =1
Furthermore on account of (2), (3) it follows that

n.l-|n,, 1<€i<t.

The case m =t is always possible, but we shall refer to it as the trivial
system.

Any disjoint covering system with moduli (ny, ..., ) can always be
modified to one with moduli (2, 2ny, ..., 21) by a procedure we refer to as
the 2-add. In this procedure the @, and n; are all doubled, and the residue set
R of all odd numbers is annexed. Conversely, if n, =2 then all the moduli
must be even, and when t >3 the system can be modified to one with
moduli (n,,...,+n) by a procedure we refer to as the 2-drop. In this
procedure the set R, is discarded, the n; are all halved and the o are all
replaced by either $a, or 4{¢;+1) depending on their patity. Referring back
to (4), then, this means that we can always assume, after repeated application
of the 2-drop procedure, that n; = 3 or that the system is the trivial one m
—t =2, Thus if we characterize the disjoint covering systems with

(5) 3$n1<n2<...<n,_;,,+1:r_l,.,m+2=...wn,

then the more general systems satisfying (4) will simply be those obtained
from the ones satisfying (5), together with the trivial system m =1 =2, by
repeated application of the 2-add procedure. This elementary observation
reduces for us the number of possible systems from infinite to finite, as will
shortly be seen.

Stein [7] showed that no disjoint covering system satisfies (5) with m
= 2. Thus the only systems satisfying (4) with m = 2 are those obtained from
the trivial one, m =t = 2, by the 2-add procedure; namely,

1gigi—1 and n =271

Zndm [8] showed that the only System satisfying (5) with m = 3 is the trivial
one. Porubsky [4] showed that the only nomrivial system satisfying (5) with
m =4 has parameters

n =2,

nlﬁS, ”5 mé

Furthermore for m =5 there is no such nontrivial system. Thus we can
summarize

SummMmARy. The only nontrivial disjoint covering system satisfying (5) with
m<5is the one with m=4, ny =3, ns = 6. '

Porubsky further conjectures that the only nontrivial systems satisfying
(5) with m =7 are

n1=4,n2=6,n9=12 and n1=3,n2:6,n3;’"9,n10:18.

icm

Our main result

Tueorem 1. The
with m <9 are

m=4, n, =3 ns=06;
iy o=4 ny =38,
m==6 %nlm , Ay =9,
H = 3, f’lz = 6, Hyg = 12;
S {HI=41 N, =0, 1y =12,
r"l] =3, ”236, ”3=9, n10=18;
{nt =35, ng=I[0,
m==§
no=3 ng=12;
Ny =4, g = 12,
‘ =3 n=6 n, =18
m="9 :
= 4, nz = 6, ’13 = 8, 1‘14 = 12, n13 = 24._,
n=3 nya=6 n=9 n =12, ns=18 n;, =36

Disjoint covering sysicms

i

only nontrivial disjoint covering spstems

satisfying
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(5)

All of these systems are readily constructed, and so the main result here is
the assertion that there are no others.
We find it more convenient to formulate this theorem for coser partitions

of 7,, the (additive) cyclic group {0, 1, ..., n—1} where n =n,. In general
(Ry, ..., R) is a disjoint covering system if and only if (R, na,, ..., R,Nnay)
is a coset partition of o,, where »n is a common multiple of #,, ..., . In this
setting |R, mo,/ = n/n;, so the equivalent to Theorem I concerns coset
partitions containing precisely m singletons, all the other cosets having

distinct orders. Specifically we consider coset partitions (K, ..., K,) of g,
with ‘ .
(6)  n32IK> Kl > > [Kmmra] = Kool = .= [K] = 1.

Again, if m =1 we say the partition is trivial. We can now rephrase The-
orem 1 as

Tueorem 1L The only nontrivial coset partitions of o, satisfying (6) with
m<9 are

m=4, n=26, |[K|=2;

n=8, |K{=2
m =6 %n=9, K| =3,
n=12, |K|| =4, |K3f =2

{n =12 Kyl =3, |Kif =2,
=18, |K,| =6 |Ksl =3, [Ks| = 2:
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8 {n=10= 1K1| =2,
=S =12 Kl =4

n=12, |[K{ =3,
o n=18, |[K,|=6, [Ky=3
m = n=24, |K,|=6 Ky =4, |Ks=3 |Kal=2

n=36, [K,| =12, |Ky| = 6, [Ks| =4, |Ky| =3, [Ksf = 2.

In terms of coset partitions (1) becomes
7 LKl K] <n.

On account of this condition Theorem II is a consequent of the seemingly
weaker

Turorem 11, If o, admits a nontrivial coset partition Sun.sjqu (6) with

<9 then n=26, 8, 9, 10, 12, 18, 24, 36.

Indeed if we tally, for each such n, all sets of divisors which lie between
2 and n/3, no two of which have Leam. n, and the sum of which lies between
n—2 and n—9, then we get precisely the list in Theorem 1L Thus 12, for
example, has divisors 2, 3, 4 in the range 2 through 4. Since [3, 4] == 12 we
need only consider the sets {4, 2}, {3, 2}, {4}, {3}, {2}. We discard the last
set, as its sum does not lie in the range 3 through 10. The remaining four
sets correspond to the four partitions with n = 12 in Theorem II. Similarly
24 has divisors 2, 3, 4, 6, 8 in the range 2 through 8. Since [3, 8] = [6, 8]
= 24 we need only consider subsets of {2, 4, 8} and {2, 3, 4, 6}. The first set
has sum outside the range 15 through 22, as does any proper subset of the
second set. So the only alternative here is {2, 3, 4, 6.

In Section 3 we prove Theorem III, thereby establishing Theorem I. We
emphasize again that from Theorem I one obtains all disjoint covering
systems satisfying (4) with m < 9 by including the trivial ones and applying
the 2-add procedure repeatedly. In this way Theorem I gives the complete

characterization of all disjoint covering systems with precisely one multiple
- modulus, the multiplicity of which does not exceed nine. Our proof repro-
duces the Stein, Znim and Porubsky results for ms==2, m =3 and m=4,5
respectively, and validates the Porubsky conjecture. A nice general survey of
disjoint covering systems is Porubsky ([6], Chap. 2).

2. Parallelotope partitions. We introduce certain sets of integer lattice
points. For

(N ' beN, b =2, 1<i<n
thé set

={c=(01,..., JeZu 0 <h, 1 €ign}
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is called the (n; B)-parallelotope, b= (by,...., b,). If by =by,=...=b,=b
then it is called the (n; b)-cube. Let T = {1, ..., n}. A T=cell, A, of & is any
set

H=le=(cy, ..., e ¢ =u, VigT}
where se #. T is said to be the index set for %4,
T = index (X}

(This is well-defined on account of (1)) Let # < # be the (n; b)-parallelotope,
and suppose
by=b, VieT
Then either
) A =P or
A Eartition T =(Ay, ..., A7) of 2 into cells is called a cell partition of
#, If P < @ g the (m b)-parallelotope set

T (B =HeT: HnF*Q

H =0,

and
TP = A P HeT(P).
Observe that 7 (#) is a cell partition of .

In what follows we shall use the following fact. Suppose x,, ..., x, = 0
are non-negative numbers, (By, ..., B,) is a partition of {1, ..., n} and
Yoxgm Y Xime= Y X
icBy ieB, isBy
Then
3 Y x; 2k max x;.
i=1 i1<€isn

Let s(k) denote the sum of all (positive) ‘divisors of k.
Prorostion I Let & = (A4, ..., X)) be a cell partition of the (n; b)-
paratlelotope #, t > 1. Then for each X'ed

(b—1)].4] € 5 B2
Inclex (%) = index ()}
b4 36
where
b =min(b;: i¢index(A)).

Prool. Lel & be the (n; h)-parallelotope, where

- b;, isindex(A),
7 b, idindex(X).
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By translating we can assume without loss of generality that 2" = #. Set

o=le=(c;,..,c e Y g = k (mod by, O0<sk<b.
i gindex (¥)
For any cell & < # with index (%) ¢ index(.4)
|.Z N S =L?, 0 k<b,

where ¥ = ¥~ P Furthermore if index (%) < index(#) and #F # @
then, according to (2), & Hes entirely within one set %,. Thus

2 | A5 = 2 A == 2. |47
index () = index {X) index (A7) < index (X)) index (#7) = index (A7)
Hi=Hy Ky=Ty K= F ey

From (3} follows then
3 #>b  max | A >b|A| a
index {H}) < index () index {(H}) < index{F) '
Kics Hop

ProposiTion I1. Let @ be the (I, +1,+1; b-parallelotope, where

2, 1 S I "-<- lj":
b;m%3, ll+1~<\l€ll+lz,
p. i=h+hL+],
and p = 5 is prime. We allow the possibility [, = 0, but I, must be positive. Let

T = (X1, ..., &) be a cell partition of P containing at most 9 singletons, and
suppose there exists A e J with

() 3441,
Then there exist 1+ j with
(5) 3N A, 1A = > 1

Proof Let n=1I4+1,+1. We introduce two partitions of 22 The first is
defined by ‘

pllA].

Iy +ig

> =k(mod3)}, 0<k<2.

i=ly+1

SFe=1e=(c, ..., c)e P

The second is defined by
'a}j = '{C=(CI? .

For any cell & = 2 with 3||%] we have

L ee# e =41, 0Lj<p.

LAPNF| = LP|, O0<j<p, 0<k<2.
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Furthermore if 3 4|.%| then & lies entirely within one set ;. Thus

Y g = 2 lAinZ| = Yo |Anl, 0<Kj<p.

EL 3] 3414

H =y Ay = Fe¥y
From (3) follows then

p=1
(6) Yo 23 Y max A0
<FIES =0 3yl
Let #*&7 be such that
Lo¥| = 2",
and m, is maximal such. Similarly let A ™**e.7 be such that
| A =27,

and m, is maximal such. (It exists by virtue of (4). Note that m, or m, may
be zero.} For any cell % < with p||<]

|1

|‘§Z)('\gﬂﬂ=w—, 0$J<p
p

Furthermore if p/|.#| then # lies entirely within one set &;. Thus A™* lies
entirely within ome set #;, which we can assume to be #,. Then

p-1 ' p—-1
(7 Y max [ 0P| 2 AP+ S| A2
. =

j=0 313

t

w1 - m m
=|.xr*|+f~5—|x**; — My (p—1) 2"
Assume now that there do not exist i # j satisfying (5). Then all the non-
singletons ¢ with 34| have distinct cardinalities. Thus

T <s@M 5@ p+T =T =) +EE =D D)+T
34l

< 32"+ 2" (p—- 1)),
which, together with (7), contradicts (6). w
ProvositioN [IL Let @ be the (I, + 1y + 15 b)-parallelotope, where

‘ {2, 1<gigly,
btﬂ
p:

[ 11 +[2+1,
b3, L+l<i<h+l.
We allow the possibility 1, = 0 but l; must be positive. Let = (A", ..., A7)

p=5is prime and
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be a cell partition of & containing ar most 9 singletons, and suppose rhere
exists A e with

(8) index(AY i+ 1, L +2, . L+ L+1} = { ++1]}.
Then there exist i+ j with
© [ A=A >1.

Proof. Let & be the (I, +1,+1; b)-parallelotope, where

5 bi: 1<l“<~:-ll Ofimlj"'lz’i’l,
P 3, ll‘l"lsi 1I+l2'

By translating we can assume that ¢ satisfying (8) lies in & Clearly /f
satisfies (4), and thus we can apply Proposition I to the cell partition .7 (#)
of . Accordingly there exists i#] with

INAH NP, A NP = AP > 1.
From (2) follows that 2, 4 < 4, and we thus obtain-(9). ®

3. Coset partitions. Iet ¢ =, where n has the prime factorization

’ li
M n=Ilpf p<p<..<p
ji=1
For jei{l,..., 1} let %, be the (s;; p)l-cube. Let # = 2, be the parallelotope

e@:{%’l X.‘%z X ... X.@f;.
Define the paralleloiope function
=9, 0P

as follows. Given keo and je {1, ..., I} let P (k) = pUt = (b, ...,

; bg.’)e.%”j be
the si-tuple of pi-ary coefficients for k {mod pjj). That i

e -
GO (K) = b9 < k (mod p) = 3 b pi
=1
Then set
o(k)=(p" k), ...,

The following result is from [1].
Prorostrion 1. ¢ is bijective, and if K is a coset of & with

1
K] = 1 py,
=t

P (k).
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then o(K) Is a cell of % with index set

LIJ (¥ s+ 11,..., rJ})

J=1 iy

= index (@ (K)) =

Proposimion 1 Let (K, ...
K = Kk

2 1Ky

. Ky be a coset partition of o. For any
K 1K

(i) < 3

Prool {p(K),.... @(K})) is a cell partition of . Thus by Propo-

gition 2.1

b=DipE)l< 3 (oK)

FAlS]
K" #=K
where

b = min (p;: p}’XlKl) = min (pJ: P;

)
’K' . a

Proposiion 1. Let n have the prime factorization (1) with
(2 =2,

Let (Ky, ..., K)) be a coset partition of 6, containing at most 9 singletons, and
suppose some K = K, satisfies

3) plIKl b HIKI,
Then for some i +# j

S!"——“‘l, p;..1:>2.

Vi 2<p <p.

K =K > 1.

Proof. (@(K,), ..., ¢(K,) is a coset partition of 2, and if K satisfies (3 (3)

then
$k 1,00, ) ~index (o (K)) = {n],

where § = g, or 0 depending on whether p, = 2 or not, rcbpcctlvely Accord-
ing to Proposition 2111 then, for some i s j

lp (Kl = [p(K) > 1. m

Let P(n) denote the greatest prime divisor of n.
Lemma IV. Let nz 2. If

(4) n-—3 (_—%ﬁ) <8
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then either Thus (4) holds if and only if 5,5, <2 w

n<l1l0 or n=12,18,36 or n=2". .I?rool’ of Thc?orcm 1.I_II_. Let (K,,..., K,) be a pontrivial coset
partition of g, satislying (1.6) with m < 9. Since 2 < |K,| < /3 it is clear that
nz 6 and n cannot be prime. Furthermore n =25, s = 4 is impossible since

7 A such a
(5) n—s(_n-_)—-n—(lnl p;’“—l)p,‘-l for such an n

Proof. Let n have the prime factorization (1). Then

P00 1 opml el s(.j)+8<n.
-y 1o .
n -0 \pi— By K >f‘_ - ﬁ b . . s
="|p— H " P o 4] o1, Thus it sulfices to show that » must satisfy the conclusion of Lemma 1V, or
24 j=1 P ! else n=24.
Let 2 =gy, g4, ... be the consecutive enumeration of the primes. Then Suppose not. That is, suppose n# 24 and n does not satisfy the

conclusion of Lemma IV, Let n have the prime factorization (1). Then

4j
Qi jglqj—l 6) n--s(§)>8.
is non-decreasing in k. (Use induction on k) Thus 1f p; =5 then !

. 5 Set
pj qJ o 5
p ——zp— ] = @ =K Pk
] jglmel 4ém U 1 4 K Ptl’ i}
and if p, =7 then It follows from (6) that % s @. Let K & % be of minimal order in the sense of
) division; that is,
P 21 .
n— ] —=2 ot
jzlpj_l 8 K{E 4N IKJ“K# = KizK.
and if p, = 11 then Thus if |K,E||K|, K; # K, then in fact |Kj| »i};l According to Proposition II,
i i
T 99 »
- T then
D j=1pj—1/16 IK!
Thus it follows from (5) that (m—l)+s(~;—) = |K]|.
n 1
(@) if p,=>5 and 22 7 then n-s (—13—(_5)> 8;
b ' " Thus [K| must satisfy the conditions of Lemma TV. Now the only way |K|
(b) if p,=7 and E; 4 then n—s (F%) >8; can satisfy these conditions without n satisfying them is
ln n ' ne 213" = 1,2 or an=2p, s=1,p=5"T or (2 holds.
(c} if p, = 11 and — 2= 2 then an(-—w , , .
P _ P(n) . In this latter case |K} has to be divisible by a prime p 2 5, so it is clear from
Using (a)-(c) we see that if (4) holds then the only possibilities for n are the list of possibilities in Lemma IV that |K| =2"p, r=0,1 and thus K
n=10, 14,15, 20,21,25,30 or n=p =5 or n=2"1 32 salisfies (3). So we rule this case out by appealing to Proposition TIL

We rule out n = 14, 15, 20, 21, 25, 30 and n=p > 1 Case (i) n=2"3" s, =1, 2 Since [2", |K|] = n it follows from (1.7)

Suppose n = 232, s, > 0. Then that |K|

n ‘ EACH |
sl =24+ [ —).
n 3(3) +( 2 )

) .
50 | i<t Now

s (2)"2'*8 >n < n=3,6,12, 24.
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Case (ii): n=2p, s =1, p=15, 7. Again, since [2%, [K|] = n it follows

i n
_ - < H.
S(Z) 2-|-8 nom
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An effective order of Hecke—Landau zeta functions
near the line ¢ = 1. |

by
K. M. Barrz (Poznan)

1. Let K be an algebraic number field of finite degree n and absolute
vakue of the discriminant equal to d. Denote by f a given nonzero integral
ideal of the ring of algebraic integers Rg. Let x(C) be a Dirichlet character of
the abelian group of ideal classes C {mod f) in the “narrow” sense.

Denote by {x(s, x), s = o+it, the Hecke-Landau zeta function associa-
ted to yx, defined for ¢ > 1 by the series

Le(s, )= ) x(a)Na~*
HERK

" where a runs through integral ideals of K and () is the usual extension of

¥{C) (see [5], def. X and LVI).

Basing on some estimates connected with the applications of 1. M.
Vinogradov’s methods to the theory of Hecke-Landau zeta functions we
shall prove the following theorems.

TueorEM 1. For 1—1/n+1) <o <], t2
holds:

(L) Lelo+it, ] < A, NP2 1028 00 40 Nft=In N
where Ay = exp(e, Jd Dr), d; = 14-103n25(n+2), A; = JdIn?d-n' ¢y,

‘ S5lnd !
¢y are pure numerical constants and D = | 2o

1.1, the following inequality

<d denotes the con-

stant from Siegel's theorem on the fundamental system of units {see [10]).
For the Riemann zeta-function the strongest estimate of the form (1.1} is
due to H. E. Richert [8] and for the Dedekind zeta-function to W. Stas [12].
Theorem 1| permits us to exhibit zero-free regions for {g (s, ) such that
the dependence of the shape of the regions on the parameters of K and y is
explicit.
As an application of (1.1) we get the following
TuroreM 2 (compare 2] and [3]). There exists a positive constant



