The distribution of divisors of N! by MICHAEL D. VOSE (Austin, Tex.) Introduction. The divisors of j! have an asymptotic distribution in which the set of prime numbers is embedded. An explicit formula for this distribution is given which leads to a sequence of splines converging to its density. Approximation, rate of convergence, and large deviations are also considered. **Results.** Let X_j be a random variable uniformly distributed over the set $\{\log d: d|j!\}$ and let F_j be the normalized (to have expectation zero and variance one) distribution function for X_j . Let p_i be the *i*th prime and let χ_I be the indicator of the interval I. Theorem 1. The sequence F_j converges completely to the distribution ψ having density ϱ represented by the infinite convolution $$\varrho = X_1 * X_2 * \dots,$$ where $$X_i = (2\xi_i)^{-1} \chi_{[-\xi_i, \xi_i]},$$ $$\xi_i = \frac{\sigma \log p_i}{p_i - 1},$$ $$\sigma = \left(\frac{1}{3} \sum_{p} \left(\frac{\log p}{p - 1}\right)^2\right)^{-1/2}.$$ Moreover, $\sup_{x} |F_{j}(x) - \psi(x)| \leqslant_{\varepsilon} j^{-1/3 + \varepsilon}$ for any $\varepsilon > 0$. Let $\varrho_N = X_1 * ... * X_N$. The sequence of splines $\{\varrho_N\}_1^{\infty}$ converges to ϱ and is given explicitly by THEOREM 2. For N > 1, $$\varrho_N = A_N \sum_{j=1}^{2^{N-1}} s_N(j) (\langle \theta_N(j) + x \rangle^{N-1} + \langle \theta_N(j) - x \rangle^{N-1}),$$ where $$A_{N} = \frac{1}{4(N-1)!} \prod_{j=1}^{N} \xi_{j}^{-1},$$ $$s_{N}(j) = 2^{1-N}(-1)^{0 < i < N},$$ $$\theta_{N}(j) = \xi_{i} + \sum_{0 < i < N} (-1)^{\varepsilon_{i}(j)} \xi_{i+1},$$ $$\varepsilon_{i}(j) = [2\{j2^{-i}\}],$$ $$\langle x \rangle^{M} = x^{M} \operatorname{sgn}(x).$$ Since logarithms of primes are linearly independent over Q, the nodes of the spline ϱ_N consist of the 2^N distinct points $\{\pm \theta_N(j)\}_1^{2^{N-1}}$. Moreover, ϱ_N is supported on an interval symmetric about the origin of length $\leq \log N$. Since the complexity of ϱ_N makes it difficult to calculate, the representations $$\hat{\psi}(t) = \prod_{k>0} \frac{\sin(\xi_k t)}{\xi_k t} = \exp\left\{-\sum_{n>0} \frac{4^n B_n}{(2n)(2n)!} \sum_{k>0} (\xi_k t)^{2n}\right\}$$ (see [2]) for the characteristic function of ψ were used instead to obtain the following result which is stated as a conjecture (this computation has not been independently verified). Conjecture. Let $$f(x) = \exp(-.954 - .434x^2 - .011x^4)$$. Then $|f(x) - \varrho(x)| < .001$ for $|x| < 3$. The probability distribution ψ concentrates mass about the origin more so than does the Gaussian distribution. We have the following result as $x \to \infty$: THEOREM 3. Both $1-\psi(x)$ and $\varrho(x)$ are $o(\exp(-e^{(\sigma^{-1}-\varepsilon)x}))$ for any $\varepsilon>0$. ## Demonstrations. Proof of Theorem 1. Define $\mu_n(j)$ for positive integer n by $$\mu_n = \left(12^{-1} \sum_{p^{\alpha} ||j|} ((\alpha + 1)^n - 1) (\log p)^n\right)^{1/n}.$$ The convergence of F_j to ψ follows from Theorem 1 of [2] which in the present case reduces to: THEOREM. A necessary and sufficient condition for F_j to converge to a distribution ψ is that for each n the limits $a_n = \lim_{\substack{j \to \infty \\ j \to \infty}} \mu_{2n}/\mu_2$ exist. In this case $\hat{\psi}$ is entire and is represented in the disk |z| < 1/4 by $$\hat{\psi}(z) = \exp\left(-\sum_{n>0} \frac{6B_n}{n(2n)!} (a_n z)^{2n}\right),$$ where $$B_n = 4n \int_0^\infty (e^{2\pi t} - 1)^{-1} t^{2n-1} dt$$ are the Bernoulli numbers. The limits a_n are computed from the prime factorization $$j! = p_1^{\alpha_1} \dots p_k^{\alpha_k}$$, where $\alpha_i = \sum_{k>0} \lfloor jp_i^{-k} \rfloor$. It follows that (1.1) $$\alpha_i = \frac{j}{p_i - 1} + O\left(\frac{\log j}{\log p_i}\right),$$ and, for any $\varepsilon > 0$, (1.2) $$(\mu_{2n}(j))^{2n} = \frac{j^{2n}}{12} \sum_{p} \left(\frac{\log p}{p-1} \right)^{2n} (1 + O_{\varepsilon}(j^{\varepsilon-1}))^{2n}.$$ Hence the limit distribution ψ exists, and $\hat{\psi}$ is represented near the origin by $$\hat{\psi}(t) = \exp\left\{-\sum_{n>0} \frac{4^n B_n}{(2n)(2n)!} \sum_{k>0} (\xi_k t)^{2n}\right\}$$ $$= \exp\left\{\sum_{k>0} \int_0^{\xi_k |t|} \cot x - x^{-1} dx\right\}$$ $$= \prod_{k>0} \frac{\sin(\xi_k t)}{\xi_k t}.$$ Therefore, $\varrho = X_1 * X_2 * \dots$ To estimate the rate of convergence of F_j to ψ , we use the Berry-Esseen inequality [1]: For all T > 0, (1.3) $$\sup_{x} |F_{j}(x) - \psi(x)| \leq \frac{1}{T} + \int_{-T}^{T} \frac{|\hat{F}_{j}(t) - \hat{\psi}(t)|}{|t|} dt.$$ We will use the following representations of \hat{F}_{j} : $$\hat{F}_{J}(t) = \exp\left\{-\sum_{n=1}^{\infty} \frac{6B_{n}}{n(2n)!} (\mu_{2n}/\mu_{2})^{2n} t^{2n}\right\} = \prod_{i=1}^{k} R_{i}(t),$$ where $$R_i(t) = \frac{\sin\left(\frac{t}{2\mu_2}(\alpha_i + 1)\log p_i\right)}{(\alpha_i + 1)\sin\left(\frac{t}{2\mu_2}\log p_i\right)},$$ see [2]. From (1.1) and (1.2) follows the estimate (1.4) $$R_{i}(t) = \frac{\sin(\xi_{i} t)}{\xi_{i} t} + O_{\varepsilon} \left(\frac{p_{i}}{j^{1-\varepsilon} \log p_{i}} + \frac{t^{2} \log^{2} p_{1}}{j^{2-\varepsilon}} \right).$$ Let $0 < \eta < 1/2$ and suppose $1 \le t \le j^{\eta}$. Since $\xi_i \simeq i^{-1}$, Sterling's formula applied to the product representations of \hat{F}_j and $\hat{\psi}$ gives $$|\hat{F}_j(t)| + |\hat{\psi}(t)| \leqslant \sqrt{t}e^{-t}.$$ Assuming the further condition that $t^2 = O(j^{\eta})$, and using $$(a \sin x)^{-1} \sin ax = 1 + O((1 + a^2) x^2),$$ we have $$\prod_{i=j^{\eta}}^{k} R_i(t) = 1 + O_{\varepsilon}(T^2 j^{-\eta}).$$ Since the tail of the product representing $\hat{\psi}$ is similarly small, (1.4) applied to the product representation for \hat{F}_i allows us to conclude: $$\begin{aligned} |\widehat{F}_{j}(t) - \widehat{\psi}(t)| & \ll \sqrt{t}e^{-t} & \text{for} \quad 1 \ll t \leq j^{\eta}, \\ |\widehat{F}_{j}(t) - \widehat{\psi}(t)| & \ll e^{\frac{t^{5/2}e^{-t}}{j^{\eta}}} + j^{e+2\eta-1} & \text{for} \quad 1 \ll t^{2} = O(j^{\eta}). \end{aligned}$$ We base our estimate of $|\hat{F}_j - \hat{\psi}|$ for small values of t on (1.4). Using (1.2) we have $$(\mu_{2n}/\mu_2)^{2n} = \frac{4^n}{12} \sum_{k>0} \left(\xi_k (1 + O_{\varepsilon}(j^{\varepsilon-1})) \right)^{2n},$$ hence $$\widehat{F}_{j}(t) = \widehat{\psi}\left(t\left(1 + O\left(j^{e-1}\right)\right)\right).$$ Since $\hat{\psi}'(t)$ is Lipschitz for small t, and since $\hat{\psi}'(0) = 0$, we obtain $$|\hat{F}_j(t) - \hat{\psi}(t)| \leqslant t^2 j^{\varepsilon - 1}$$ for $|t| < \frac{1}{4}$. Using our estimates of $|\hat{F}_j - \hat{\psi}|$ in (1.3) with $T = j^{\eta}$ and $\eta = \frac{1}{3} + \varepsilon$ completes the proof. Proof of Theorem 2. Let $t_N(x) = \left(-\frac{d}{dx}\right)^N \cos x$. Since $\prod_{j=1}^N \sin \xi_j = \sum_{j=1}^{2^{N-1}} s_N(j) t_N(\theta_N(j)),$ Fourier inversion gives (2.1) $$\varrho_N(x) = \lim_{\epsilon \to 0} \frac{4(N-1)! A_N}{\pi} \sum_{j=1}^{N-1} s_N(j) \int_{\epsilon}^{\infty} \cos(ux) t_N(\theta_N(j)u) \frac{du}{u^N}.$$ Assume N > 1 is odd, say N = 2n+1. Let $\eta^+ = |\theta_N(j) + x|$ and $\eta^- = |\theta_N(j) - x|$. Then the integral in (2.1) is $$(2.2) \left(\langle \theta_N(j) + x \rangle^{N-1} \int_{\eta^{+} z}^{\infty} \frac{\sin u}{2u^{2n+1}} du + \langle \theta_N(j) - x \rangle^{N-1} \int_{\eta^{-} z}^{\infty} \frac{\sin u}{2u^{2n+1}} du \right) (-1)^n.$$ Since $$\int \frac{\sin u}{u^{2n+1}} du = \left(H_n(u) + \frac{1}{(2n)!} \int \frac{\sin u}{u} du \right) (-1)^n$$ where $$H_n(u) = \frac{1}{u(2n)!} \sum_{k=0}^{n-1} \frac{(-1)^k (2k)!}{u^{2k}} \left(\cos u + \frac{2k+1}{u} \sin u\right),$$ (2.2) becomes $$\begin{split} \langle \theta_N(j) + x \rangle^{N-1} \left(\frac{\pi}{4(2n)!} + o(1) - H_n(\eta^+ \varepsilon) \right) \\ + \langle \theta_N(j) - x \rangle^{N-1} \left(\frac{\pi}{4(2n)!} + o(1) - H_n(\eta^- \varepsilon) \right). \end{split}$$ Therefore ϱ_N is represented by (2.3) $$A_{N} \sum_{j=1}^{2^{N-1}} s_{N}(j) \left(\langle \theta_{N}(j) + x \rangle^{N-1} + \langle \theta_{N}(j) - x \rangle^{N-1} \right) - \lim_{n \to 0} \frac{4(N-1)! A_{N}}{\pi} \sum_{j=1}^{2^{N-1}} s_{n}(j) \left(\langle \theta_{N}(j) + x \rangle^{N-1} H_{n}(\eta^{+} \varepsilon) + \langle \theta_{N}(j) - x \rangle^{N-1} H_{n}(\eta^{-} \varepsilon) \right).$$ Now view the ξ_i as indeterminates so that ϱ_N is a function of the ξ_i and of x. Notice that if ξ_i and x are algebraic, then both $\varrho_N(x)$ and the first term of (2.3) are algebraic. Since π is transcendental, it follows that the limit as $\varepsilon \to$ of the sum in the second term of (2.3) is either transcendental or zero. Since $H_n(u)$ is meromorphic, with rational coefficients in its Laurer expansion about zero, this limit must therefore be zero. Before proving Theorem 3, we establish the following LEMMA. For any $\varepsilon > 0$, $\hat{\varrho}(iy) \ll_{\varepsilon} \exp((\sigma + \varepsilon) y \log y)$ as $y \to \infty$. Proof of the Lemma. We have $$\widehat{\varrho}(iy) \ll \prod_{k=1}^{\infty} (\xi_k y)^{-1} \sinh(\xi_k y) = \exp\left(\sum_{k=1}^{\infty} \log\left((\xi_k y)^{-1} \sinh(\xi_k y)\right)\right).$$ Since $x^{-1} \sinh x < e^x$ for $x \ge \frac{1}{2}$, and since $\xi_k \sim \sigma k^{-1}$, we have $$\sum_{k \leq 3\sigma y/2} \log \left((\xi_k y)^{-1} \sinh (\xi_k y) \right) \leq (\sigma + \varepsilon) y \log y,$$ for any $\varepsilon > 0$ provided y is sufficiently large (depending on ε). If |x| < 1, the $\log\left(\frac{\sinh x}{x}\right) \leqslant x^2$, so that $$\sum_{k>3\sigma y/2} ((\xi_k y)^{-1} \sinh(\xi_k y)) \leqslant y.$$ Combining these estimates completes the proof of the lemma. Proof of Theorem 3. Let $f(x) = \chi_{[y,\infty]}(x) e^{-\alpha(y)x}$, $g(x) = e^{\alpha(y)x} \varrho(x)$ $h_{\lambda}(x) = \frac{1}{2\lambda} \chi_{[-\lambda,\lambda]}(x)$, where $\alpha(y)$ is a function to be chosen later, and λ is positive parameter. It follows that $$1 - \psi(y) = \{ f * h_{\lambda}(x) g(x) dx + \{ g(x) \{ f(x) - f * h_{\lambda}(x) \} dx \}$$ which by the Parseval identity applied to the first integral is $$\int \left(\frac{1}{\sqrt{2\pi}} \frac{e^{-\alpha(y)y+ity}}{\alpha(y)-it}\right) \left(\frac{1}{\sqrt{2\pi}} \frac{\sin(t\lambda)}{t\lambda}\right) \hat{\varrho}(t+i\alpha(y)) dt + \int e^{\alpha(y)x} \varrho(x) H(x) dx$$ where $$H(x) = \frac{1}{2\lambda} \int_{-\lambda}^{\lambda} (f(x) - f(x - t)) dt.$$ Note that $$H(x) \begin{cases} = 0 & \text{if } x < y - \lambda, \\ = e^{-\alpha(y)x} \left(1 - \frac{\sinh(\lambda \alpha(y))}{\lambda \alpha(y)} \right) & \text{if } x > y + \lambda, \\ \leqslant e^{-\alpha(y)(y - \lambda)} & \text{if } y - \lambda \leqslant x \leqslant y + \lambda \end{cases}$$ Assuming that $\alpha(y) \to \infty$ as $y \to \infty$, $\lambda = o(\alpha(y)^{-1})$, and estimating $\hat{\varrho}(i\alpha(y))$ by the lemma produces $$1 - \psi(y) \ll_{\varepsilon} \lambda^{-1} \exp(-\alpha(y)(y - (\sigma + \varepsilon)\log\alpha(y))) + \lambda \varrho(y - \lambda).$$ Choosing $\alpha(y) = \exp((\sigma + \varepsilon)^{-1} y - 1)$, and noting that $\varrho(y+1) < 1 - \psi(y)$, we obtain $$\varrho(y+1) \ll_{\varepsilon_0} \lambda^{-1} \exp\left(-\exp\left((\sigma^{-1} - \varepsilon_0)y\right)\right) + \lambda \varrho(y-\lambda),$$ for any $\varepsilon_0 > 0$. Choosing $$\lambda = \exp\left(-\frac{1}{2}\exp\left((\sigma^{-1} - \varepsilon_0)y\right)\right)$$ completes the proof since $\varepsilon_0 > 0$ was arbitrary. ## References - [1] W. Feller, An Introduction to Probability Theory and its Applications, vol. II, Wiley, New York 1966. - [2] M. Vose, Limit theorems for divisor distributions, Proc. Amer. Math. Soc. 95, Number 4, (1985), pp. 505-511.