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- Introduction. The divisors of j! have an asymptotic distribution in which
the set of prime numbers is embedded. An explicit formula for this disiribu-
tion is given which leads to a sequence of splines converging to its density.
Approximation, rate of convergence, and large deviations are also considered.

Results. Let X, be a random variable uniformly distributed over the set
{logd: d|j!} and let F; be the normalized (to have expectation zero and
variance one) distribution function for X ;- Let p; be the ith prime and let x;
be the indicator of the interval I :

TueoreM 1. The sequence F; converges completely to the distribution
having density ¢ represented by the infinite convolution

Q:XI*XZ‘*""

where

Xi = (2€) ™ xp-spens

oglogp;
(Si b 3
p~1"

1 [logp ¥\~ 1?2
7= (xz(1~1)) '

Moreover, sup |[F,(x)~y (x)| <,j % for any &> 0.
. .

Let on = X %...% Xy. The sequence of splines {gy}{" converges to ¢ and
is given explicitly by '
Tarorem 2. For N > 1,
2N~1

on=Ay 5 sy {OnD+xDY "1+ Dy (D—xV 1),

i=1
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where

A _Wl___ﬁff‘
NTAN-D T

Yo oA
sy(j) = 20N (Do <ien

o) =&+ T (=0,
O<i<N

a(f) =[2{271],

M = xMsgn (x).

Since logarithms of primes are linearly independent over (2, the nodes of
the spline gy consist of the 2¥ distinct points {+0x()}3" . Moreover, gy is
supported on an interval symmetric about the origin of length < log N. Since
the complexity of gy makes it difficult to calculate, the representations

- sin (£,1) { 4"B, 2
=Tl —— =exp{— 2 mmay & Gl
v k:l;IG it P ngo(?-”)(z”)!kgo ¢
(see [2]) for the characteristic function of y were used instead to obtain the
following result which is stated as a conjecture (this computation has not
been independently verified).

CoNIECTURE. Let f(x) = exp(—.954 — 434x? —~.011x*). Then
|f(x)—e(x)| <001 for fx| <3.

The probability distribution ¥ concentrates mass about the origin more
so than does the Gaussian distribution. We have the following result as
X — oo :

TheoREM 3. Both 1 —\ (x) and o (x) are o(exp(me‘”“l““"))jbr any & > 0.

Demonstrations.
Proof of Theorem 1. Define p,{j) for positive integer n by

e ={12"1 % ((x+1y—1)log p")"".
A ‘
“The convergence of F; to ¥ follows from Theorem 1 of [2] which in the
present case reduces to:
THEOREM. A necessary and sufficient condition for F; 1o converge to a
distribution \ is that for each n the limits a, = lim Yol thy €Xist. In this case W

jroo
is entire and is represented in the disk |z| < 1/4 by
- 6B
z) = exp| — —_ 2n
i =exp( PO )
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where
o
B, =4n j‘(ez"l —)7 et
0

are the Bernouili numbers.
The limits a, are computed from the prime factorization

Jl=pl...pk  where o= Y [ip'l-
i=0
It follows that
J logj
aLovol)
(1.1) | =1 \logp
and, for any &> 0,
(1.2) (2n (D) r—jz—nZ (————log £ )2"(1+o (o).
"\ 12 p p“"“]_ t4

Hence the limit distribution V exists, and ¥ is represented near the origin by

. 4" B
b = exp{* S e G r)z"}

n=0 k>0
il
zexp{z jcotxﬂx“ldx}
k>0
0
_ L sino
pvo Gt ‘

Therelore, ¢ = X %Xz *...
To estimate the rate of convergence of F; to iy, we use the Berry-Esseen
inequality [1]: :
For all T3>0,
T

(1.3) sup |F; (x) ~ {x)| < -;:v% Jﬁiif)l%)l di.

lt
T

We will use the following representations of F:

o . k
Fyi0 = exp’{— Py mf{%;(uz,/uz)z" r“} = [T R,

i=1
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where

sin (J—»(oq +1)log p,-)
2ty

Ri (t) = 1
+ 1)sin L log py
@Dt 2uz

see [2]. From (1.1) and (1.2) follows the estimate
sin (& ¢ ; t lo
sin (£ 1) 05(.1_1?' L Zg Y
Git jrlogp T
Let 0 <y <1/2 and suppose 1 <€t <" Since & =i}, Sterling’s formuia
applied to the product representations of F; and  gives
E5 (00410 (0] < re™.

Assuming the further condition that ¢? = O(;"), and using

(14) R; (1) =

(asinx)” 'sinax = 1+ 0{(1+a®) x?),

we have

k
[T Ri(t) = 1+0,(T%j"".
i=
Since the tail of the product representing  is similarly small, (1.4} applied t¢
the product representation for F allows us to conclude:

E (- ()] < Jte™ for 1<t
£512 51

IF; (00— .p(t)r<— L for 1<t =0().

We base our estimate of le—n//J for small values of ¢ on (1.4). Using (1.2) we
have

n

(t2u/tig)*" = %- 2 (ik (140, 1),

250
hence

Bty = g (t(1+0(* ).
Since §'(f) is Lipschitz for small r, and since W'(0) = 0, we obtain
F,—y @l <2~ for <4

Using our estimates of |F,~| in (1.3) W1t11 T=j and n =%+¢ completes
the proof. =
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N
Proof of Theorem 2. Let t4(x) = (—&i) cos x. Since
X

N1

z

H sin; = 121 sy () ta{Bx (1)),
Fourier inversion gives
, _ AN-)I AT o
(2.1) ox(x) = hm -~n)-»’! J; sn () COS(HX)IN(()NU)M);T’!:'

Assume N> 1 is odd, say N=2n+1. Let 5% =|0y()+x and #~
= |(hy ()~ x]. Then the integral in (2.1) is

o o0

: N~-1 SINH
(2.2) ((f)w(.i)'1'x> fz g 4 By ()~ x PN ! J‘;lii‘ldu)( 1)".
n"a ¢
Since
sinu sinu
ﬁ"’z‘ﬂ'i'd (H W+ G J u)(ul)"
where

1 m2r (- 1)*(2k)!

H,{u) = u(2n)! k);g w2k (COS u+

2k+1 . )
sinu |,

(2.2) becomes

On(+x31 (“(:2‘“)74’ (1 )_Hn(ﬂ+8))

+<0~(.I')-x>N"l(zw+0(1) H,(n~ 8))

Therefore gy is represented by

a1
(23) Ay 3 swlD(Oy(D+x "+ O 2"
Jwl
e 1) Ay 2T
- i Q4(N n')-‘!_N Z Sn(j)(<0h'(.f)+x>~"1H,,(r,'"" E)
[ J=1

+ O (D=3 H, (0™ 8)).

Now view the & as indeterminates so that gy is a function of the & and of x.
Notice that if ¢ and x arc algebraic, then both gy{x) and the first term of
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(2.3) are algebraic. Since 7 is transcendental, it follows that the limit ag ¢ —
of the sum in the second term of (23} is either transcendental or zer
Since H,(u) is meromorphic, with rational coefficients in its Laurer
expansion about zero, this limit must therefore be zero. m Ly (y) <, 27 exp{—a(y) (¥ — (o +6) loga (1)) + Ao (y— A).
Before proving Theoremﬁ3, we establish the following Choosing a(y) = exp((a»i«a)’ly—l), and noting that o(y+1) < 1—y (), we
Lemma. For any & >0, §(iy) <, exp((c+¢) ylogy} as y - co. obtain
Proof of the Lemma. We have

Assuming that o(y) — 00 as y - co, 4 = o(a(y)™"), and estimating & {ix(y)) by
the lemma produces

- e(y+1) <o 47 exp(—expf(o™" —20) y)) + 22 (y— ),
G(iy) < [T &~ sinh(& y) = exp( Y, log((&y)~ *sinh (&, y))). for any &¢ > 0. Choosing
k=1 k=1

A= exp(—texp((e™! —¢0) y))

completes the proof since £, > 0 was arbitrary, m

Since x~!sinhx < e* for x >4, and since & ~ k™', we have

Y log((&y) tsinh(& ) S (e+e)ylogy,

kS 3ap/2

for any ‘s > 0 provided y is sufficiently large (depending on &). il [x| < 1, the References

sinh x 2 '

log < x*, so that
X
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Combining these estimates completes the proof of the lemma. m
Proof of Theorem 3. Let f(x) = yp,a(®¥)e %, g(x}) = " p(x : Received on 9.5.1986 (1634)

1 . . .
hy(x) = ij[“ 1.21(x) where «(y) is a function to be chosen later, and 1 is
positive parameter. It follows that

L= (y) = [ fohy(x)g(x)dx+ [g(x){f (x) =] * by (x)) dx,
which by the Parseval identity applied (o the first integral is

1 —aly)y tity 1 : A

where
A
1 . . ,
H(x) = 5 J(f (0 —f (x~0)dt.
-2 )
Note that
=0 if x<y—4,
H(x} { = e”“"”"(l _sinh{tty (yn) if x>y+i,
Aaly)

& 7N if y-l<x<gy+a



