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An extension of a result of C. J. Smyth to polynomials
in several variables

by

A. Bazviewicz (Warszawa)

H. L. Montgomery and A. Schinzel in their paper [2] have asked
whether for every positive integer ¢ there exists a number C{d) < 1 with the
following propetty:

Every polynomial F{z,,....z,) with integral coefficients of the total
degree d such that F(0,....0) =1 has a zero (gy,..., 0, satisfying
max |¢;] < C{d).

LEiEn

We present here a solution of this problem.

By analogy with polynomials in one variable, a polynomial
Fe([zy, ..., z,] is called reciprocal if

. J ! - -
Flz(, ..., 2,) =constzy!...z," Flay ', ...z )

where d; is the degree of F with respect to z.

Our principal result is the following:
Turorem 1. Let FeZ[zy, ..., z,] be a non-reciprocal polynomial such
that F(O, ..., 0) == 1.
Then F has a zere (gq, ..., 0,) satisfying
max g < 05"
AN
where d s the total degree of F and 8y is the least Pisor—Vijuyaraghavan
number.

For n=1 this result has been obtained by C. J. Smyth [4] as a

corollary to his theorem on the Mahler measure.
For the proof of the theorem we need another defmition.

Dernron, A polynomial FeC [z, ..., 2,] of degree d; with respect to
z; is called self-inversive if there exists a ceC such that

i [ - »
S Fzyt, Lz Y =eF

where the bar denotes the complex conjugation.



212 A, Bazylewicz

Clearly, for FeR[zy, ..., z,] the notions of reciprocal and self-inversive
polynomials coincide.

The proof is based on three lemmata.

Lemma 1. Let GeClzy,..., 2, be of degree d; with respect to o,
1<ig<n EcC, cardE > maxd,. If for all (g1,...,q)eE" we have
Gloy, .-, @) =0, then G =0,

Proof. See Lemma & in [3].

Lemma 2. Let E be the set of all primitive roots of unity of order not
divisible by 3. If FeC[zy, ..., 2y} F(0,...,00=1 and for all ecE" the
polynomial F,(z) = Flg,z, ..., 8,2) is self-inversive then also Flzy, ..., z,) is
self-inversive.

Proof Let F be of total degree d and of degree d; with respect to z;.
We have

d
(1) FJ:(Z)= ZziFl'('gl!""aﬂ)
i=0

where F; is the sum of all terms of degree i in F.
The assumption that F,(z) is self-inversive means that

2 F,(z Y =c(aF,(z), where c(g9cC, il Fys,, ..
This condition together with (1) implies that

.5 &t 75 O

[} d
2 Y Flers i)z i =e(d Y Filers .o 02,
i i=0

Fd(l"lla rears 8")(Fd(61_1, ..
Fu‘(als LR Sn)(ﬁd—l(gi-x’ v

e ) —c{dF (@, ..., 0) =

e ) —c(@F,(eq, ...

for all ee E* The polynomials
Folzq. oo, 20

n

n Iy = _ _ .
><((I—Il Z )Fﬂ'"’f(z-l l’ wery Zp l)_ (H z:")Fd(zl—la [ERE] Z:l)Fj(zla vesg zrr))
i= i=1
vanish for j=0,1,...,d in all points s E"
In virtue of Lemma 1' we get

" H

(IT z?")ﬁduj(zfl, vz =(]] zd")Fd(zfl,

3 Zn_l)Fj(zls LR} zn)n
i=1 i=1
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because Fy(z, .., 2,) # 0, hence, by (1),

(2) (1n: z':*")ﬁ(zf"], oz ) =(IT zi-'i)F,,(zl"l, e BTN F (24, 0y 2,)

i=1
The polynomial on the left-hand side is with respect to z; of degree at most
d;, i.c, the degree of F, hence

h

dn - -
(n 3,'1) cf(z.l 14 sy Ep I)EC
2
and (2) shows that F is sell-inversive.

Limma 3. Let K be o complex multiplication field, /§¢K and let X be
the set of all injections of K into C. Let P be a monic non self-inversive
polynomial with cocfficients being integers of K and P(0) 5 0.

If for a6X

deg#
P(e) = [] (z—aq)
i=1
then
deg #
max [ ] max(1, lagl) = O
qed il

where Og is the least Pisot-Vijayaraghavan number.
Proof See Theorem 1 in [1].
Proofl of Theorem 1. By Lemma 2 there exists an ge E” such that

F,(z) is not sell-inversive.
By Lemma 3, with P =z'F,(z™"), there exists a zoe C such that
Fzzh) =0 and |20l 2 65"
Hence, by the definition of F,

max g zg | < 0511,
1=ign

Fleyzgt, ..., cozg ) =0 and

Remark. The above prool clearly works for all non self-inversive
polynomials Fe K [z, ..., z,] with integral coefficiedts and F(0, ..., 0) =1,

Trrorem 2. If FeZlzi, ..., 2,] of the total degree d " satisfies
F{O,....0) =1, then there exist Cd) <1 and (g4, .-, 0)€C" such that
F(01r+.or 0 =0 and maxlg| < C(d).

Proof. In virtue of Theorem 1 we can assume that F is reciprocal. By
the definition of a reciprocal polynomial, F(0,...., 0) = 1 implies that the term

z‘i‘ ...zo" ocours in F, so d =d;+ ... +d,. Hence F really depends only on d

variables at most and Corollary 1 of [2] gives our result.
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