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Square-free points on ellipsoids
by

R. C. Baker (Egham)

1. Introduction. A point x of Z* with non-zero coordinates is said to be

square-free il
(D) P () = 1

In this note we give a simple criterion for the presence of square-lree points
on a given ellipsoidal surface
(1) Jx)=n.
Here &k =
n=>C(f)

The result obtained depends on the work of Podsypanin [37], who found

4; f is a positive integral quadratic form; and the integer

that for ¢ > 0 the surface (1) contains
61(.’.5~3k/2 I
- ki2)— 1 —~a+z
@ @ TG O O

square-free points, where o = (k—3)/(4k+4). Here G is a ‘singular series’,
defined precisely below. (Constants implied by ‘0 and *»° depend at most on
S and ¢)

For every prime power p" (r =
solutions of the congruence

2) let p(p", n) denote the number of

S (x) = n{mod p')

in integers x,, ..., x, not divisible by p? Let us write

(3) n=[]p° 2detf=T[p
P r

where o =w(n, p), 8 =0(/, p).
TueOREM. (a) We have

(4) o(p', mp 2 pr " P®0 whenever  p k28t det f.
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{b) For n > C, (), the surfuce (1} contains square-free points if, and only

if,
(5) e(p¥, m) >0 for all p|2**'det f.
Here
min{(5+8, 3+w), p=2,
& N =N/ p)b{max min(3--0, 1+w), 2], p>2.

The condition in (b) is a refinement of one in [3]. Podsypanin requires
o(p¥. ) > 0 for all primes p with

p!2k+1HDS_
S

Here the product is over all nonempty S € {1, ..., n}, with the notations

j(x): Z aljxt i

1€i,jsn

2GU == 2aﬁEZ, ai;EZ,

det f = det{a;),

Dg =det( Y da;x;x).
i,jes

The factor 2¥T1 is required in (4), (5) because det f may be an odd
multiple of 27% Moreover, even in a simple case such as f'(x) = x{+ ... +x{,
4 = k <6, there are n with ¢(2°, nj = 0. See Estermann [2].

It is easy to deduce part (b) of the theorem from part (a). To do so we
need two expressions for G from [3], § 7. Firstly,

Q) G=[l(1+1~p 3% ¥ B@)
P y=1
Here
pY 1 1 4 F (_1)sl+...+rk
B(p") = DIRTHD NP MDY Tuq o 25y,
h=1¢1=0 g=0x=1 x=1p1
pih
% e (h(f(pmi \Cla e 7 Yk)_n))

with the notation e(f) = ¥

Moreover, we have

@ 1H1—p It Y B =p k= pm Y o (o,
v=1
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for m = 2, with

(9 B{p')=0 for v>N

([3]. § 7). Thus the infinite series in (7) can all be ‘truncated’.

Deduction of (b) from (a). If there is a square-free point x on the
surface (1), then obviously (5) holds. Conversely, suppose that (5) holds. In
view of (a) and (8), (9), every factor in the infinite product (7) is > p~ %~ 1N,
Moreover,

N

[T O+73% B(p") snr

P=Calh) v=1
([3], § 7). Since N < 5+0, from (6), we see that
G n®,

which, in view of the asymptotic formula (2), yields square-free points on the
surface (1) for n > C ().

2. Proof of (a). Let p be a prime, p ¥2"'*!det /. We begin by showing
that there is a solution x of

(10) f(x) = n(mod p)

for which

ay  pfx)= ( B T has > 2 none ts (mod

{ f (x) = ol (7 as nonzero components (mod p).

The number of soiutions of (10) is
L (f(x)— n))
P hZ; xlzz 1 xz ( p .

By a nonsingular linear transformation of the variables (mod p), as in [3], we
can transform this expression to become

1L & "o (ke yit . ey —hn
PRI |

Pk"“ [)

1
219"‘1—1;(13*_1)19"”-

Here p ¥a, ..., The lower bound is obtained by separating the term k=0
and using the well-known evaluation of Gauss's sum for h=1, ..., p—1.

The number of x (mod p} for which Ff(x) has one or fewer nonzero
components is obviously < kp. For example,

y_ _

dx, T
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defines a one-dimensional subspace of (Z/pZ)*, since the lincar forms

ar A
o A have determinant 2*det f % 0 (mod p).

EERTI

ox,” 7 O,
Now we easily see that
1
Pt (o~ 1) p'? > kp.
p
After all,
k 2k
T ey o
r p 3
while

pk——l ? 3(k/2)-— 1 pkj‘Z > (2](/3)]31‘:‘/2

for p> 3, k=4, Thus we may choose and fix an x satisfying (10), (11).
We now construct a vector y = x (mod p) with

(12) f(¥) = n{mod p*),

Suppose, for instance, that

Py P e

. Vi) =(dyy oo di)y phdid,.
We take y of the form
(13) ¥y =x+pz,
so that
F0) = f(x}+pd.z (mod p?) = n+bp+pd.z {mod p?)

where f(x) = n+bp. The conditions {12) now reduce to

(14) d.z= —bh {mod p)
together with k conditions
(15.) x;+ pz; # 0 (mod pZ) (j=1,..., k.

Now (15,) is vacuous if x; & 0 (mod p). Otherwise, it excludes one value
of z; (mod p). We choose x; to satisly (15)) for j=3,4...., k. Now (l4)
reduces to (say) '

(16) d,z,+d,z, = ¢ (mod p),

with p.td, d,. There are > p~1 > 2 choices of z, with (15.2). Each defines a
value z, with (16), and at least one of these z;’s must satisfy (15.1). So we can

indeed satisfy (14) together with (15.1}{15.k), and y can be constructed as
asserted.
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The above argument is a variant of Hensel’s lemma. We now use this
lemma in the conventienal form (see e.g. [1], pp. 42-43). Since
Vf (¥ # 90 (mod p) by (11), (13), we can construct p* ! solutions of

Siw) = n(mod p?)
with w = y (mod p?). Thus

(7 e(p’, n) = p 1,
We already know from (8), (9) that
(18) e(p". my=pr Do’ ) (r=3).

(Recall that N <3 in (6) since p > 2, 6 = 0.) Now (a) follows at once on
combining (17) and (I18).
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