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1. Introduction. In his fandamental paper in 1929 Siegel [9] developed a
method for studying the arithmetic properties of the values of certain classes
of analytic functions known as E- and G-functions. He proved the algebraic
independence of the values of certain E-functions at algebraic points, and
also pointed out that his method could be used to investigate G-functions,
giving some examples of the results that could be obtained.

This suggestion of Siegel has been followed more recently by Nurmago-
medov [8], Galochkin [5], [6], Flicker [4], Viininen [107], [11], Matveev
7] and Xu [12], [13], for example, but the results of these papers use the
additional Galochkin's condition on G-functions. This restrictive condition is
usually not trivial to verify, see e.g. [1], where Gauss hypergeometric
functions are considered. In an important paper of Bombieri [2] this
condition is replaced by another condition, he considers G-functions which
are “Fuchsian of arithmetic type” (for the definition, see [2]).

Using very interesting new ideas, Chudnovsky [3] recently succeeded in
considering the arithmetic properties of the values of classical G-functions
without any further restrictions. In particular, he gave a lower bound for
linear forms in the values of G-functions at certain rational points. Our aim
in the present paper is to obtain a generalization of this result to algebraic
number fields, in both the archimedian and the p-adic case. Our proof is
based on the ideas of Chudnovsky [3] regarding the use of Padé approxima-
tions of the second kind, and on local to global technique as used in the
work of Bombieri [2].

2. Netation and main results. Let K be an algebraic number field of
degree d over @, and let O denote the domain of integers in K. For every
place v of K we write d, = [K,: ©,]. If the finite place v of K lies over the
prime p, we write »|p, for infinite place v of K we write v|cc. We normahze

the absolute value | |, so that

(@) if vlp, then [pl, = p *"

(i) if v|cc, then |, = |x""
here | | denotes the ordinary absolute value in R or in C.
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Clearly we have the product formula

[TIx, =1, xekK, x#0,
v
and, for-all x,, ..., x,c K,
max|xi|,, it olp,
Xy xd, € )
& "Nmaxlﬂcln if oo,

n
For any polynomial P(z) = Y, p;z'e K[z] we denote

i=0

|P‘u = max(l, Il'l_ElX |pi|u)'

" The absolute height hix) of xe K is defined by the formula
h(x) = [[max(1, |x,),

and absolute height h(X) of the vector X =(x,, ..., x), x;e K, by
h(X) =[] max(1, max|xi,).

Analogously we define the absolute heights of a matrix 4

a polynomial P(z)e K[z] by the formulae

h(4) =[] max(1, max|ay)

[ 2¥)

= () ayye K, and

and
= [TIPl.

respectively.
We shall write log™ a = logmax(1, @) for all a =

L if  olp,
©Uldd, i vjeo,

The power series

0. We then denote

5 0, it olp,
*“Ya/d, if vleo.

. o .
1) A ¥i(2) = Z amiZ™  i=1,...,m,

are called KG- funcnons, if the following conditions are satxsﬁed
i) ay ek, i=1,

(i) there exists a constant C >

s b, m=0, 1,
1 such that, for every v|co,

ap(m+1)
max|dy |, <C* T, m=0,1,...;
i !
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(111) there exists a sequence of natural numbers (r,) such that , a,,,,eO,;,
i=1,..,nm=0,1,.. . LI=12 ., and n<C I=1,2,.

From the above condmon (iii) it follows that
max |a, i, <, ' <r < C

1Lign
0Em=!

for every finite place of K and [ =1, 2, ... Thus the set y, {z), ..
KG-functions is v-adically convergent in [z, < ™

In the following we suppose that the functions (1) satisfy a system of
linear differential equations

- Yaul2} of

d
2 ‘ EEY=AY’

where Y = (y;(2), ..., ¥al2)f, A =(4;(2),,.. Ay;eK(2). Let T{(z)eK[z]
denote the common denominator of 4;;, and put
s=max(deg T, deg TA;, i,j=1, ..., n),

We shall consider Padé approximations .of the second kind for KG-
functions (1). These are defined in the following way. Let Dy, I and M be
natural numbers. Let Q(z) be a non-zero polynomial of degree < Dy. Then,
for every i =1, ..., », there exists a unique polynomial

Pi@)=[Q ylp
such that ord,.q(Q(2)y:(2)— P:(2)) =
ord, - (Q(2) y:(2) - Pi{2)} =

of degree €D D+1. If we now have

M+D+1

for every i =1, ..., n, then the system of polynomials (Q(z); Py {z), ..., P.(2))
is called a system of Padé approximations of the second kind for the functions
(1) with weights D, and D and order M of approximation. We shall say
briefly that the system (Q(z): Py (2), ..., P,(z)} of Padé approximations of the
second kind has the parameters (D,, D, M). According to Dirichlet’s box
principle the system (Q(z); Py(2), ..., P,{z}) with parameters (Do, D, M)
exists whenever Dy = nM. '

In the present paper we assume that the functions 1, ¥, (z), ..., y.{2) are
linearly indcpendent over K(z).. We consider a linear form 1 in

1 121 (Z} s P Z}

I(z) “_HO'f‘ E H; y,(2)

i=1

where H; are elements of K, not all zero. Let H = (Hy, Hy, ..., H,). By I, we
mean a linear form obtained by considering the form / in' the corresponding
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completion K, i.e. we think of H, and all the coefficients of y, {z) as elements
of K,. For #eK, |0, < C ", the value I,(8) is then defined in K,.

Our main result is the following theorem. .

TheoreM. Let u and e, 0 <u, £ <1, be given. There exists an effective
constant A, depending only on w, ¢ and the functions (1), such that if 0c K
satisfies 0T (6) # 0,

logh(6) > A,

ue

log|9{u < min ((mm“l)l()gh((}), — 0, log 2C),

then

log!l, (), > —{(n+1+glogh(H)+log* max|H),
i

Sor all h(Il) = Cy, where Cy is a positive constant depending on u, ¢, 0 and the
system (2). S o

Remark. The constants A and C, are given explicitly.in (12) and (13),
respectively. Of course, as we show on p. 262, our Theorem implies the
linear independence of the numbers 1, y, (), ..., y, (€K, over K.

We also obtain the following corollaries.

CoroLLaRY 1. Let K = @ and v|co, and let u and ¢ be as in the Theorem.
Let the coefficients H; of 1 belong to-Z. There exists a positive constant ¢,
depending only on w, & and the functions (1), such that if ¢ = a/be Q ((a, b)
=1, b > 0) satisfies 8T(6) # 0 and

la/b| < 1/2C), b > Cola[[”"‘ 1](n-l-e):

then
log|l (a/b)| > —(n+e)log H

for all H = max(\Hy|, ..., |H,) > Cs.

This corollary is analogous to Theorem I of [3], but the proof gives the
constants explicitly. As a p-adic analogue to Corollary 1 we propose the
following

Cororrary 2. Let K= Q and vlp, and let u and ¢ be as in the Theorem.
Let the coefficients H; of | belong to Z. There exists a positive constant ¢y,
depending only on u, & and the functions (1), such that if 0 = atbe Q ((a, b= 1)
satisfies @T(0) + 0 and

lafbl, < 1/2C),

{max (jal, b)) > ¢, (Jﬂ/b|.pmax(iaj, !b|))‘"+1>("+ﬂ>=
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then

[Og”p(a/b)lp > —(n+1+¢)logH
Jor all H=max(|Hyl, ..., [H]) > C,.

Our results can be applied eg. to the functions (1+az)" with pairwise
distinct rational v;, 0 <v, <1, i=1, ..., n, and nonzero a €K, or to certain
hypergeomelric functions with rational parameters.

3. Lemmas. The proof of our Theorem is based on the ideas of
Chudnovsky [3], and our first lemmas are results of this work. Lemma 1 is
Theorem 1.1 of [3].

Lemma 1. Let (Q{z); Py (2), ..., P,(2)) be a system of Padé approximations
of the second kind with parameters {Dy, D, M) for the functions (1). Let ke N
and assume that M = k(s+1). We define

l' k
0¥(z) = T*(z) (;;-) 0 (z)/k!,

P2 (z) = [Q"‘>(z)'yi(z)]w+ks), i=1,..,n

Then (Q*(z); Pi* (2), ..., P (2)) is a system of Padé approximations of the
second kind with parameters (Do+ks, D+ ks, M —k{(s+1)) for the functions (1).

The following very important result follows from Theorem 1.2 of [3],
Chudnovsky’s proof of this result is highly ingenious,

Lemma 2. Let 8, 0 < 8 < 1/(n+n*(s+1)), be given, and define Dy = D, M
=[(n"'~8)D]. There exists a positive constant N, depending only on the
system (2} and &, such that, for all D> N and arbitrary zq # 0 satrisfying
T(zo) # O, there are integers kg, ki, ..., ky,

Ogky<k <. <k, < D—nM4n(n+1)(s+1)/2,

Jor which the n+1 linear forms in Xg, Xq, <., X,

"
QW}(Z(}]XO“’I‘Z P:k‘p(ﬂ'o)xi, J=0,1,...,n,
{= 1 : .

are fineurly independent.

In the following we need Siegel's lemma which we give in the form
presented by Bombieri [2]

Lemua 3. Let y = 4d%| Dy V2, where Dy is the discriminant of K. Let K
< L. Then there is a non-trivial solution X e K" of

L

2, ayx;=0,

i=1...,K, a;ek,
]‘:1 .
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with
K v
R(X) < p QLA R (TT [T max fag ) 45,
i

i=1 v

LeMma 4. Let y,(z2), ..., y,(2) be a set of KG-functions. Then, for any 8,
0<d<1l/n, and an arbitrary positive integer D sutisfving D > aM, M
= [(n"*—8) D), there exists a system (Q(z); Py (), ..., Po(2)) of Padé ap-
proximations of the second kind with parameters (D, D, M) jor the functions
Y102, oo, v (2) such that Q(z), P{z)eK[z] und

log h{Q} 2(1+n7"=8){((0n) ' —~ 1) Dlog C+log y/(dn)
+({(dm ' =1)log 2(D +1).

Proof. Let g,, m=0,1, ..., D, be the undetermined coefficients of Q,

D
= 2. GmZ"
m=0

By the hypothesis of the lemma and the definition of Padé approximations of
the second kind, the unknowns g, must satisly the system of linear equations

D
Y GOy =0, m=D+1,,.  D+M i=1,..n

k=0

By multiplying these equations by rp.y we obtain a sysiem of linear
equations in g, with coefficients in 0. The number of equations is K = nM
and the number of unknowns is L = D+1. Thus K < L.

By Lemma 3 and the inequalities

IrD+Mam—-k,ilu <1
valid for all vjpand i=1,...,n k=0,1,...,D, m=D+1, o DM, we
can find a non-trivial solution g,e K satisfying
h(0) <y (2(D+1) )(1—6n)/5nc2(1+n—1-6)(1—5u)0/5n.

Obviously also P;(z) =[Q(z) ' y,(z)]pe K[z]. Thus Lemma 4 is proved,

LEMMA 5. Let (Q(2); P, (z) » P (z)) be the system constructed in Lemma
4. If M=[(n"'-8D] = k(s+ l) and O0c K satisfles OT(0) # 0, then the

polynomials Q%> (z) and P{**(z) defined in Lemma 1 have, Jor each place v of

K, the estimates
@ Iroee@® @ < (D) T gl T max L, (012,
) 1741 P& (B), < c(D) CHO+90 |0, I TTE max (1, 612 49,

: i=1,...,n
where ¢ (D) = (s+ 1)*(D +1)2°.
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Proof. We denote Tz Z t;2. If v|oo, then we have
=0

w0, = (Y L0 g 04,
0™ @, =|(% & Hz() |

< ((v+ DD+ 122 | T4 |0}, max(], |6]2*%).

This implies the estimate (3) in this case.
By denoting

D+ks

Q%@ = 3 47,
J=0

we obviously have (¢|oo)
(5) G, < (ks + 1) (s+ 1471 (D + 1) 22 T Q).
j=0.1, ..., D+ks.
Thus we obtain
Dtks  J

|P|'<k>(0)|u = | Z ( Z q:ixk) aj*m,l') ()jlu

J=0 m=0

' J
<D +ks+ 1) max (Y 4% aomi) 0,

OsjED ks m=0

' D+ ies)d ,fd ;
S(D+ks+ 12 max g, CPT M max (1, 102+),

0%j<D+ks
which, by the above estimate for |¢j*’|,, proves (4) in the case v]co.
If v|p, then
rp+1s @* (O, < | TIEIQ], max (1, 617 ")
and
[Fpans P2 (B, € max (1G5 IPp44s @ Q) m,ilpy mAX (1, (017 %)

0"\-'_]=ED+RS
0sSmsS
<10, TEmax (1,407, i=1,....n,

thus proving Lemma 5. .
For the remainder funcltions we use the notation

R (z) = Q¥ @ ple)-PF(2), i=1,..,n
We then have the following lemma.

Liemma 6. Let the hypothesis of Lemma 5 be valid. If |0], <(2C)"™, then
we have the estimates

IR (0), < ¢(D1QL I TIH(CVI0L)P M i=1, .
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Proof. If pjeo and 18], < (2C) ™, then [f] < 1/42C). By (5), we have

biks k—1 0 d/du kd/dli m
| Y 4% @l S D +ks+ Dks+ D s+ 1) (D+1) 27101 T, €™
=0
i=1,....,n,m=D+M+1—k, ...
This implies, for each i =1, ..., n,
o D+ks

RO =] 3 (T afan-;,)0"

m=D-+M+1-k j=0
< (D |QI | T (C oo,

Hence Lemma 6 is true in the case v|oo,

If v|p and |8], < 1/(2C), then we obtain

D+ks .
REE), < max [T af an )67 <10 ITE(CIB)P* M4
mEDFM+1-k =0

Thus Lemma 6 is proved.

Lemma 7. Let & and 6,, 0 <38 < 1/(3n*(s+1)), 0<d, <1, be given.
Assume that

8D > 1+(n+1)(s+1)/2, (1—38n2(s+1))D = n,
k < D—nM+n(n+1)(s+1)/2.
If log|0], < min((6, —1)log h(8), —a,log 2C), then we have the estimates
(6) loglrprxs R¥{O)), < {28, (20nlog(s+ 1) +log 2+ 1)
+(B, (14 28ns)+a, (1+n~* —35n))log C
+2dnlog|T|, +(6, —1){(1+n" ' —3én) log h{6)} D
+loglQl.,
Proof. From the hypothesis it foilows that
k<2nD, M =[(n" =& D] = k(s+1).

Thus the hypothesis of Lemma 6 are satisfied.
If vjwo, then Lemma 6 and our hypothesis on log|d|, imply

log irp.4.4s R (0N, < B,(2logc (D) +(D+ks) log C)+log|Q),
+klog ITL,+(D+.M—I- 1—k)log (C™|8),)
< {B,(4dnlog(s+ 1)+ 2(log 2+ 1)+ (1 + 26ns) log Q)
+20nlog|T),+a,(1+n" ' ~3dn)log C
+{81 1) (1+n""~36mlog h(6)} D+log|Q],.

i=1,..,n
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Similarly, if #|p, then we have
l0g [Fpyas Ri® (M, < log Q]+ (20nrlog | T, +a, (14071 —3dn)log C
+(8, = {1+ 1" =3dm log h(B)) D.
This proves Lemma 7.

4. Proof of the Theorem. First we shall prove the following Theorem A
which then implies (he truth of our Theorem.

Let Oe K, 0T(0) # 0, be given, Suppose that § and J; satisfying 0 <
< 1f(3n3(s+ 1)) and 0 < 8, <1 are given. We shall use the following nota-
tions: '

fy o= 0 R 308, n=0n(2s+ 3) =8, (1+n"1),
A =301+ n o Ylog CASm+ 2/(dn) -+ 2dnlog h(T),
A =3O (1),

(g + 14 26m)logh(O), 4 4 (1 4 26ms) log h(6).
py log hil)—A

TorOREM A. Assiume that
wlogh(0)—A4 >0
and
log 0], < min((8; = 1)log h(0), —a, log 2C).

There then exists a positive constant Cy (given explicitly in (11)) such thai

(s +1+2dns)log h(0)
pJogh(th—A

log |1, ()], > — log h(H) — B-+log™ max|Hj,

Jor all h(H) > C,.

Proof. Let (Qiz); Py(z2). ... Py(2)) be the system of Padé approxima-
tions with parameters (D, D, {(n™" —8) D]} constructed in Lemma 4. Let D be
large enough to satisfy the hypothesis of Lemmas 2, 4,5 and 7.

By Lemma 2, we can find an integer k;,

0k € D~n[n™ ' =8 D]+n{n+1s-+ 1)/2

salislying
=ty (Ho Q™ (())+!§1 H, PE7 () # 0.

Obviously I &K, whence we obtain, by the product formula,

Pl =1
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Denoting k; = k, this gives
(0 loglfl,=— ¥ loglil,

vy Fv

-3 B,, log{n+1)— > log® m‘a){|H,-|,,l

vy #v vy ¥

- E 1Ogmax(]rD+st<k>(@)‘u11 maxlrn+ks Pi<k>(0)|vj)'
vy #Fv i

On the other hand, we have
log |rp+xs Q<k> (0)1, (0)— Z Hirpis Ri<k>(9)|u
i=1
< ﬁv 10g (n + 1) + lOg max (er+ ks Q(k> (0) l (G)Im
max [H;rpye R (Q)’u)-

1sikn

(8) logll], <

First we prove that, for a sufficiently large D,

9 logn+1)+ Y log* max/Hj,,

vy #o
+ ¥ logmax(lrp+i @ (O, max |rp.u P (0),,)
vy #e 1£i€n
+10g max (lHilu Ir]J’i-k.vRi(k)(B)Eu) < 0
1<ign

From Lemmas 4, 5 and 7 we obtain the following upper estimate for the left-
hand side of (9):

log(n+1)+logh(H)+ ¥ {(38.,(20nlog(s+1)+log2-+1)

oy 0
+2B,, (1+20ns) log C + 26nlog| T],, -+ (1+25ns) log™ |6],,) D
+log|Ql,, }+ (2B, (26nlog(s+ 1)+ log 2+ 1)+(B, (1 + 26ns)
+o,(14n""—38n))1log C+2nlog|Tl,
+(8 —{l+n""—3mlogh(®)} D+log|Q),

L logn+1)+log h(H)+log h(Q)+ {65n.10g(s+ D+3(log2+1)
+(2(1 4 28n8) +a, (1 + ' —38m)) log C+ 26nlog h(T)~ py log h(Y} D
< log A+(A—py logh(6)) D+log h(H).
We now choose D in such a way that '
(10)  (D—1){p, logh(8)~A) < log h(H)+log A < D (g, log h(8) ~ A)

assuming A(H) > C,, where
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{11) '
log C; = {1ty log h(0)— A)ymax (N, (L+(n+ Uy(s+ 1)/2)/8, nf(L —38n2(s+1)))
(this implies that I} is sufficiently large to satisfy all the assumptions of our
lemmas). Thus the truth of (9) follows.
By using {7), (8) and (9), we obtain

log|l, ()], = ~log(n+1)— 3 log” mElXth1 l0girpsas @4 (O),
vy #Fv
- Z ]()gde(II'D.'.ks Q(k>(0)gu1: lmax |rD+ks (8)!01)
vy #o <isn

By deduction similar to the above, we obtain, by Lemmas 4 and 5 and the
inequalities (10), the estimate

log{l, (8)], = —(66nlog{s+1)+3(log2+1)
+2(1+20ns)log C+ 2énlog k(T)
+(1428ns)log h()) D —log(n+1)—log h(Q)
—logh(H)+log* max|H,
_"(,ul + 1+ 2dns)log k(0)
1y log h{B)— A
+log™ max |H,.

log h{H)— B

Thus Theorem A is proved.
We can now give a proof for the Theorem itself. We choose

5 = ue _ {(l—u)e .
YT+ D (nte) T 4@s+3)nmte)(nt+1+(1+u)e2)
Then
(n+1+(1+we/2) g —pty —1—26ns
> (n+(1+ue/2)(n AT =8, (141" )—n(2s+3))— 1 —20ns
=1 -wefdnte) >0
By taking
a2 i d(n+e)(n+1+(1+u)e/2) 4

(1—u)e ’
the condition log h(f) > A implies

(n+ 1-+(1+u)e/2) A < ((n-+ 1+(1+w)&/2) py — g — L —25ns)log ().
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This gives p log h{f) > A and
(s + 1+ 28ns) log h(0)f(p, log h(B)— Ay <n+1+(1-+u)s/2.
By Theorem A, we now have
log |, (0)], > —(n+1+(1 +u}e/2)log h(H)—B+log™ m;dle,-i,,

for all h(H) > C,. Let us choose
(13) Co = max(Cy, 2B/(1-u)e).
Then, for all h({H) > Cq,
1og 1, (), > —(n+1+¢)logh(H)+log™ max|Hi,.

which proves our Theorem.
The Theorem implies the linear independence of the numbers 1,

y (@), ..., y,(0) over K. Namely, if 1,(0)} =0, then we must have h(H) < Cy.
Using the properties of the absolute height we obtain (suppose H; # 0)

h(F) < h(FH) h(1/H;) = h(FH,) h(H)),
where F = [C3+1] is a natural number. Hence,
h(FH) = WFH,) = h(F)/h(H,) = F/h(H) > F/Cs > Co.

Thus the equality FI,(6) = 0 contradicts the Theorem. This implies /,(0) # 0.

5. Proof of the corollaries. First we prove Corollary 1. Since K = @ and
v|co, we have

la/bl, = la/bl,  h{a/b) = max(jal, |b]) = |b}.

If we take c, = ¢** then our assumptions imply

ue
e s h{a/b).
log hia/b) > 4, logla/b| < ((n.+1)(n+a) _I)log h{a/b)

Further, we notice that log h(H) =log H and log™* m:ax|H‘-\” = log H. Thus

Corollary 1 immediately follows from our Theorem. '
The proof of Corollary 2 is analogous to the above. We simply note that
in this case log* max |Hy, = 0.
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