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On the parity of p(n)

by
M. D. HirscuHorn (Kensington, Australia) and
M. V. Sussarao (Edmonton, Canada)

1. Introduction. About twenty years ago, the second author in [4] made
the conjecture that for any given integer m> 1 and every r, 0 Sr<m—1,
the partition function p(mn+r) takes even values, as well as odd values, each
for infinitely many n. In the case m = 1, the result is due, independently, to
0. Kolberg [2] and Morris Newman [3]. The case m =2 is settled in [4].
We have a proof of the comjecture for m = 4, but are suppressing it because
we prove here that the conjecture holds for m = 16. Note that if the conjecture
holds for a positive integer m, it also holds for all divisors of m.

2. The main result. We now prove the

TugoreM 2.1. For each r, 0<r < 15, p(16n+7) is infinitely often even,
inftnitely often odd.

Proof. We have, modulo 2,

(2.1) Lpmx"

=Y x0/p(xY, A(m) =nln+1)/2.

nzQ
= Z xd(n) 2 xM(n)/d)(xlﬁ)_
nz0 nz0 ]
(We note in passing that continuing the iteration in (2.1) leads to a direct

proof of the more important part of Theorem 1 of {1])
It follows from (2 1) that

22 ST pmwm T AT S ) say,

nz0 nynp0 nz0

Now, A(n) =0, 1, 3 or 6 (mod 9), 44(n) =0, 3, 4 or 6 (mod9), so that
cn)=01if n=2 or 8 (mod9).
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Write p,(n) = p(16n+7r). Define k, to be the smallest k for which p,.(k) is
odd. A table of k, is given below: '

r 01234567859 1011
k0010000012 5 2

Next let I, be given by the following table:

r0123456789101112 13 14 15
4547831213 4 27 8 3 4

Suppose p,(n) is odd (alternatively even) for n = ngy(r). We can suppose
no =1, (mod 9) and that 2ny+1 > k,.

Now let N =N, =(3nd+no)/2+k,.. Note that
[6N+r = 16{32+1)/2+k,)+r = 2(mod9), s0
It foilows from (2.2) that, modulo 2,

23)  p(NY+o,(N=1+p(N~24p(N=5)+p.(N=T+-..

T +pr(n0 +kr)+ pr(kr} = 0
(The condition 2#,+1 > k, guarantees that p,.(k} is indeed the last non-zero
term on the left of (2.3))

But the left hand side of (2.3) is odd (there is an odd number (2nrg+ 1) of
terms, the last is odd, the others are all odd (alternatively even)). So we have
a contradiction, and our theorem is proved.
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(16N +7) = 0.
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Finiteness criteria for decomposable form equations

by
J. H. Evertse (Amsterdam) and K. Gy6ry (Debrecen)

1. Imtroduction. Let K be a finitely generated extension field of @, and R
a finitely generated extension ring of Z in K. Let F(X,, ..., X,,) be a form in
m 3> 2 variables with coefficients in K, and suppose that F is decomposable
(ie. that it factorizes into linear factors over some finite extension, G say, of
K). Let b be an clement of K*(') and consider the decomposable form
equation

(1) F(x(,...,%xy)=b in  xy, ..., xp€R.

The decomposable form equations are of basic importance in the theory '
of diophantine equations and have many applications in algebraic number
theory. Important classes of decomposable form equations are Thue equa-
tions (when m = 2), norm form equations, discriminant form-equations and
index form equations. The Thue equations are named after A. Thue [31]
who proved in the case K = Q, R=2, m=2, that if F is a binary form
having at least three pairwise linearly independent linear factors in its
factorization over the field of algebraic numbers, then (1} has only finitely
many solutions. After several generalizations, Lang [13] finally extended
Thue's result to the general case considered above {when K is an arbitrary
finitely gencrated extension of @ and R is an arbitrary finitely generated
subring of X over Z). ' '

In the case that K = Q, R=Z, and F is a norm form, Schmidt [24]
gave a necessary and sufficient condition for F such that (1) has only finitely
many solutions for every be Q% Later he generalized [25] this result by
showing that all solutions of an arbitrary norm form equation over Z belong
to finitely many families (cf. [25]) of solutions. These results of Schmidt were
later extended by Schlickewei [20] to the case of arbitrary finitely generated
subrings R of @ and by Laurent [14] to the above general case (when R is

() K* denotes the set of non-zero elements of K. In general, for any integral domain R,
R* will denote the unit group (i.e. the multiplicative group of invertible ¢lements) of R.



