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wenn v so gewdhlt wird, dalb uu = 1 mod p‘. Da aber das zuletzt erhaltene
Polynom genau dann ein PP mod p ist, wenn (k, p*=1) =1, und genau
dann ein PP mod p° mit ¢ > 1 ist, wenn (k, p(p?—1)) = 1 (vgl. etwa [2]). gilt

Satz 8. Dus mit ﬁ(rx-}«s) Transformicrte von g (1, x) mit k = 108t genau
danmn Permutationspolynom mod p¢, wenn (ur, p) = p sowie (k, p}= I, und wenn
(ur.p) = 1 sowie (k. p*—1) =1 fiir e=1 bzw. (k. p(p*=1)) =1 fiir ¢ > 1.

Die Berechnung der Fixpunkianzahl der Permutationen x i
cyg (1. voimod p° und die Ermittlung der Struktur der von diesen
Permutationen bei festem [ gebildeten Permutationsgruppe modulo p* schei-
nen mithsam und nicht leicht zu sein.

Auf #hnliche Weise wie im Falle der Dickson-Polynome g, (1, x) Jassen
sich auch die ganzzahligen konjugierten Ketten der Kette der Dickson-
Polynome g,(—1, x) bestimmen, was aber hier nicht mehr durchgefiihrt
werden sofl.
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Inhomogeneous norm form equations over function fields
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1. Introduction. In this paper, we give effective bounds for the solutions
of inhomogeneous norm form equations in several dominating variables over
function fields in all cases where the solutions can be bounded by usual
parameters of the function field.

The first general effective finiteness result on norm form equations in
iwo variables over Z, i.e. on Thue equations was obtained by Baker [1]. This
famous (heorem was later generalized and extended by several authors. For
further references on norm form equations in several variables over number
fields see eg. Gydory [7] [9].

In 1974 Sprindzuk [21] gave an inhomogeneous generalization of Ba-
ker's result. He obtained effective bounds for all solutions of the equation

(1 NKIQ(X"I"OQJ'{"A) =m

where K = Qo) is an algebraic number field of degree =3, 0# meZ and
the variables are x, ve Z and(*) 1e Zg. Here 1 is a non-dominating variable
such that(?) mfr(max(\xL M) (0 <{ <1 is a given constant). In the
special case A = 0 this theorem gives the above mentioned result of Baker.

Combining the method of Sprindzuk [21] with that of Gyory and Papp
[10], in [5], [6], we extended SprindZuk’s theorem to the case of certain
inhomogeneous norm form equations in several dominating variables over
number fields.

Now let us turn to norm form equations considered over function fields.
In the special case of two variables, Osgood [16], [17], Schmidt [18}-[20]
Stepanov [22], Mason [11], Gyory [8] and Brindza [2] gave effective
bounds Tor the solutions of Thue equations. Gyory [8] derived effective
results also for the solutions of certain norm form equations in several
variahles, : .

A general effective theorem on norm form equations over function fields

('} #, denotes the ring of integers of an algebraic number field K.
O] m is the size of an algebraic number 4, that is the maximum absolute value of its
conjugales,
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was obtained by Mason [13]. He proved that if the module generated by the
coefficients of the norm form is “non-degenerate™ (for the exact concept see
Section 3), then there are only finitely many sclutions and he derived a
bound for all solutions. He showed that if the assumption of non-degeneracy
does not hold, then the solutions cannot always be bounded by usual
parameters.

In [11] and [13], Mason constructed also algorithms to determine all
solutions of Thue equations and general norm form cquations (with non-
d.egenerate modules). respectively, For further results on norm form equa-
tions over function fields see Mason [14]. [15].

- Recently, Brindza and the avthor [3] obtained an effective resull on
inhomogeneous Thue equations over function fields and proved an analogue
of SprindZuk's theorem [217 on equation (1).

Our purpose in this paper is to derive effective bounds for the solutions
of general inhomogeneous norm form equations (with non-degenerate modu-
les) over function fields, that is, to give a common generalization of Theorem
2 of Mason [13] and of the Theorem of our paper [3]. '

In our prool we combined the arguments of Mason [13] and Brindza
and Gadl [3] with somc new ideas.

‘ 2. Preliminaries concerning function fields. First we introduce our nota-
tion and recall some basic facts concerning function fields.

Let k denote an algebraically closed field of characteristic 0 and let k(z)
be the field of rational functions over k. If K is any finite extension field of
k(z), denote by € the set of all (additive} valuations on K with value group
Z. The valuation re (g is called finite il v(z) = 0, otherwise v is called infinite.
For any non-zero xe K the additive height of « is defined by A

Hilo) = ~ 3 min {0, v(w)).

ey

Obviously, Hy(x) =0 if and only if ek (For a=0 put A
s ! 0LE K. = ut H =0) It
follows from the additive form put Hgla) =0 It

Y v(=0

velly
of the well-known product formula that

Hg (o) = |m| Hg (),
Hy(a+f) < Hg()+Hy (), Hix(@f) < Hy )+ Hy(B)

for any non-zero o, BfeK and me Z. For any finit ;
. : . - Z. ny finite set & of s of
the heighr is defined by clements of K

He(# ==Y min(0, v(s); se #).
ey .
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If 1e % and 0# ueK then we have
Hg (9 < Hy(p )

where u.% = lus| se %), Finally, we remark that if L is a field lying between
k({z) and K and wef2,, then \
(2) W(NK/L (Of)) = Z v{o)
ulw

for any non-zero acK, where on the right-hand side » runs over all
valuations ve Qy which extends the valuation w to K.

For these and further properties of the valuations of function fields and
the height function see e.g. Mason [12]}.

3. Results. Now let us turn to the formulation of our theorem. Following
the notation of Mason [13], let L and K be finite extensions of k(z) with
L o K. Denote by @ the ring of elements of L integral over k[z]. Let M be a
finitely generated (-module in K. For any field F lying between L and K let

MF = 'meM| VjeF Alel with [jimeM}.
MF is a submodule of M, it is either {0} or the rank of M is = [F:L]. M is
called non-degenerate (see [13]) if for each F rp > ry, implies MF = {0}, where
rr and r, denote the number of infinite valnations of F and L, respectively.
Mason [13] considered equations of the form

(3) Nyo(x)=c¢ in xeM

where ce L is fixed. He proved that if M is non-degenerate then (3) has only
finitely many solutions xe M for each ce L. Moreover, he gave an effective
algorithm to determine all solutions of (3) and derived a bound for the
heights of the.sclutions.

As an inhomogeneous generalization of (3) let us consider the equation

@ Nyp(x+Ad) =c

in xeM and AcK. Under the condition that the height of 4 is “small”
compared with the height of x (and M is non-degenerate), in our theorem we
give an effective bound for the heights of all solutions of equation (4).

It is no loss of generality to assume further that K is a normal extension
of L and M is a free ¢-module in K (cf. [13]). Denote by d, g and r the
degree of K over L, the genus of K/k and the number of infinite valuations
of K, respectively, and let x;,...,x, be an (-basis of M with height
Hy (X, ..., X < H. Our main result is the following:

Tucorem. If M is non-degenerate and x& M, AcK is a solution of
equation (4) with Hyg(4) < coHg(x), where o = [20d* (n+ 117" then

5) Hye(x) < 2573 [ (n+ WP (H 47+ + He(e)+1).
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The condition of non-degeneracy of M is necessary since otherwise even
equation (3) (which is a special case of (4) restricting the variable A to zero)
can have solutions which cannot be bounded by usual parameters (cf. Mason
[13]). We remark that although the height of the solutions of equation (4) is
bounded, it may obviously have infinitely many solutions.

In the special case 4 =0 our theorem gives the following corollary:

CoroLLary 1. If' M is non-degenerare then for all solutions xe M of

equation (3) we have (5).

The assertion of Corollary 1 coincides with Theorem 2 of Mason [13],
just our constant is somewhat different.

In [3] we considered .“-integral solutions of inhomogeneous Thue
equations over function fields. For equations of this type our theorem gives

CoroLLary 2. Let e K be of degree =3 over L. If x, ye O and AeK is a
solution of
Ngp(x+oay-+4) = ¢

with Hg(A) < Gomax{Hg(x), Hg(y)), where &y = (27 d*Hg(a})™% then we
have
(6) max {Hg (x), Hg(y) < 227 d* (H (o) +r+g+Hg(c)+1).

The result of Corollary 2 may be compared with that special case of the
Theorem of [3] when % consists only of the infinite valuations of K (the
constant in [3] is much better than (6)).

4. Proofs. In our proof we fellow the arguments of Mason [13]. The
basic steps of the proof of [13] were modified and considerably extended in
our paper, in order to be able to deal with the inhomogeneous variable 4 (cf.
[13]). '

The proof is based on an effective theorem on $-unit equations in
several variables. The theorem was first proved by Mason [13] and later
improved by Brownawell and Masser [4]. In order to get a better bound in
our theorem we shall apply this later result, We recall that if % is a finite
subset of @y then aeK is called F-unit if v(x) =0 for all ve Qg\ ¥

Lemma. Let & be a finite subset of Qg and let u,, ..., u, be Yunits of K
such that
Uyp+ ..Uy, =1,

but no non-empty proper subset of luy, ..., u,\ is linearly dependent over k.
Then we have

B2, f‘i)s-%(nmn(n_z) [A+25-2]
iy Uy .

where |5 denotes the cardinality of .

Our lemma is Corollary I of Brownawell and Masser [4].
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Proof of the Theorem. We shall denote by G(K/L) and G(K/F) the
Galois groups of the extensions K/L and K/F, respectively.

1. First let us consider the case where n = 1. In this case, x = a; x; with
a e Put Ao == Afx,; then equation (4) can be writien in the form

- [N
g+ A 0) = o
ﬂ'l:"(!("[c,’L) ' ° NK]L (x])

It means that o, is a root of the polynomial

¢ ,
(x) = (% Ag o) e e @ K [x].
1 uﬁ(]f(}q!.) ’ NK/L(xl)
We recall that the height Hg(f,) of a polynomial f; in K [x] is defined
by Hy (%) where & is the set of its coefficients. Since fi(x) = [] (x+4e0)
el (K/L)
is a power of the minimal defining polynomial of —~Ai, over L,.hencc
by Lemma 4 of Mason [12] we can see that Hg(f;) < dHg(4o) Obviously,

Hy ([} < Hg(J1)+ H (ﬁxji(:f-ﬁ)

It follows from the Corollary to Lemma 4 of Mason [12] that Hg(ory)
< Hg(f). Combining our results, we obtain

(7) Hx{x) zl‘f,‘(mlxl){(2d+1)H+dﬂK(R)+H;{(6).

I1. Now Jet us suppose that n> 1. Denote by F the field generated by
Xp/Xqa orns Xpfxy Over L. Since Xy, Xg, ..., X, A1 linearly indcpenden_t over L,
hence 1, X3/X,, ..., Xy/x, are also linearly independent over L, that is, [F:L]
> n. We shall examine separately the cases [F:L] =n and [F:L] > n. In the
following let xe M and AeK be a fixed solution of equation (4). _

ILA. First assume that [F:L] = n, thatis {1, x2/xXy, ..., Xu/X,} I8 & basis
of F over L. Any j&F can be written as

"

X .

j= Y ot with oy, . o€ L
(=1 1

Denote by [ an element of L such that b, ..., e, @; then {;i;clefvl, t;hat is,

x; e M". By our assumption M is non-degenerate; hence M* # {0} implies

Fpo=a PL' .

. . X X2
6 X mm oy g A ovn 0 Xy (@, - gy () is 0 M then y w-;lf mot_l—i-ocz;c-:

+ oy oy, *n is in F. Further, put Ao = A/x,. Then equation (4} can be written
X1
in the form
¢
(8) ' NK.IL (J" + ;{'0) = N;;‘L‘(xl) ' ,

§ ~ Actn Arithmeticn 51.1
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We are interested in the values of Ny (y+1,) at different valuations ve Q.
Let v be an arbitrary finite valuation in Q. Then we have

©) U(Ngr(p+4a)) = Y v(y+ieo)

aelr(K/F)

= ) min{u (il), . (ﬁ'-), v{dg o‘)}.
el (K/F) Xy Xy

Now let v be any infinite valuation in Q. Denote by vy a valuation in
Q, which is the restriction of v to F. By rp =r, there is only one valuation
v, im @, which is the restriction of vy to L. Further, let ¢ and ¢, be the
ramification indices of v over L and of » over F, respectively. Using the
property (2) from [8] we get

. c
(10) U(m>= U(NKJL(y+A0))=€UL(NK,'L(J}+’1()))

=€ UL(NF,'L(NK/F (v ‘HLU))) =e 3 vp(Ngp(r+io)
vplvy,

e
= evp(Nygjp (+4o)) = Z”(NK/F (¥ +4q))-

Put p = Nygjr(y+4,). Combining (9} and (10) we obtain

(11) Hy () < dH (f%,...,x—">+dH Lo)+dH (m_f_mm
K K X, Xy K( 0) K NK/L(xl)

Lad{d+2)H+dHyg (A)+dHg(c).

In view of yeF the equation Ngr(y+4¢) = 4 means that y is a root of the
polynomial f (x) = [] (¥+4Aoo)— . Similarly, as in point I we obtain that
geGiK/F)
Hy () € He(f) < dHg(Ag)+ Hy (1),

Combining it with (11} we get
(12) Hy(x) = He(x( y) < (@*+3d+ ) H+ 2dHg (A +dHg o).

ILB. Let us consider now the case where [F:L] = n In this case there
exists a set X consisting of n+1 elements of G(K/L) which acl pairwise
differently on F (that is, n+ 1 elements from distinct right cosets of G(K/F) in
G(K/L)). The n+1 linear forms

xo = Y o{x0) (0&X)

i=1

in the » variables oy, ..., a,e @ are linearly dependent over K, hence there
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exist non-zero clements A,, ce X in K such that

(13) Y A (x6) =0

aeX
holds for all x in M. The coefficients A,, =X can be obtained as maximal
non-vanishing minors of the matrix with elements x;0, o€ X, 1<gign
whence

(14) Hyld,, ceX) <|X|-H=(n+ D H.
(13) implies :
(15) T A, (xo+Ac)+d =0
oeX
where 4 = — 3 A,(do) and using (14)
oeX
(16) HK(A)E(H—I—l)(H-i-HK(l)).

Let us consider the summands 4, (xe -+ Ag), o= X and A in (15). Among these
summands A may be zero but others are non-zero.
Equation (15) may yield the following subcases (al, a2, b).

a. First suppose that there are two non-zero elements of A, {xc -+ Ag),
oeX and A which are linearly dependent over k.

al, f A#0 and for some ceX, A,(xo+ 1) and A are linearly
dependent over k then by (14) and {16) we get

17 Hy (%) < 2(n+ 1) H+(n+2) Hy ().

a2, If for some o, o* X, A,(x0+0) and A,.(xo*+Ac*) are linearly
dependent over k then we immediately get (22) and we may continue our
arguments after (22).

b. Suppose now that any two non-zero elements of A,(xe+4a), 6 X
and A are linearly independent over k. In this case by (15) there exists a
minimal subset of non-zero summands of (15) consisting of at least three
elements, which are linearly dependent over k, but no proper subset of which
is lincarly dependent over k. Hence there is a subset ¥ of X and there are
non-zero coefficients k,, oeY and k, in k such that either we have an
equation of the form
(18) ch,A,,(xa+Arr)+k,‘A=‘0

124

if A0 and A4 is an element of the above minimal subset; or we have an
equation of the form '

(19) Y kﬂAa(;ca+zla) =0

aef
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if A is not an element of this minimal subset. Further, in equations (18), (19)
any proper subset of the summands is linearly independent over k. In order
to apply our lemma to the above equations let % be the set of those
valuations in £, at which one or more of the following occur;

v(d,)# 0 (ceX), v(x0) <0 (ceG(K/L), 1 <i<n);

v(do) <0 (veG(K/LY);  v{A)#£0; o) >0;

v is infinite valuation.
Then the summands in equations (18), (19) are all “-units and for the
cardinality of & we have

(200 | < (n+2) Hy(A,, 0e X)+dH +dHg (3)+ 2Hy (A)+ Hy (0)+ 1.

If we have an equation of the form (18) then applying our lemma to (18) we
obtain

1
Hy (Aa(x;'FlU)) <"{”2+ )(|,9ﬂ|+zgm2) for some ce Y.

Using (14), (16) and (20), from this we get
(21} Hg(x)
<In+ D[ +Tn+6+d) H+(3n+4+d) He (A)+ Hg{c)+r+29—2].

Otherwise, if we have an equation of the form (19} then by our lemma we
have

(A,,(xa-Ha) )< n{n+1 )(I‘/’H“Zg %)

22 A p(xa*+Ac¥),

for some distinet o, c*e Y. Put t =0 1o* and = (x+A)/(xt+A1). Using
(14), from the above inequality we get
(23) Hyty < inmr+1)(HA+29-2+2(n+ 1) H.

By an argument of Mason [13] we may extend x,,...,x, to a basis
X{,..., X4 of K over L such that

(24) H* = Hy{xy, ..., x)) € H+2g9+4d.
There exist eléments Y l€ign 1€j<d in L such that
H . d
(25) tan) =3 wx - (I<i<n).

i=1

For fixed i, the elements y;;, 1 <j <d can be determined from the linear
equation system

(ta)(x;to) = Z 1i(x;0) (o eG(K/L)
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by Cramer’s rule and we get
(26) Hy(yy1<i€n, 1 <j<d)<2dH*+4dH(t)+dH.

Put «; =0 for j =n+1,...,d Then from the definiticn of t we obtain
(x+AYt =xT+At = Y 0 {x7)+ A1
i=1

whence by (25) we get

1

d
2n T = Y at(x 1)+t (Ar)—A]
J=1 j=1
n d d n
=3 % Z Yig X1 Ao = lej(zl“ﬂu"'/iof)
=% J= i= je2

where Ay; (1 €< d) denote the components of Ay =t({ir)—~4 in the base
Xy, .. X (Agje L, 1 € < d). These components can be obtained from the
linear equation system

d
Aoa = ¥ Aoy(%0) (o€ G(K/L)
=1
and we have
(28) Hy(Agy, ..., Agg) € 2dH* +dHy (Ay) < 2dH* + 2dH (A +dHy (1),

Since xy, ..., X3 is a base of K over L and a;, ylj, Ay (1gign 1 Sj <d)
are in L, hence (27) 1mphes

o = '21 % Yy+doy (1 <j<d)

that is, we have an equation system of the form

. oy — Aoy
ry: |= i
9 oy —Aoa

in &, ..., o, where

o1 N
Pz Gaz—D o Ve
I = Vin Yan e ('Pnn_l) ;
’le.n+1 3’2,n+1 oo ?n,rH-l
Pia Y24 Yod

is" a matrix of type d X1,
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If any element of I' is zero then (25) is.of the form t(x;7) = x, (1 € i < n),

that is
X X, .
(w—)r =L (1<i<n),
Xy, Xy

$o t 1s the identity map on F in contradiction with our construction, Thus
there must be non-zero elements of I'. We may have two possible cases (1,2):

1. First suppose that any row of I contains at most one non-zero
element. Suppose that the jth row contains y # 0 and for simplicity we may
assume that vy is in the first column, Then we have

yo, = — Ay,
that is
g Xy = ~Ag;xq/7.
In this case let
X=o;Xy-k...+0,x, and 1A= A-—éﬂ-ﬂ'.
b

Hence x+-4 can. be written in the form ¥+ 7, where X is an clement of the
free (-module M of rank n—1 generated by x,, ..., x, and 1 K. We have

(30) ﬁ:HK(xz,...,_xn)SH
and
(31) Hy(4) < Hx(l)+Hx(Ao,-.-; l<j<d)+H

+Hy(ypy L <isn L <j<d).
Further, M is obviously non-degenerate, since M is non-degenerate and M is
a submodule of M.
2. Let us assume now that there is a j (1 <j € d) such that the jth row

of I' (denote the elements of it by ¥,, ..., v,) contains at least two non-zero

elements. For simplicity let us suppose that y, £ 0 and y, = 0. Then we have
an equation of the form

P1a1+ e +?nan"H/1()j = 0,

whence
oy = ——:«?-(12— :]')-'I "W:‘A_Bl
I8 T Y1
Then we get
x+/1 =0y x1+ —!—ot,,x,,-}-l =C€2y2+ o +a"y”+x
where

Vi=%-—x;— (2<i<n and T=i- xlef
t T1
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Thus we obtain again that x+ A can be written in the form X+ i, where X is

an element of the free ¢-module M generated by y,, ..., ¥y, and 2eK for
which we have (31) as before. Further,
(32} H:HK(.VZ':" =yn)<HK(-})fj.1\l n, 1<J d)+H

and M is again a non-degenerate (-module, since M is a submodule of M.
Put M, = MM,,l—wa-xx,,l—x)L—/lzl,,l—AH =H,
H,., = H and let us summarize our results in the proof of the theorem. If
x,,EM and 1,e K is a solution of equation (4) then there are two possibili-
ties,
Firstly, if we get to (7), {(12), (17) or (21) then we obtain a bound for
Hg(x,). Combining the above estimates we have

(33) Hy(x,) < C(H,+Hg(4,))+D
where

C=4a(n+1)(d>+8d+6) and =$n(n+1){r+2g—2+dHg (o).

Secondly, if we cannot immediately give a bound for Hg(x,) then there
exists X,.q, A,_, such that x,+2, = x,—; +4,-; where x,_, is an element of
a free non-degenerate @-module M,y of rank n—1 and 4,_, K. Combining
(16), (20), (23), (24), (26) and (28), by (30) and. (32) for the height of the
generators of M,_, we have

(34) H,., < A(H,+Hg(1,))+B
and by (31)

(33) Hy (b)) < A(H,+ He () +B,
where

A =dnn+1y(n*+Tn+10-+d},
B = dn(n-+ 1} {r+6g+2d+ Hg (<))

Further, from (35) and the equation x, = x,-;+4,-4 —4, we obtain

(36) Hy(x,) € Hg(Xp- 1)+ A(H,+ Hg (1)) + B.

(We remark that in (35) A—1 is also sufficient instead of A.)

If we repeat our arguments then we obtain a sequence M, M,1 L
M,.,, ... of free non-degenerate (-modules and two sequences X, Ky 1,
Xy ... A0 Ay, Ag—1s Ag-2. ... Of elements with the following propertms

M, is of rank i, x;e M,, ;¢ K such that :

. A = Xy A
and for the height H; of the generators of M; (cf. (34))
(37) H, < A(Hiy +He(4i51))+ B
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Further (cf. (35))

(38) Hy(k) € A(Hiyy +Hg (1))} + B

and (ef. (36)}

(39) Hy (%i41) € Hy (x)+ A{H; 41+ Hy (241)) + B.
In each step either we obtain

(40} | Hy(x) € C(H;+Hg(A))+D

(see (33 ;_md stop the procedure, or we continue with M,..y, Xy, Ay
For simplicity let S; = H,+ H(4;) for any i and denote by i, the index
where the procedure stops (obviqusly ip = 1}. By (40) we have

(41) Hx(xio) 5 CS,0+D
Further, it follows from {37) and (38) that

{42) S <Ay (S,,+2§-\
| - A)
for any i Finally, by (39) we get '

(43) C O Hp(x) S A(Siger+ .o +8)+(n—1) B+ Hg ().
Combining (41), (42) and (43) we obtain

Hy{x) < A(24)"? (H+2 §)+ AQ24)" 1 Hye(1,)+nB.

By our condition on Hy(4,) we have AI(2A)”'”1 Hyg(A,) <% Hgix,), whence the
- assertion (5} of our theorem follows. !

_Proof of Corellary 2. We remark only that the C-module M

=f {1, a} is non-degenerate. The assertion follows from 'the theorem in view
5 .

max (Hy (x), Hy () < SHy () + 2H g (x+ ).

References

I . oF ! ™ ) T rand ROY SOL
A. Bake , L JonlT l'l)‘ll!l 18 io the l‘hemy of Dio han”ne equation, i I hll
) i 5 v IS .

i[2 B. Brindza On the equa. ion (x ¥) = 2" Que 'I ion 'l‘ 3, C [
! ] 1 I . i3 Hetio )l g t - 5
‘ ) 1 _fL d s A a Mﬁllh. H\mgdl.

3] B.Brindzaand I, Gad), Inkomo, ‘ i
‘ d 1. ) geneous norm form equations in two d ing 1 Jes
over function fields, Acta Math. Hungar. 50 (1987), 1q47—153. e dominating voriabls

4] W.D. Brow_nawell.and D. W. Masser, Vanishing sums in function flelds, to appeaf.

(5]

L6]
(7]

(2]
[s1

[10]

[11]
[123
[13]
{14]
[15]
[16]

[17]

(18]

[19]
[20]

[21]
[22]

Inhomogeneous norm form equations over funciion fields 73

I. Gadl, Norm form equations with several dominating varichles and explicit lower bounds
for inhomogeneous linear forms with algebraic cocfficients, Studia Sci. Math. Hungar:
19 (1984), 399-411.

— Norm form equations with several dotinating variables and explicit lower bounds for
inhomogeneous lincar forms with algebraic coefficients, 11, ibid. 20 {1985}, 333-344.

K. Gydry, Résultats effectifs swr la représentation des entiers par des  formes
décomposables, Queen’s Papers in Pure and Applied Math,, No. 36, Kingston, Canada,
1980,

— DBounds for the solutions of norm form, discriminant form and index form cquations in
finitely generated integral domains, Acta Math. Hungar. 42 (1983), 45-80,

~ On norm form, discrimingnt form and index form equations, Coll. Math. Soc. Jinos
Bolyai 34, Budapest, 1981, Topics in Classical Number Theory, North-Holland Publ.
Comp., Amsterdam 1984, pp. 617-676,

K. Gyéry and Z. Z. Papp, Norm form equations and explicit lower bounds for linear
forms with algebraie coefficients, Studies in Pure Mathematics (To the Memory of Paul
Turdn), Akadémiai Kiadd, Budapest 1983, pp. 245--267.

R. C. Mason, On Thue's equation over function fields, J. London Math. Soc., Ser. 2, 24
(1981), 414--426. '
~ Divphantine Equations over Function Fields, London Math. Soc. Lecture Note Series,
No. 96, Cambridge 1984

— Norm form eguations I, J. Number Theory 22 (1986), 190-207.

-~ Norm form equations IV. Rational finetions, Mathematika 33 (1986), 204—211.

— Norm form equations Vi Degenerate modules, J. Number Theory 25 (1987), 239-248.
C. F. Osgood, An effective lower bound on the diophantine approximation of algebraic
functions by rational functions, Mathematika 20 (1973), 4-15.

— FEffective bounds on the diophantine approximarion of algebraic functions over fields of
arbitrary characteristic and applicarions to dj erential equations, Indag. Math. 37 (1575),
105-119.

W. M. Schmidt, On Osgood's effective Thue theorem for algebraic functions, Commun. on
Pure and Applied Math. 28 (1976), 759-773.

— Thue's equation over function fields, I. Austral. Math. Soc,, Ser. A, 25 (1978), 385-422.
—~  Polynomial solutions of F(x,y)=2z", Proc. Queen’s Number Theory Conf, 1979,
Queen's Papers in Pure and Applied Math., No. 54, Kingston, Canada, 1980, pp. 33-65.
V. G. SprindZuk, Representation of numbers by norm forms with two dominating.
variables, J. Number Theory 6 (1974), 481-436. '
S. A. Stepancv, Diophantine equations over function fields (in Russian), Mat. Sbornik 112
(1980), 86--93. :

KOSSUTH LAJOS UNIVERSITY
MATHEMATICAL INSTITUTE
4010 Debresen P13, Hungury

Received on 22, 9, 1986 (1673)




