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Existence of an nnramified cyclic extension
and congruence conditions

by

Maxkorto Isama (Tokyo)

Let K be an algebraic number field of odd prime degree [
Then the following two facts are known.

1). The prime I is totally ramified in K il and only if there exists a
primitive element = of K (K = Q(n)) having the minimal polynomial f (X} of
Eisenstein type with respect to [, that is,

X)) =X+a, X" "va X'+ . +ae Z[X],

where

g, =ay=...=2q=0 (mod) and &0 (med ).

Let k* =k be the unique real subfield, of degree L of the I*-th
cyclotomic field,

2). In the case 1), L=k™ K is an unramified cyclic extension of K if and
only if we have :

G+ =a,=... =g =0 (mod %)

(cf. [2], Chap. 3).

We exclude the special case K = k™. So, in the following, we may
suppose K # k" and [L:K] = I. Of course, we may also suppose that K is
real,

Now our problem in the cases 1) and 2) is as follows:

Is there an unramified cyclic extension M of K of degree 2, containing

* L= k*K? More precisely, ate there any higher congruence conditions on the
Yy

coeflicients «y, dq, ..., ¢ of [{X), which ensure the existence of such an
extension M of K? .

In Section 1, we give a necessary condition for the existence of such an
extension. In Section 2, we treat the cubic case and prove the key con-
gruences, Then we give several examples of infinitely many (parametrized)
cubic number fields, which have such an extension. '
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L

1.1, Let K = Q(n) be an algebraic number field of cdd prime degree |
such that

ata T hay ! TR by =0,

where g, Z satisfy the above congruences it 1) and 2). We suppose that
K #k* and K is real. Let 1 be the prime ideal in K dividing I: (/) = I'. Then
we have [ [|r and so (n) = [c with ([, ¢ = 1. We know that, for any integer y in
K with 1 fv, we have Ngy'"! =1 (mod ) (¢f. [2], Chap. 5}, Hence we can
consider the subgroup.

G ={Cl{a}| (&, h=1 and No'~' =1 (mod ?)}

of the ideal class group Cy ‘-:‘)f K, where Cl(a) denotes the ideal class
containing an ideal o The subgroup G, corresponds to the abelian extension

L=4k* K of K in the sense of class field theory (Translation theorem) and so
we have ‘

(Cr:G)=[L:K]=1

Since (n) = lc and a4 = [Ngn| = NI Nc= IN¢, we have Cl{¢) = CI(D™! and
Cl(0eG, <N 1 =1 (mod )
<(a/y ! =1 (mod )
<afl=d (mod 1)
<, = ld' (mod P).
Consequently, if a, = Id' (mod ) for any deZ, we have
CI() = CL()~ ' ¢G,.
Then, as (Cg:G) =1, we have
' Cx = <C1(D}- G

“Furthermore, in this case, suppose that there exists an unramified cyclic
extension M of K such that [M:K] =1* and M » L= K. Then M corre~
sponds to a subgroup H, of €, such that

with some deZ

Ck>G > H and Cy/H, is cyclic of order I2.
As (G H) =1, ie. G = H, and CI()' = C1(()) = 1, we have Ck < H,. This
contradicts the fact that Cy/H, is cyclic of order I2,

Therefore our first assertion is:

M If a, % Id' (mod P) for any de Z, then th_efe is._ no unramified cjch‘c
extension of K of degree I* containing L =k" K. o
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Accordingly, in consideration of our problem, we may suppose that we
have a; = ld* {mod [*).with some de Z. Then there is ceZ such that ¢d =1
(mod %) and =’ = ¢ satisfies ' '

e it 4 a =0,
where a} = c'a,. We see easily that ay, aj, ..., qeZ satisfy the above

congruences in 1) and 2) and a; = ¢'a, = (cd)'] =1 (mod P*). Hence we may
assume that '

a, =1 (mod ),
ie a;=Ib with beZ, b=1(mod I?).

1.2. Remark, By similar reasoning, we have the following assertion:
Let p be a prime. Let K = Q(p) be an algebraic number field of degree !
such that

¢ b b0 T B =0,

where b,eZ, by =b,=...=h =0 (mod p) and b £ 0 (mod p?). Then we
have (p) = p' with a prime ideal p in K, Suppose
p=1 (mod i)

and let k; be the unique subfield, of degree I, of the pth cyclotomic field. We
suppose K % k; and then it is shown that k; K is an unramified cyclic
extension of K of degree [ (cf. [2], Chap. 3).
So, in this case, there also occurs a similar problem as in Introduction.
Consider the subgroup

G, ={Cl(0)] (a, p) =1 and Na® Y =1 (mod p)}

of Cp which corresponds to the abelian extension ki K. Then if b, & pd'
(mod p?) for any deZ, we can also prove that we have Cyx = {Cl(p)> G,.

Consequently, we see that if b; # pd' (mod p?) for any de Z, then there is
no unramified cyclic extension of K of degree [%, containing & K.

2. From now on, we treat the cubic case, i.e. [ =3 and let K = Q(n) and
@y. ¢y, a3 be the same as in Section 1 (I = 3). We use the foilowing notation:

¢ =a primitive 3rd root of unity,

n = a primitive 9th root of unity (such that 7’ =),

k=Q()=0(/-3), K =kK, L=kL, so
K'=K{), L=k'K=K(=K@n=K(37D
I' = the prime ideal in K, dividing 3| so

@) =1% 1z and (1-0)=1I%
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We have [L:K'] =3 and let Gal(L/K'} = <z}, where #* = n{. Moreover, let
J be the complex conjugation. We note that, as K is real, J is an automor-
phism of K’ and L over K.

2.1. As preliminaries, we state two (well-known) results.

(a) Algebraic aspect. For an arbitrary element o €K’ (o s£ ), put 0
= i/!;?; (a fixed 3rd root of nu). First we note that f is not in L, i.e. #ot is not
a cube in L. In fact, we have

na= > (fel) = a® = (Nyoxe By
= ( is a cube in K’ = I = K' (contradiction).
Then, by Kummer theory, M’ = L (i/ 1"7“52) = K'(i/ ﬁii) is a cyclic extension

of K' such that [M':K"] = 3% and M’ = L. (Conversely, every cyclic exten-
sion of K’ of degree 37 containing L is obtained in this way.)

Proof We have [M":K']=[M": LI[L: K] = 9. Also M’ is a minimal
splitting field of (X®—noa)(X? —nud)(X> —nat?) = X°—{e’ e K'[X]. Hence
M’ is an abelian extension of X', Let o= Gal{L/K") such that ¢|L = 7. Then
() = (noF = nla = 6>{ and so

67 = Onl'  with some i Z,
which shows 8°° = 8,2 {3*?, 6°° = 04> » 0 and so ord ¢ > 3. Hence we have
Gal(L/K" = {c}.

Moreover if we have
(*) Caw’ =y with ye K/,
then M’ is an abelian cxtension of K of degree 18.

Proof. As aa’eK'nR =K, we may take v in K. Then (#)* =n'a’

=n"'a’ and so (6")® = ae’ =, i.e. 667/y = 1 as a real 3rd root of 1, which
shows

| & =01,
Hence J and o generate the (whole) autombrphism group (of order 18) of M’
over K and so M’ is a Galois extension of K, Furthermore '
=Y =y
and
00 = (Bl =707 7
s0 we see af =Ja on M’ = K'(f)

Then the fixed subfield M, by {J5, of M’ is a cyclic extension of K such
that [M:K]=3%and Mo L=k*K. Asa remark, M is a minimal splitting
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field of
(X0 —{0) (X° (L)) e K [X].

(b) Arithmetic aspect. Similarly as in (a), let M' =L (E/n-oc) with ¢ K’
(a # (). We suppose that o satisfies (+) and let M be the fixed subfield, by
Iy, of M

As L is unramified over K’ and ([M:K], [K':K]) =1, the unramified-
ness of M over K is equivalent to that of M’ over L. Then, by the
ramification theory in Kummer extensions of prime degree (cf. [17, Ia, § 11), it
is also equivalent, under the condition (z, I) = 1, to the two facts:

(1) the principal ideal (ne) = (a) is the cube of an ideal in L,

(2} na is congruent to the cube of an integer in L modulo &9 for any
prime divisors & of I' in L. (Note &I and so £3{[(1-{))

Of course, we can easily modify these results (a) and (b) for the case of
arbitrary odd prime degree.

2.2, Now we assume that the coefficients of the minimal polynomial of =
(K = Q(m)) satisfy the following congruence conditions modulo 3:
a; =3 (mod 3%).
ie.

ay=3h (beZ,b=1 (mod3?) (as remarked in Section 1);

a,+a; =0 (mod 3%,

ie. |

a, = —ay = —3b= —3 (mod 3%;

a, = 0 (mod 33)
(see the congruences 2) in Introduction). Then, as 3b? = 3b = a5 (mod 3%), we
have
nt—3bn? 430 = a4 ay it ay =0 (mod 3% =18},
We put |

w=b{l-{n and e=1-w.

As —m(n®+a; m+ay) = a3 = 3b and 2|z, I?]|1—={, we see that w and ¢ are

integers in K' and U|lew, I te.
We consider the number

P~ = {m—b (=P ~(x-b(1-0) {Y=*
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in K'. The numerator is equal to
(1-0m* =3b{(1 =B ~(1 - ()} n?
F362 (1P =1 =0 O =021 =8 = (1= 0]
= (1= 0) {n = 3bn? +3b3),

which is congruent to 0 modulo [2-1*# = [?! as remarked above. Hence we
have

(E")?’“‘Bsi = (mod [121~- [Ca— [115).
As a consequence, we see
¢ =(e'/s)® (mod 1),

which implies that [' is completely decomposed in LI = K’(E/ lf): =4 8
in I (cf. [1], Ta, § 11).
We fix one of & (i=1,2,3) eg ¥ = 4. Then we have

e G

= (& —en) (e’ —enl) (&' —enl?) =0 (mod &'Y9),
Here we remark that, for 0 i <j <2,

(" —enl)—(e" —enl!) = en (' =)
is exactly divisible by £* Let £%(|e—enl' (i =0,1,2) and suppose that
(say) e; = e, ;. Then we have '

€0"+”€1+32 = 15 and so

consequently we have

eg 2 3, €)= ¢; = 3;

ey =15-6=9,
Hence we see that we have
nel! = ¢’ (mod €% for some i (=0, 1 or 2),
ie.
e’y = (&) {7 (mod ).

"Tl;he Ot}lel‘ pr1mejdivis{ors 2, € of ['in L can be written as ° or &7,
As ™ =nl! and &, &'c K, we have

ne () = ()7 (mod (£7)?),
Therefore, as { =(¢’/g)® (mod '), we have

ne{e’)® = the cube of an integer in I {mod £%) (i =1, 2, 3).
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Moreover we have
E{SJ)z (B (EJ')Z)J = (EEJ)3.

That is, o == £(¢’)? satisfies the conditions () in (a) and (2) in (b) of 2.1.

Hence, by considering the extension M’ = L'(3/5e(e”)?) of K, our second
assertion 18:

(I0) If the principal ideal (¢(c’)?) is the cube of an ideal in L, then there
exists an unramified cyclic extension M of K of degree 32, containing L
= k" K.

Moreover we have easily a modified assertion:
(I For an integer & in K' such that
d=¢=1~ow (mod I'°},
if the principal ideal (3(87Y?) is the cube of an ideal in L, then there exists an
unramified cyclic extension M of K of degree 32, containing L.

23. As for the second (or the modified) assertion (I} (or (1) in 2.2, we
have the following results:

(A) First, ¢ is a unit in K’ if and only if Ng.,(e) = x1, +{ or +{2 We
have
Nx'/k(fi) ={ .
b3 (1= +a, b1 =0 +ab(1-0)+3b =3b{ (as =3b)
=bh {1 =02 4a, b*(1 -0 +a,b+3b=0
b= =203 —a, b2 =b +a, b+ a b+3b
wa, = —3b, 4y =3(p*—1).
(We can easily see that the other cases, ie. Ng(e) = 41, —{ or +¢* do not

oceur.)
Consequently, we see that if

ay = —3b, Uy =3k 1), a3=3b (b=1 (med 3%)
(note: uy+ay =0, ay =0 {mod 3%), then the conclusion of the second
assertion (IT) holds: that is, our extension M exists.
Here we remark that, in this case, the minimal polynomial of m—b is
given by _
(X+h)3——3b(X+b)2+3(b2- WX +b)+3b = XP=3X+b°.

We see easily that —(Nyx(e) ' =bn+1 is a unit in K (also see the
relation: 7%/3 = (br-+1)(n—b)). Hence we can restate the above result as
follows: Let K = Q(f) be a cubic number field, where the minimal polyno-

6 - Acin Arithmetica 51t
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mial of f§ is

XP-3X+peZ[X] with b=1 (mod 3%.
We note that the discriminant of this polynomial is equal to —27(h* ~4) and
so K is not totally real, provided b s 1. Then K has an unramilied cyclic
extension M such that [M:K]=3% and M > L=k"K. And 1+b(f+8)
=1-+hf+h* is a unit of K.

Moreover, as o remark, we can show that there exist infinitely many
such cubic number fields. In fact, let S be a finite set of primes. For any p¢S
with p = 2 (mod 3) (p # 2), we can find ceZ such that p||¢®—2. Then, for
beZ with b =1 (mod 3% and b = ¢ (mod p?), the discriminant —27(h%—4)
= —27(h* =2)(h*+2) of X*~3X b3 is exactly divisible by p; that is, p is
toially ramified in K = Q(f), where f3--3f-+b* =0,

(B} Next, let
§e=g{b—1) =b{n~(1—{))n,

which is an integer in K', prime to I; as & =1 {(mod 3% = ['*?), we have
8 =¢ (mod ).
Suppose that a prime ideal p’ in K’ divides n—(1—{). Then
O=n*+aymi+a,n+3h (ay = 3h)
=(1=P+ay (1= +a,(1 ={)+3b

= (az-l-3b—3)—(3a1 +a,+6){ (mod p').
Hence if |

C£2+Bb""3=0, 3a1+a2+6= —"3, ]C ﬂ2= —‘3(b—'1), al mhv—-—-ii-’

then we see.that p’ divides 3, which implies ‘p’-= [ and so the principal ideal
(nw(l’:C)) is a power of I'. As & is an integer, prime to I, we have (3)
=(h) _[ /(7). Hjere clearly (h)) =(b), (n)’ = (n) and, as the unique prime divisor
of 3in K', IV = I, Hence we have

(0)=(8) =& and so (3(5)2) =(5)".
Moreover if we assume b = 1 (mod 3%), then
aj +as = 4{b—1) = 0 (mod 33).
Consequently, we see that if
ay=h—4, ay=-3b-1), a3=3b (b=1 (mod 3*)

(}wte: a1 +ay = 0, a; = 0 {mod 3*)), then the conclusion of the second modi-
fied assertion (I_I’) _holds: that is, our extension M exists.
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Summarizing the results (A) and (B), our third assertion is:

(II1) Let K = Q(n) be a cubic number field, where the minimal polynomial
of m is
X3-3bX243(h2—1)X+3bcZ[X] (h=1 (mod 3?)
or .

X (b—&)X2=3(h—1)X+3beZ[X] (b =1 (mod 3%),

then K has an unramified cyclic extension, of degree 3%, containing L = kT K
(where k* = Q(n-+n"1) = Q(cos40%). And so the ideal class group of K
containg a cyclic subgroup of order 32

24 Under the congruence conditions on ay, a;, 43 as in 2.2 we
investigate the w-adic expansions of several integers in K’ and in L, where w
= h(1—-{)/n (I'|w). We omit cumbersome calculations and only state several
obtained results. Let Oy and O be the rings of integers in K' and L
respectively.

Since I' is totally ramified in K', we can take |0, 1, —1}] as a representa-
tive system of the residue field O/l '

Then we have ‘

-3 = b,
nE ot -0t—o -0’ w? (mod [''9),
(=10 —w'+w’.
Accordingly we have
[ == (mod 19),

which implies that I is completely decomposed in L:T'= £i £5 & {see 2.2).

So we can also take [0, 1, —1} as a representative system of the residue
fields O /& (i =1, 2, 3). We [ix one of &: e.g. & = ¥}, Then, by a suitable
choice of # (a primitive 9th root of unity), we have

n=l-w-—o’—w+e’ (mod @9,
As @' =01+ = —w—w*+0’+w® (mod ), we see
n(l—w) =1+o+o*—w - =1-o’ (mod £7).
Consequently, putting ¢ = 1 —cw, we have
pe =o' (mod €9, e na(e))? =(¢')® (mod £7).
For another £ (i = 2, 3), we have & = ¥" with some t€ Gal(IJ/K’) and, as

7=t
ne(e!)? = (@R = (" (1—w-w0?) ™) (mod £7).

These are the congruences obtained in 2.2. ‘
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Finally, we add some remarks in local aspect. We are interested in
seeking all £e 0. such that
né =& B? (mod ¥°)  with fe0y
because this congruence implies
nE @) =B (mod &%) and  (£(E)2) (&)Y = (£87),

that is, o = E(&') satisfies the conditions (%) in (a) and (2} in {(b) of 2.1
If ¢ =& 43 (mod %), then we have

&fe = (&/s) * (mod 7).
It is proved that, for any ye Oy (7 =1 (modl)), we have
y=4y B ie. £ =gy (mod )
v=Au® (mod %),

where A, ueOp (4, u =1 (mod ) such that A = 1’ (mod ). Moreover we
see that we have

A* =1+ Bw? + Cw® + Doy*+ (B+ BC) S + Fwb +(CD—C— D) ?
+Hw® (mod ')

(B,C,D,F, Hel0, 1, ~11).
Consequently, for £ €0y (£ =1 (mod 1) such that

if and only if

=y, le  =edy’ (mod 1),
if the prmc1pa1 ideal (£(&”)?) is the cube of an ideal in L, then the extension
M = L3/ (f’)’) has a subfield M, which is an unramified cyclic extension

of X such that [M:K}=3%and M= L.
We note that, as ¢ =1—w and 7y = 1 (mod '}), we have

(=¢y=1—0 (mod 1),

So, considering the above w-adic expansions of A’ (mod ), we see that,
among 37 classes of Oy,/I containing an integer = 1—w (mod I'%), there are
exactly 3° classes contcunmg some gy as above,
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Stabilitit bei symmetrischen h-Basen

von

CHrisToPH. KirreL (Bergen, Norwegen)

1. Einleitung. Da symmetrische Basen eine grole Rolle im Frobenius-
und im Reichweitenproblem spielen, wollen wir zunéchst Frobeniuszahl und
Reichweite einer Basis natiirlicher Zahlen definieren.

Sei B, = by, by, ..., 00 EN, (by, ba, ..., b)) =1, so ist die Frobenius-.
zahl g(B,) die gréifite nicht mit B, darstellbare ganze Zahl Dabei wollen wir

" in unseren Darstellungen nur nichi-negative ganzzahlige Koeffizienten zulas-

Sen:

Lk .
¢(By) = max [neZ| n nicht darstellbar als 3 x;bj, x;eNy, b;€B; ]
i=1

Dabei verstehen wir unter N, die Menge der natiirlichen Zah]e'n
einschlieBlich der Null,

Sei nun A, = {q,, da, ..., ¢} SN mit ¢; = 1 <a, <... <d,. Dann sind
alle natiirlichen Zahlen mit A, darstellbar, und wir k&nnen nach der Anzahl
der Summanden in einer Darstellung fragen. Mit hA; wollen wir die Menge
derjenipen Zahlen bezeichnen, die mit hdchstens i Summanden aus A,
darstellbar sind: '

k k
hd, = {ne No| n=Y x;a, x;&€ Ny, ¢y Ay, ), %< hi.
J=1 Jj=1

A, nennen wir dann eine h-Basis oder einfach eine Basis.

Wir betrachten nun die kleinste Zahl N, die nicht mit hechstens h.
Summanden aus A, dargestelll werden kann, Wir nennen N-—1 die h-
Reichweite n,(A,) von A

n,(4,) = min {ng N| n¢hd,| —

Wir setzen ny(A,) = 0.
Mit h, mdchten wir die kleinste Summandenanzahl, bei der die Relch~ .

weite erstmals das gréBte Element g, iiberschreitet, bezeichnen:

ho = ho(Ay) = A = min {he No| ny(4y) > B



