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1. Introduction, For many important problems in the theory of numbers
we need some information about the average distribution of primes in
arithmetic progressions. It is convenient to introduce the classical device ol
“weighting” the primes with von Mangoldt’s function A{m). Let

(1.1} Wiyig. h= 3 A{m).

msy
m= Imody

We ask for inequalities of type (A > 0 arbitrary but fixed)

(1.2) Y max‘max Wy 4 [)—_y— < x(logx)™4.

gEQ= Q) PEx L=l ()
The first attempt to obtain a “non-trivial” estimate of this kind was mg@c by
Renyi. He showed that (1.2) is true with @ = x® for some small positive _aB.
Subsequent refinements of Bombieri [1] enable us to take @ = xif;’(log x)
for some B = B{A) > 0. A slightly weaker result has been derived indepen-
dently by A. 1. Vinogradov [18], using a different method. Gallagher [4]
later introduced major simplifications in Bombierl's arguments. More recent-
ly Vaughan [17] developed an ingenious new method wlhich d1ffc_ars s'1gmﬁ-
cantly from all approaches used previously and which gives a still simpler
proof by essentiaily elementary means. ’

The main advantage of Bombieri's theorem becomes clear, if we note
that the classical prime number theorem of Page, Siegel and Walfisz fm_l}’
leads to the Hmit O = (log x)¥ for the moduli ¢ in (1.2). Moreover, Bomt_nen 8
bound Q is as good, dpart from the logarithmic factor,’ as one can obtain on
the assumption of the generalized Riemann hypothesis. . ‘

Many important applications of (1.2) are to be fognd in the literature.
The major results are too well known to need elaboration. In ‘tl.le sequel, let
K be an algebraic number field of finite degree !1=r:1—|~2r2 {in the_usual
notation) over the rationals with discriminant d. Zy will denote the ring of

integers in K.
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There are various ways in which (1.2) can be extended to K. The first
generalization 18 due to Wilsen [19] and Huxley [117]. Instead of rational
prime numbers they consider prime ideals of K. Following Landau, the ¢(g)
residue classes { mod g coprime to the modufus are then replaced by h{q)
reduced narrow ideal classes H modulo an ideal q of Zg. In such terminol-
ogy the counting function (1.1} is of the form

Yy, H="Y A(a).

Nagy

aetf
In the present state of knowledge it seems to be impossible to derive a
Bombieri-type result for this function because of our ignorance about the
number of reduced residue classes mod q containing totally positive units.
Wilson and Huxley evade this difficulty by introducing weights of the
form h(q) @~ '(q). Consequently, they only consider the “weighted” inequality

(1.3) y At max max

iz PO ysx B

¥(y; q, H)—E%ﬂ < x(logx)~ .

In his paper Wilson proves (1.3) with Q = x'* % (log x)" ¥4, Using another
method Huxley shows that the above estimate is true even if
= x}?(log x)7 8,

Other types of generalizations, not discussed here, have been considered
by Fogels [3] in the special case of a quadratic number field and by Johnson
f12] for imaginary quadratic fieids.

In view of applications the following formulation of (1.2) in the language
of algebraic number fields is of some interest.

Let yi, ..os Yoa1» ¥ =7y +r;—1, be positive real numbers and write y
=¥;-.-Vy4+1- Consider the set W = Ry, ..., y,.1) of integers ae Z; subject
to the conditions

O<a® <y, k=1,..r,

(1.4)

O<|a®P <y, k=ri+l L+l

It is convenient to assume for the compurtations that

(1.5) e YTy ey = e,
where the positive constants ¢,, ¢, depend on the field K only. If the y, do
not obey the inequalities (1.5) one can restore (1.5) by multiplying the y, by a
suitably chosen totally positive unit of K (cf. [97, (13)).

An element we Zy is said to be a prime number in K or simply prime, if
the principal ideal (w) is a prime ideal. Let us denote by IT(R; g, 9) the
number of primes we R satisfying @ = y mod q. where qis an integral ideai
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of K and ye Z;. For brevity we put

¥k
w .
nyr+1): ""

‘. du;...du,
2URR s logluy .y )

IEI(}H, cae

Here, w denotes the number of roots of unity, h the class number and R the
regulator of the field K.

THEOREM. Let Xy, ..., X,,, be positive real numbers, and write x for the
product xy...x,.;. Then, for any constant A > 0,

(1.6) Ty, max  max

NaZQ 28y Sxg (b= 1

1
T q, ?’J“’}m < x(logx) 4,

provided that

wn 0= xM2(logx)"%  for some B=B(A, m) >0, if ry =0,
' - _x"”/z"l‘“ Jor any e>0,if ry > 0.

As is customary in analytic number theory we introduce the sum

PR o, )= ) A= 3 logNp,
el w9, fo) == it
a=yrmodq y=ymoda

since there are certain technical advantages in doing so. The transition to the
funetion IT(R; q, y) results from Grotz's formula [57] of the multidimensional
partial summation in K.

We continue by making a few remarks about the proof of (1.6). First the
methed is influenced by Vaughan's work [17] on the corresponding result in
the rational case. The principle underlying the treatment of Bombieri’s
theorem is that of the large sieve. Hére, the basic inequality of the large sieve
method in K is required in a new form which has been derived by the author
in [10]. Moreover, the Polya—Vinogradoy character sum estimate is an
essential ingredient in Vaughan's proof of (1.2). By appealing tc the Siegel-
Grotz summation formula the author [9] succeeded in extending this inequa-
lity to K. Finally, we introduce the following version of Vaughan's identity

(1.8) /i = e/l + FY1 —{x G+ (Ck +Ec F) G- F,

where F, G are partial sums of the Dirichlet series for —{k/lx, 1/(k
respectively, { denotes Dedekind’s zeta-function in K. Bt turns out that some
additional difficulties arise in connection with the application of (1.8} to sums
over algebraic integers instead of ideals. This problem does not occur in the
rational case.

Inequality (1.6) plays an important part in many of the most significant
applications of sieve theory in K, and we mention just two. Qur motivation
for studying estimates of the form (1.6) comes from this observation.
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First, we ask for the order of magnitude of the sum

Y D(w—1), where Dio)= Y 1.
weR, mprime glia)
This problem used to be known as the Titchmarsh divisor problem. Gen
erally, we cbtain
y<€ 3y Dio—-1)<y

o &M, prime

Specially, in a totally real field K, we can derive the asymptotic formula

1 y-loglog .v)
40 (Tm TR,
c,mﬁv‘,pr.mD(w b= \/d| . ( N prl)) ! ( log y

The second application is connected with the binary Goldbach problem
In a totally real number field inequality (1.6} enables us to show that ever
totally positive even integer with sufficiently large norm is the sum of :
totally positive prime and a totally positive integer having at most thre
prime ideal, factors. Let us describe the result as (1, 3). Even in the genera
case of an arbitrary number field it is possible to obtain for the first Lime :
result of type (1, b), where b is a natural number depending only on . W
recall that an element a ¢ Zg is said to be even, if 2 s 0 and all prime ideals |
with Np =2 divide ().

The numbers ¢5, ..., cg coming up in the sequel are positive constant
which depend at most on the field K. Throughout the paper, small Germa
letters stand for integral ideals of K particularly, p always denotes a prim
ideal. The letter @ will be used for primes in K only. Finally, ¢ is a
arbitrarily small positive real constant that is not necessarily the same a
each occurrence. ‘

2. Reduction of the problem. We start from the relation

1
TR q, 1) = —- 7 (1) f = 1,
(R 0.7 e W);Mx 3 ,%X(w (.

where the first sum on the right is over all characters y of the multiplicativ
group of non-zero residue classes mod o. The contribution of the princips
character y, provides the main term. It is obvious that

Y xelw) =3 1+0(3 1)

medt . e meN
uilg

As for the error term, let we R be kept fixed. Then, by (1.4), we have t
estimate the number L{w) of unils n satisfying

Ogn(k)w(k)syh’_ k=17

0 <P <y k=ri+l,..,r+l
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It is casy to confirm (see e.g. [16], p. 269) that
(2.1 L{w) <log"y

and therefore

Y to(@) =Y 1+0(log"y log Ng).

=R et

Now we can apply Mitsui’s extension of the prime number theorem to K,
namely a very special case of the Main Theorem in [14],

N 1=I+0 {y-exp(—cs (log )"/} 1.
et
Hence
I
IT(R; a,9 )—~—~w-
(CI) q)(q /modn[rle":]fx '

PEPN

¥ 3
+log" y-log Nq+———exp( —c5 (log v)*?).
g'y-log No+ gt p{—c3(log »)'?)

Since Nq< Q < x'?, this 1mphes that

max  max [IT(N; q, y)————
28y S (=1 ( 1)

1
< Y max |Y y(w) |+—exp( ¢5(log x)!1?).
d)(q) gmodq 2V X, ment )

X ¥,
Summation of the latter term over Nq < @ gives a contribution of order less
than x(logx)"4. Tt remains to consider the expression

)] 3 max |3 x(w).

NqeQ Q(q ,lzumlq 2EyppExg weM
X
Each character y # xo occurring here is induced by a primitive character y*
to & modulus o* satisfying q* ¢ 1, o*| . Since y(m) = y* (@) if (0, q = 1, we
have

Y xle)— Y x*(w) <log"y-log Ng,

wiE N we'l

*arguing as in {2.1). Thus the difference contributes at most < Q(logx)™?,

which is negligible, Hence (2.2) can be replaced by

T max 1T g Y —

Q ?
1 NagQ yinody 2<}‘k-xk el Na'sQ/Na (ql])

where the asterisk indicates summation over primitive characters mod q.

6 - Acln Arithmeticn LL2
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Using the elementary fact that
1 1 1 log Q

) <

Y s S ; :
Nn's@cp(‘m) @ (0) yireg PL(O) @ ()

the above term is

<logx- ¥ 1 g max |y (o).

| =Na<Q q)(fﬂ ymod o 28y S Xy e

We now consider small and large values of Nq separately, Il 1 < Nq <@,
where O, = (logx)® with a positive constant C that will be chosen later,
Mitsui’s generalized prime number theorem for arithmetic progressions [14]
enables us to bound the sum under consideration. Since y i$ a non-principal
character mod g, we have

Yoxtw)= 3 x& Y 1

et Smodq meNR
(Eq)=1 g mod g

=505 L 2lO+0(y-exp(—cullogy)')
(ﬂ ;,mndq

< y-exp(—c,(log »)'?),

which is acceptable as before. 1t remains to deal with the range @,
< Nq< Q. As we have indicated in the Introduction, it suffices to show that

1 "
(2.3) Y max |3 x (o

— ) Ae)| € x(logx)~4~""2,
gy eNgsg ¢(q) modq YESx aeR I

The transition to an inequality for Y y(w), instead of for ) y(x) /A (a), is

essentially an exercise in multidimensional partial summation. First, we find

by the argument that was used in (2.1)

(24) YA =} xlelogNp

2e 4] a el

o) = p™
= 3 y(wlogNo+0 {log'y- Y log Npl.
el Np &y .
mz2

The last error term is < y'2(logy)", which is acceptable for (2.3) provided
that '

(2.5) Q< x'P(logx)™47472,

as we henceforth assume. Next, we make use of Grotz's version of the partial
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summation in the setting of an algebraic number field. In our case we obtain

(2.6) xlw) = —— w)log Nw
a?e:su logy mzs:nx{ Vlog
r+1 ] J'ij 3’11
+ 3 (=1 b [ § 2" 2(ew)log Nov)
i=1 I=ly<..<Ligr+t 0 0 wen

1
(}’ loguﬁl“'uljy
- yfl"'ylj
X“’Wdugl B ..du[j.

Oy, ﬁulj

The mark at the sign of summation indicates that the sum runs only over
those weW which satisfy (14) with wuy, ..., Hy; in place of Yiys oo Y1, TE-
spectively, ’

Let us now study -the integral in (2.6). We begin by remarking that
@7 wE Tt fori=1,...,] |
since otherwise the we R counted in Zo satisfy

+1
No = oW, 0" "2,

oI <2,

But this contradicts the fact that (o) is a prime ideal in K. Next, it is easy to
check that

’ 1
& Upg oo By, Y
log—=—mmitl
Vi oy | (— 1)

T T A
Uy oy (log_;l__...yf_li)
Y [

S

aul,l E}u!j
Arguing in the same way as in (2.7) we obtain

yll le

Now our problem has been reduced to that of establishing a suitable bound
for the expression -

pel 1 }’!. du
' Z [y x(co)logNwi o W

J=1 1% <. <1 St 10, <NqsSQ (ﬁ gmod q yk-.xk Zy ym1 e 11.,_11{’_
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As for the domain of integration, we have

- - - -1 -1 -1 - .
Yy & X 2y, y 1=2J’11---yt,-—11yl,--a-1---.}’r+1>2x1ix , b=l

In view of (24), an application of (2.3) leads us to the desired estimate,
namely

v 51— T max | ¥ x(w)| €x(logx) 47"
g <NozQ (CI) ymodq Vi € X wen
3. Application of the large sieve inequality in K. We begin by quoting
from [10] the author’s version of the large sieve in the setting ol an algebraic
number field.
Let a be an integral ideal of K and suppose that @ > |. Then
Ng

' X '
(3.1) —— Y Y @y ()]? < (Q2+——-) le(@)?,
qusi_Q Q(Q) gmaod g |oc§e:‘Jl ’ Nﬂ og-‘,ﬂ
where the coefficients ¢(«) are arbitrary complex numbers, The dash indicates
here and later that the sum is restricted to those &l = R(xy, .-+ X0 1)
which are divisible by a.
The object of this section is to apply (3.1) to the estimation of the
following expression {3.3) that plays a fundamental role in the proof of (2.3).
Let zq, ..., Z,.; be positive real numbers satisfying
(3.2) A+ gz g M k=1, ., r+1,
and suppose that zo <z =12,...2,4+; < xy. We require, in an obvious nota-
tion, a bound for

(3.3) Y Na Z* max | ¥

P C1(0¢1)Cz(052)x(051052)‘-
Noa<@ (Q) ymoda  Zp oy edl,aneliy

it . . 1
Here Y is used to mean summation over such Integers oy €W,

=Ry (X1soor Xpp1h 2Ry =Ry (¥, ..., Youy} for which both
o;=0mod ¢, j=1,2,

and

(3.4) O<alafP <z, k=1,..,r;

0 <loalfraP* <z, k=r+1 ..., 7r+1
are satisfied.

In order to attack (3.3) we first note that by (3.1) and Cauchy’s inequality,
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Nao o« fa—
(3.5 Z Py IZ Z C'1(051)C’2(052)X(051°¢2)’

Na=@ @((T) xmodo ayedly 2769,

@(Q2+x T Y VM a2 Ly
ks B s vl BRDIRCALCH S DU SICRI

2 e 2y &~
Let us now introduce the condition (3.4). To this end we require the
following result (see [2], p. 165):
I T=1 b>0, and « is real, then

if |of € b,

T .msinbrd!_{n-&-O(T"l(b—lﬁ‘U_l)
if [¢f > b.

(3.6) et
y f O(T™ (jal—-b)"7)

_T'
We also make use of the trivial bound

T sinbt T |sin bt
(3.7) [ “; L4 <log 2T+ flogh.

It is convenient at this point to introduce the motations (j =1, 2)

r+1

N A D T LG R N R
k=1

ocje\.nj
1
ek s 2

In this terminology we find that

where
for k=1,..,r,

for k=r;+1, ..., r+1.

T T

L o SV
] sin{t,logz
o T8t oo a3 0850y sty s ) I Mdrl condt gy
I k=1 Tl ’
' / .F+1 T: -1 Sin(t‘ ]0 Z)
= 5 ¥ et [] | jePag) w08 4
210 xyefs . £=1 =T ity

We dissect the double sum over «y, o, into four parts 3", ..., 3", . The first
sum . contains all a;e 9, o; =0 mod a;, j=1, 2, for which there exists

Ig 1< r+1 such that [of? o8| < 1, Taking account of {3.7), their contribution
is '

(3.8) < (log 2T+ loglog xyy "' ¥ fey (ay) [lea ()]

Thf: sum Zz retlzlltes to the property that a;e'R;, a;=0modaq;, j=1, 2,
satisfy the conditions

1< afa®*<z—1, k=1, r+l
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For these values we use (3.6) which yields

r+d z — %
Z’zcl (a) e (o) X (oty 223) H {1'1‘0 (T—l (108 HF;%W) )}

We have now only to observe that, in view of (3.2),

Bk
—[af” o - Lir+1
log z, — e, log o o] = Pl eyt

2y
This leads us to the expression
' CD EARRY
(3.9) Zz ¢y (ay) € (aa) x (0 “z){l"r'o( 7
provided that
(3.10) T = (xpVr 1.

In E; we group together all ;, o, under consideration which satisfy, in

addition,

160 o[ > 2,41

for at least one integer ! with 1 <! <r+1. In conjunction with (3.6) and

(3.7), this sum gives a contribution of order

1/tr+ 1)
< (xy)
T

(3.11) (log 2T+ log log xy)" 3.y le (1) ll ¢z (o)

The remaining sum Z; leads, by (3.7), to

< {log 2T+1loglog xy¥ 3., ey (o)l e ().

If we corabine this with (3.8), (3.9) and (3.11), subject to (3.10), we arrive

readily at

T T ’“sm(r log z,)

[ ] S1(tgs oo sy 082ty s by 0 T — £k dty odtyy g
rooo2r . ke Tty

=n Z"

ay B, ag ey

¢y {ory) €z (o) x{ouy 23)

( y)1/(r+1)
+0{—T(log2T+1oglogxy TN ey (o) ch(“zN}

opeily ageliy

+0 {(log 2T+log log xy)** (Z; leg {og)i eq {05.2)| +Z; [RCHITACHIS
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"Ag for the integral, we have

sin(t, log z;) <€ min(l, |iflog xy),

so that the left-hand side above can be bounded by
T

T
< j J‘ AP TP AR I FX (TR AR |
=T

k=1 fi

183

r+1 1
x [] min (—-l Iogxy)dtl ey

Making use of (3.5) and Cauchy’s inequality the expression (3. 3) we wish to

estimate is at most

, x bz oy W2 ) )
<<(Q +m1“) (Q_'f“m) {agil[ﬁ(‘xl)lz}uz{z Icz(“z)iz}lm

wqeiiy

P17

x [] [ mio (|1E logxy)dtk.

k=1-T

+Q%T I(WJ‘2 f+1(10g2T+log10g¥y {3 |C1(0‘1J| }UZ{Z lea (o

) &Ry ey

)FZ}UE

+Q%(log 2T+loglog xp) * (1) leg ()l ez ()l + X, les (@)l e (22)]).
In accordance with (3.10) we choose

T= (xy)1/2+1/(r+ 1),

so that finally

(1) ¥

Nog @

NP>

ymodq  Zg

ey (otg) oo oeg) 2 (g “2}[

gy e ,03605

1/2 12
(Q”Xf?f) (Q2+Nin2) log xy** { X fey o) SR DN ICz(“z)l }”2

x]e‘!i] oyEM,

+Q*(log xyy ™ (Zl Jeg (o) €2 (ot2)] +Z4‘ ley (o)l f‘:z'(“z)”-

It should be noted that the second error term on the right of (3.12) does not
occur in the rational case, where we may assume without loss of generality

that z is of the form z = g+%, ge Z.

4. Vaughan’s identity in K and proof of the Theorem. Our object in this
section will be to prove (2.3). We begin by explaining how Vaughan's identity
can be extended to K. Let {,(s) denote Dedekind’s zeta-function in K. With
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a parameter U 2 1 we introduce two sums

Fig= 3 A@Na™ Gl= 2 s{bh(Nh™’

NasU Nh= U
which approximate to —{§/{x and 1/{ respectively. Following Vaughan, we

note the identity

m;ili(b F(s)—ck(s)F(s)G(s)—c;{(s)G(s)+{~§5-(s)—ﬁ”(s)}{l—CK(s)G(x)},
K

K

valid for Res > 1. Calculating the Dirichlet series coefficients of the four
functions on the right-hand side, we find that

(4.1} A(0) = ay (0)+az (0 + a3 () + a4 (0),

where

0 if Na>1U;
A(0) p(ch;

{A(a) if NagU,
a(0) =

az(ay = — Z

Nbg U, Nest (U
belo

az{a)= Y p(b)-log Ne

NbgU

be=n
and
a(d=~ Y A0 Y u(d).
br=a Nog )
No= U Next le

Formula (4.1) leads us to the following decomposition of the inner sum in
(2.3)

¥ yle) Afor) =

ae

Sy+Sa+83+54,

where

=Y pla (@),  j=1,.., 4.

el

In 5, we merely must apply (2.1) to obtain

4.2 = ¥ xlA) <log'x- 'Y, A(q) €<Ulogx.
) Nfﬁu Nolf
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The second sum §, we write in the form

S;=— 3% ¥ A®p@ ¥ x().

Nag 02 NNl wsh
be=n #=0motla

Then, by appealing to the author’s version of the P6lya-Vinogradov inequal-
ity in K (see [9], (15))

i 1 1 1
43) §, €, Nqirwa x' "r32"° A(B) < U Nq@Ee+a ' 7 2 ¢ log U,
) q g

Nagu2 ba
for any real & > 0. To deal with the sum S, we first note that
(4.4) S3= 3% u® 3 x(!logNo—~Ilog Nb}.
Nhs U aeiR
wx:=0modb

Proceeding now in a way that is similar to, but much easier than, that at the
ending of Section 2 we obtain .

r+1 ¥

!
Y x@logNx=logy: ¥ x@—Y [ {X° }”‘“
_uEUt oS I=1 y y- « e
e=0modh wz=0modh L w=0mod b

Finally, again by the Pélya-Vinogradov inequality in K, it is easily seen that
the bound for §, also holds for §5. Accordingly (4.2) and (4.3) leads us to the
estimate

1
@3 3 (q} T max |S; +8,+54| < U2Q1+2(r+2 T og UL

Q) <NagQ gmodq ¥pExg

Choosing
(4.6) U=xt,

we find that the error term due to (4.5) may be absorbed into that required
in (2.3) if

(4.7) Q< xrrsnTime
As for the special case of a totally real algebraic number field, we choose

(4.8) U=(logx)’, D=1,

to be specified later.
Il y <QNa then by a crude estimate,

y .
«;«n ¥ (o0) @Na-l-l <0,

x=0meda

In the second case ONa < y we apply (23) of {9] which leads us to the upper
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bound

Y oxle) <(@Na)TIROTDE Na< Q.

ae
a=0moda

Hence we obtain in the present situation

1 .
o Y% max |S, 485,485
0y <NqS o (D(q) gmodg W S Xg
‘ < QU log" x+ Qz 12 log U+Q2“’ L20r+ 1y prd - Yk 1y o
This bound is admissible provided that
(4.9) 0% < x(logx)~Amr2b-2

Now our problem has been reduced to showing that

(4.10) y L 5% max |8, < x(logx)™47 2,

0| <Nqg@ (b(q) amodg Vi S X
The proof of (4.10) is longer, censtituting in fact one of the main difficultics
to be overcome. We transform the left-hand side of (4.10) into an expression
in preparation for the application of the large sieve inequality (3.12). First we
note that the above sum over Nq can be included in a sum of <logx
expressions, each of the form

2 Ng ®
— —— 3" max Sy
P Pl2<NqgP dﬁ(q) ymodg ¥ X ’
where Q; <P < Q. Our main problem is to develop §; into a more
convenient form. To this end we use
Y u®=0 forl<NcgU,
HeNos U

so that

Se=-— Y Ale ¥ al ) n(0.

U Nag U acih Nes b
gz Omod a o|(z/ o)
NewUNa

It is necessary to decompose the sum over Nainto < logx sums of the type

Y o, where U <M =2"< y/U < x/U.
Mj2<Nag M
From our point of view, this representation is of little use as the ideals o
need not be principal. We muy, however, use the following technique to carry
out the reduction from ideals to algebraic integers. Let a be an integral ideal
with norm M/2 < Na < M belonging to a given narrow ideal class & modulo
(1). Then the conditions of summation o =0 mod a, o totally positive imply
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that {a) == ab with be € '. Next, we choose, once and for all, fixed prime
ideals p;. p, satisfying

(4.11) Pl < Np; 2Pt j=1,2,

in the classes €', € respectively. This can clearly be done in view of the
prime ideal theorem for ideal classes modulo (1) (see e.g. [13], Satz LXXXY).
We note that

(412} (pg. gy =(pp, ) =1 for all ideals q with norm P/2 < Ng< P,

The product p; -p, is a principal ideal. By the theory of units there exists a
totally positive generator g, of p;-p,; such that

(413) cs(Npy Np)7 0 g |Qg()|ek S eg(Npy Np) /"™ b, k=1, ., r+1.
Hence

(o) =(py W (P2 b) = () (), say.

Again, we may assume that «, a representative totally positive generator of
P 0, satisfies

(4.14) o (NaMor D < o™ € og (Na )Y+ k=1, ..., r-+1.

Summarizing, we have shown that, if ae®R, o =0 mod o, then gya = o, a5,
where o; =0 mod p;, j=1,2 and

(4.15) 0 < Jaf? o™ < |gf1™ wi,
(4.16) 0 < ooy  $25¢ 2xNp, \'rth k=1, ., r+1.
2 Cy M H]

Furthermore, by (4.12),
x (o) = xog) x{ee2)¥ (@o)-

Relurning to S, we infer at once from these transformations that

Sy=—Y Yo X x(ocxochA(%i) Y w9,

" e
where ‘R, is defined by (4.16) and where ®;* denotes a set of mod {1)
nonassociated numbers «, 6Z, satisfying (4.14) and (M/2)Np; < Noy
< MNp;, M=2" Z” again signifies (cf. (3.3)) that both a;=0mod p;,
j=1,2 and (4.15) are satisfied.
Let us introduce an abbreviated notation for some of the terms occur-
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ring above. First, we put for a;e®|,, o, =0 mod p,,
> w(9, if Nay > UNp,,
Nrsu,q(:tz/‘pz}

{4.17) calan) = 0, otherwise.

We next define a set R, of totally positive integers o, € Z; subject to the
conditions

(4.18) O <[ < g MNPV k=1, r+l.

Finally we set for #,€R;, &, =0 mod p,,

A(“—‘), if a, eRE,
Py '

(4.19) ¢y (oy) = )
0, if ¢ eR\RS.

Then we have
=y >ie) Y
m g le!)i].dzl:':liz
If now we appeal to (3.12), (4.11), (4.15), (4.16) and (4.18), we are able to
conclude that

(4.20) L ¥ * max |8,

P PflaNqsP (fl) yrmoda S xg

1 v 172
<—(logx)"“ZZ(P2+M)”2 (P2+—J.C_
P o M

oq(ay) cafan )y log ay).

{2 fec(@ P}

2y e )

x{ T lealog)* P

azﬁﬂ?z
+ P(logx)+? Z%(Z; ley (o) ez ()] +Z;101 (o)) |e, (az)l)-

By standard calculations it follows at once from (4.19) that

' oy
N S
o 6L oqe P Mi2aNas M
7 =Omodp|

Similarly, by (2.1), (4.11), (4.16) and (4.17),
5 ez (n))? < DI 1P <log"x: Y 1P« ]ng)r+3‘

ety wa €My o/ Naax/M ¢
#p= Omed py

A*(0) < Mlog M.

Thus we find that the first error term on the right-hand side of (4.20) is
& x1/2(]0g x)ar/2+4(P+x1,’2 U- 1/2+x1/2 P—l)_

icm

A generglizarion of Bombier’s theorem 189
Using our choice of U in (4.6) or in (48) with D =24+5n+9, this is
acceptable in (4.10) if
(4.21) 0 < xM(logx) 473276 g = (log x)A+ TS,

It remains to deal with the sums ' and ¥, in (4.20). As to | we put

Lyl C
=0 (2xNpy Np) et o
:

]

so that, by (4.16), (4.17), (4.18) and (4.19),
Z’ Jerg (o)l {eg ()l

Pkt r+1

€U Z SIS Alo/pi) € !zzl by Y Al

=1 29,0 af(2)
al({lj)l (n:)-.r i x=0madppy
ald) < 0 <1

Np, NPz)lnmrH)
Npy Np,

éUlogx{(x +1}<Ulogx{P‘2x1‘”"“’+1},”

on using in the last step the condition (4.11). This leads us again to an
estimate which is negligible compared with the right side of (4.10).
We now turn to 3, as defined in Section 3. Putting

2
ze = 0¥ Fm, k=1 L0+,
we arrive at once at

(4.22) E; leg (@)} ez (o) <€ Ulogx { > I— 2 13.
aeMz) + 1insp g 1 280~ Ly Zp gy = 1)

axUmodppy 2= 0mod g3

By appealing to the Siegel-Grotz summation formula (see [9], Lemma 3)
it is easy to verify that

wl ("Tc)r
(4.23) by “| :/—"”‘ 1\721

e IN ]y eveadipop )
o w0 mode

. O(xl—l,l(r+ 2)+x)_

To see this we have in [97 only to choose q=(1) and
Op = P P13 k=1, r L

Let {&) = ab. There exists ideals ng, Do in the ideal classes of a, b respectively
having

Nag, Nbp < [/dl.
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To complete the proof of (1.6) il only remains to choose Q in accordance

i = ) T h
We write abo = (Bo), @ bo = (va). Where with (2.5), (4.9} and (4.21), namely
54 1ln

N R L e
v PO Q= x"*(logx)"¥, where B= St 10.

(N b)) < [y < (Nag bg) 7+,
5. Applications. First we are concerned with the behaviour of the sum

Using the abbreviations
Vo= WRI*BP ¥ % k=1, 141, Y Dw-1), yzlfork=1,..,r+1,
e W aeadp g ()

where D{o) denotes the number of integral ideal divisors of (). Since

l = 1
Z D(a)ﬁz Z 1+ z - 15

q ‘ {a)

Jt follows from (4.23)

=)
== | Ne4/2

2GRN, Xp 41} BeN(¥ 1Py + 1}
a =0moda f=0moda, 2
N | Nee| 1=
r f
_(@2n) Py Loyt it follows that
I/d| Neo > D(w—1)=2% 3 1+3 )3 L.
it Lo - e e — 1)
(27[)’2 x +0 (( : )1 o +u+ 1) " " N“":Fﬁ(""ll))llfz No= FN(w—1)|1/2
'\/Zq Na ANa ' By (1.4) we have
. . . " #e 1 rt+1
Substituting in (4.22) we find that Niw—1)| = “ w® = 1% < H (y:/e;c+1)ek <2y =1y,
Z4|Cl ()l |eq (o) ke k=1
1t o g \Iieraeey An application of the Brun-Titchmarsh theorem in K (see e.g. [15]) leads us
< Ulogx{————-———(ﬂ @+ D= [T = D)+0{ | 5= pphoe
Npy Nps =y Pl ‘ Np Np, to the estimate
¥ 1

Diw—1) < 1< <y,
m%u e ) anzy”z mzc;n IOgEJ’anZy:}szdj(_Q)

< U‘Cl_ 1Mr+2)+e
0 =Imod 0

If (4.6) and (4.7) hold then the term arising from Z; in (4.20) may be ignored.
I’n the special case of a totally real algebraic number field the estimation
of 24 can be modified to give a sharper result. Starting from (4.22) we On the other hand, we merely need to observe that
deduce that
PRIV o+ X y oL
i Fag it 2 o Eemew Nogyliln+2) w ;ﬁa‘zd.q

Z;|Cl (o)l e (o) Imody

3

[W{w— 1)| < Ng?

Using (2.1), the second expression gives a contribution of order

< Ulogx 1 <€ Ulogx(x! "1 (Npy Npg)™ 1 4-1),
lgl aedtizy 'I'!Z,...,:.:ﬂ+ 1) < og x(x ( P Pz) i 1)
ath »>zp=1
a=m0modppy & E 1 < 'log" 2y Z Nq & yZIS ]Ogr 2_}1.
For the last step we have used Hilfssatz § of [15]. Hence, by (4.8) and (4.11), Nysplflnt 2) |o=“"l“§m;“"rk Nasylint2)
o =l g
/ e
Pllog x)' " T L T, lex (o)l lea (o) el _
m e The first expression can be brought into the form
<gP—1xi—1|/':/f(]‘:)gx)r+l')--l~-3 <§P_13C(]OgX)“Aw"“2. 1 1
LY ST, el & TE@S

i i Y ; ; ; g ired res [ -
By summing this over P = 2/ for an appropriate range of j, the desired result Nogpl/(0t 3 P(w) Moyt A

1§ shown.
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An appeal to (1.6) now shows that
Y Dw—1)>y,

o

since, by Lemma 6 of [6],

()
P RR log 2y log* 2y
In the special case of a totally real algebraic number field K we are able to

derive an asymptotic formula for the sum under consideration. We begin as
above and obtain at once

1 f
T D-h=2A T =0 5 S -
el Nﬂsl‘l"zﬂngyl_ﬂ d (q) N\‘|55y1/2(|0g y)'—ﬂ | ";LE]‘.::;J . (CI) }
+0 { Y )y 1}+ 0 { 33 o D l}
Moo TE e, 3o =B <msnd L

| Niw — 1)} € No2
Arguing now in the same way as at the corresponding stage in the general

case we find that
1 y-loglogy
S S o2
Np(Np— 1)) - ( gy )

Y Dw—1) =" (
e \/~! P
gince it is well known that
1 (2m?22" KR
Y (1
Naex P9 |\/67if w
The approximation to Goldbach’s conjecture in number fields stated in
the Introduction is based on Selberg’s -weighted sieve method, which has
been developed by the author in [7] and [8]. Particularly, the argument of

[8] remains applicable with slight modifications. We thercfore omit the
proof.

l
mm 1))-Iogx+0(1).
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