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On the congruence f(x*) = 0 mod g, where ¢ is a prime
and f is a pelynomial

by

J. Woicik (Warszﬁwa)

The aim of this paper is to prove the following thecrems:

TreoREM 1. Let o be an algebraic number different from zero and not a
root of unity. Let n be its degree. Let k be an arbitrary natural number. We have

1) o= prym,
where n, = (k, c(a)), B is cyclotomic, ye Q).

Further, let K, denote the maximal cyclotomic subfield of Q(x} and put
K, = K,(B). Let f, be the conductor of K| and G, the group of rationals mod 1
corresponding to K. Put G, = G, nE,. The group G, is uniquely determined
by the algebraic number o and the positive integer k. For any positive integers D
and r such that (D, r) = 1 and the residue class of r mod D contains a rational
integer belonging to G, there exist infinitely many prime ideals q of Q(«) such that
o is k-th power residue mod q, Nq=rmod D, Nq = 1 mod k. The Dirichlet
density of this set of prime ideals is equal to

nik, c(®)) 1Ky 0 Pyl
Claykp([D, k) K
The meaning of c() and C(x) is explained later.

TueoreM 2. Let f be a polynomial with rational integral coefficients,
irreducible, primitive, with a positive leading coefficient. Assume that fis different
from x and f is not a cyclotomic polynomial. Let k be any positive integer. Let o be
any root of . We have

(2) o= ﬁm.ym,

where n, = (k, ¢(f)), B is cyclotomic, ye Qo).

Further, let K, denote the maximal cyclotomic subfield of Q(2) and put
K, = K,(B). Let f, be the conductor of K, and G, the group of rationals mod f
corresponding to K,. Put G, = G, n E,. The group G, is uniquely determined
by the polynomial f and the positive integer k. For any positive integers D and r
such that (D, ¥} = 1 and the residue class of r mod D contains a rational integer
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belonging to G, there exist infinitely many primes g such that g = r modD,
g = 1modk and the congruence f(x*) = 0mod g is solvable in xeZ. The
Dirichlet density 8 of this set of primes satisfies the inequality
(k: C(f)) |Ky n Prp gl <5< n (k, C(f)) |K ;v Pyl
C(fke(D, k) |Ky] x C(Nkp(D, kl) 1K, 7

where
v = 1
T2

n is degree of f. The meaning of c(f) and C(f) is explained later.

In [2], we proved Theorem 2 with the additional assumption that f is
k-normal obtaining a stronger assertion on J:

5= (k, e(f) 1Ky N Prpyl
Clf)ke(D, k]) K]
Notation. {, = ¢*™™ K denotes an algebraic number field. P,, = Q((,). If

ek, (,eK,a#0,bis a fractional ideal of K then (Uﬂ_lb_ff

if fis not reciprocal,
otherwise,

is the mth power
"

residue symbol. D(x) denotes the discriminant of . If the extension K/Q is
abelian, then f(K/Q) is its conductor, f, = f(K (%)/K). [ is also the conductor

K . .
of (%) . E,, is the group of rationals congruent to 1 mod m. We call a set

G < @ a group of rationals mod m if (i) E,, & G, (ii) G is a multiplicative group
and (iii) every element of G is prime to m (clearly G/E,, is a group of residue
classes modm). If K < P, then a group G of rationals mod m is said to
correspond to K if G/E,, is the maximal subgroup of Gal(P, /@) which leaves K
fixed. [,] denotes the least common multiple. |K| = (K: Q). For a finite set §,
|S] is its cardinality. K™ denotes the maximal cyclotomic extension of K. Let
ae K™, Consider the equnation in unknowns n, §

O a=f,
Put

n natural, fe K™
maximal n satisfying (3)

if the equation (3) has only

Cxloy = a finite number of solutions,

o  otherwise.

Let f be an arbitrary polynomial with rational coefficients irreducible over Q
and let o be a root of f. Put

c(f} = clo) = coul®),  C{f) = Cle) = (Q(@): Ko) = /K|

where n denotes the degree of f and K, is the maximal cyclotomic subfield

of O(x).
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LEmMMA 1. Let o be an algebraic number different from zero and not a root of
unity. Then (1) holds. Put k, = (), k; = k  P(B). Let Ky, Ky fi, Gy, G,
have the same meaning as in Theorem 1. Let D be an arbitrary positive integer
and F an arbitrary positive integer divisible by ki, D and by the conductor of the

alk
power residue symbol ( Ea 2) . We have

k
ko, Py= K, P, =k, nQ".
Let re G,. There exists an ideal a, of k, such that

o
(aliF)wlz NCllEFmOdF, (-—“—‘) ﬁl.
1/
The group G, is uniquely determined by the algebraic number o and the positive
integer k.

Proof. See [2], p. 155-156. We only have to prove the last statement of
the lemma. Assume that we also have

BeQ™, v e0(®).

o= iy,

We have
o=, Bi=pv. a=PB" Bi=FH.
By Lemma 4 of [2] K(f) = Ko@(f) is the maximal cyclotomic subfield of the
field k,Q(B) = k,(B) = k. (B;) = Q(B,). Analogously, Ko(8) is the maximal
cyclotomic subfield of the field Q(f}). We have
By =B, and  QBNP, = QUL BIP = QBIP(ny k).
Put K = K,(f). Hence by Lemma 4 of [2]
KiP), = Ko(f) Py = Koy P = K Py.

This means that K, P, is uniquely determined by the algebraic number x and
by the positive integer k. [k, f{] is uniquely determined by o and k. Since G, is
the group of rationals mod [k, f;] corresponding to K, P, G, is uniquely
determined by k and by «o.

Lemma 2. Let
o
C = {a: a an ideal of ky, (a, Fy =1, Na=rmodF, (E) = 1},
k

where (v, F) = 1, re Gy,
C' = {q: a, a prime ideal of ky; Noy =7 mod F, o is a k-th power residue
modq,},

where (r, F) =1, reG,.
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Then if q,€C is a prime ideal of k, of degree one over k, and Nq, is
sufficiently large then there exist exactly |k,|/|k,| prime ideals 1q, (re Gk, k)
of degree one over k, belonging to C and dividing a certain prime ideal g, of k,
belonging to C' (9, = Ny,pu,0,). Conversely, if q, € C' is a prime ideal of k, and
Na, is sufficiently large, then g, splits completely in k, and each of its prime
divisors q, in k, belongs to C.

Proof. See [1], p. 160. By Lemma 1 the set C is non empty. We only have
to prove that if q, € C' is a prime ideal of k; and N¢ is sufficiently large, then
gy splits completely in k,. Put f, = [k, f,]. We have k, = k, P,(f) = kyQ(MP,
=k, K,P,. We have K, P, = Q(&), £ an integer, k, = k,(£). Let Nq, = ¢
G, We have K P, c P, . Hence &=h({,), heQ[x]. Since Ng, is
sufficiently large, we have

) £ = R = h(C,) = Emod 9,

because G, is the group of rationals mod f, corresponding to the field K P
where Q|q,, Q is a prime ideal of k,. Let # be an arbitrary integer of k,.
We have

n=>at, ogek,.

By Fermat's theorem, ¢f'" = a,mod Q. Hence by (4)
g =Y AN EN = § g 8 = mod Q.

This means that q, splits completely in k,. The lemma is proved.
Proof of Theorem 1. Put
A = {a: a an ideal of k;, (a, F) = 1},

Hy = {a: a an ideal of k,, (a, F) = 1, Na = 1 mod F},

H = {a: a an ideal of k,, (a, F) =1, Na = 1l mod F, (E) s 1},
LS

h = (4:H).

By Lemma 2 and Hecke’s theorem

(5) 1 1\ 1\
| 2 () 2 (o)
= a(C) = lim E.‘L_ﬁlg.z_ = (kyl/lk D) lim %€ Ng,

Jm = = (lai/m)d(C),
Ogs—-l 1035—1
(k| = n), where q, are prime ideals of k, of degree one over k.
Hence
©) ) =
RS T
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By Lemma | and by the argument of [2], p. 158 we have
n{k, c(o))

C@kp(F)

Assume first that D = Omod [k, f;]. Put

C" = {q: q a prime ideal of k,, Ng = rmod D, Nqg = 1mod k, x is a kth
power residue mod q},

Y diC) =

where (r, D) =1 and re@,.
By the argument of [2], p. 158-159, we have

w ik, c(@)
® 1= Copkatoy

Thus we have proved the theorem for D = 0 mod [k, f;].
Let G, =rE;, urEp 0. unEy, t= (G13Ef1)- Let D be any po-
sitive integer. Put
C;={q: ¢ a prime ideal of k,, Ng =rmod D, Nqg=1modk,
Na=r;mod f;, « is a kth power residue mod q},
where {r, D) =1 and there exists a rational integer r; such tat

rmod D,
)] ri=< lmod K,

rymod f;.
Obviously

C, = {q: q a prime ideal of k;, Nq = r;jmod [D, k, f;], « is a kth power
residue mod q},
where (v}, [D, k., /1)) = 1 and rje G,.
By (8) {the theorem for D = 0 mod [k, f;]),

nik, c(a))
C(a)ko([D. k. ;1)

(10) d(Cy) =

Put
C" = {q: q a prime ideal of k;, Ng=rmod D, N = 1mod k, « is a kth
power residue mod q},

where (r, D) = 1 and the residue class of r mod D contains a number belonging
to G,. By the argument of [2], p. 159-160, we have

nk, c(@))  |1K¢ N Pl
{)ke(LD, k) |K sl

d(cur) - C

The theorem is proved.
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Proof of Theorem 2. Let f(x) = ayx"+ ... +a, be a polynomial

satisfying the assumptions of the theorem. Let a be any of its roots. By the,

assumptions, « is different from zero and is not a root of unity. Put k; = Q(x).
By Theorem 1 we have (2), since ¢, (o) = ¢(at) = ¢(f). From the Theorem of [2]
and the remark at the end of that paper it follows that the group G, is uniquely
determined by the polynomial f and the positive integer k. Put
C = {q: q a prime ideal of k;, Nq = 1 mod k, Nqg = rmod D, o is a kth
power residue mod q},

B = {g: q a prime number, g = 1 modk, g = rmod D, the congruence
F(x*) = 0mod g is solvable},
where (r, D) =1 and residue class of »mod D contains a rational integer
belonging to G,.
By the same argument as in [1] we have

(11) | —};d((ﬁ < d(B) < %d(C).

By the definition of c¢(f) and C(f), c(x) = ¢(f), Clx) = C(f). Hence by
Theorem 1

d(C) = ”(k, C(f)) 1Ky 0 Prol
© = cthieln, /K
By (11)
(. c) Ky Progl o (elf) Kin P
CkeD. 8) 1K) B S ke, @ 1K

Theorem 2 is proved.
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Multiplicative functions and Brun’s sieve
by

KrisHNaswaMi ALLaDI {Gainesville, Florida)

1. Introduction. Let g be a strongly multiplicative function. That is

11 9.

pln
p=prime

gln) =

The truncation of g at y is

g,(m) = [T g(p).

pin
Py

As is customary null products have value one.

For any set & of positive integers we let .o/ (x) denote o N [1, x]. The
problem we consider here is the estimation of ’
1y - S ¥) = L 9,

nesf (x) .

for sets o satisfying certain conditions to be specified in Section 2. We were
motivated to study this sum because it turns out (as will be scen in Section 3) to
be a natural generalization of a typical sieve problem. We show that Brun’s
sieve could be used to estimate S,{+(x),y) when —1<g <1, provided
o = (log|e/ {x)[)/logy is not small (see § 5-§ 7) and for this we make use of an
interesting ‘monotonicity principle’ (see § 4).

Previously [1], [2], [3] we had investigated such sums when0<g<1l.In
this case g may be written as

gln) = e/

where u < 0 and f = 0 is a strongly additive function. So the sum in {1.1) can
be interpreted in terms of the Laplace transform of f,, which is the truncation
of f and y. Such an approach led to a new method of estimating the moments
of f using the sieve. For the sake of completeness we shall state (without proof)
towards the end of Section 6 some results for the case 0 < g < 1 but in
a slightly stronger form than was utilized by us earlier. The main interest in the
present paper lies in showing that the sieve can be employed to deal with such



