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Proof of Theorem 2. Let f(x) = ayx"+ ... +a, be a polynomial

satisfying the assumptions of the theorem. Let a be any of its roots. By the,

assumptions, « is different from zero and is not a root of unity. Put k; = Q(x).
By Theorem 1 we have (2), since ¢, (o) = ¢(at) = ¢(f). From the Theorem of [2]
and the remark at the end of that paper it follows that the group G, is uniquely
determined by the polynomial f and the positive integer k. Put
C = {q: q a prime ideal of k;, Nq = 1 mod k, Nqg = rmod D, o is a kth
power residue mod q},

B = {g: q a prime number, g = 1 modk, g = rmod D, the congruence
F(x*) = 0mod g is solvable},
where (r, D) =1 and residue class of »mod D contains a rational integer
belonging to G,.
By the same argument as in [1] we have

(11) | —};d((ﬁ < d(B) < %d(C).

By the definition of c¢(f) and C(f), c(x) = ¢(f), Clx) = C(f). Hence by
Theorem 1

d(C) = ”(k, C(f)) 1Ky 0 Prol
© = cthieln, /K
By (11)
(. c) Ky Progl o (elf) Kin P
CkeD. 8) 1K) B S ke, @ 1K

Theorem 2 is proved.
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1. Introduction. Let g be a strongly multiplicative function. That is

11 9.

pln
p=prime

gln) =

The truncation of g at y is

g,(m) = [T g(p).

pin
Py

As is customary null products have value one.

For any set & of positive integers we let .o/ (x) denote o N [1, x]. The
problem we consider here is the estimation of ’
1y - S ¥) = L 9,

nesf (x) .

for sets o satisfying certain conditions to be specified in Section 2. We were
motivated to study this sum because it turns out (as will be scen in Section 3) to
be a natural generalization of a typical sieve problem. We show that Brun’s
sieve could be used to estimate S,{+(x),y) when —1<g <1, provided
o = (log|e/ {x)[)/logy is not small (see § 5-§ 7) and for this we make use of an
interesting ‘monotonicity principle’ (see § 4).

Previously [1], [2], [3] we had investigated such sums when0<g<1l.In
this case g may be written as

gln) = e/

where u < 0 and f = 0 is a strongly additive function. So the sum in {1.1) can
be interpreted in terms of the Laplace transform of f,, which is the truncation
of f and y. Such an approach led to a new method of estimating the moments
of f using the sieve. For the sake of completeness we shall state (without proof)
towards the end of Section 6 some results for the case 0 < g < 1 but in
a slightly stronger form than was utilized by us earlier. The main interest in the
present paper lies in showing that the sieve can be employed to deal with such
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sums even when g admits both positive and negative values and as far as we
know this has not been done earlier.

When o/ = N, the set of all positive integers, we use the notation S,(x, y)
for the sum in {1.1). In Section 8 we just point out how two other methods
could be used to estimate S,(x, y) even when g takes complex values because of
the special properties of N. The first one which uses contour integration is
effective when « is not small and |g(p)| not large. The second which relies on
a recurrence satisfied by S, (x, y) works well if g(p) has an average value and « is
not too large. In Section 9 a lower bound for S (x) = S5,(x, x) that is uniform
for 0 £ g < 1is established and this is an extension of a small sieve inequality
due to Erdés and Ruzsa [5].

All notation introduced so far will be retained. For instance ¢ will always
represent a strongly multiplicative function. The ‘<’ and ‘0’ symbols are
equivalent. Unless indicated otherwise implicit constants are either absolute or
depend at most on the set .« and this will be clear from the context. By
€qs €y, - -- We mean positive constants whose values will not concern us. Finally,
the letters p and g, with or without subscripts, will always denote primes.

2. Dual functions .and special sets. Given g, consider the strongly
multiplicative function g* generated by g*(p) = 1 —g(p). We may think of g, g*
as a pair of dual functions because

g* (M = udigld) and g =Y pdg*d),
dln dln
where u is the Mdbius function.

The dual g* arises naturally while estimating S,(#(x)) = S (s (), x).
That is

S, (o4 (x) = .,Z(E“(d)g*(d) = T uldg* @)t (),

where o/, = {ne | n = 0(mod d)}. So, as in sieve theory, we are led to
consider sets o for which the quantity je7,(x)| satisfies certain conditions.
Here we shall assume that

Xo(d)
d

where X = |/ (x)|, @ is multiplicative and 0 < w(p) < 1 for all p. Regarding
Ry(x) we assume that there exists ¢, > 1 such that

ch;gX_}_ 1>65@,

where v(d) = 3" 1. Moreover the R;(x) will be small on average in the sense

(2.1) |t y(x)| = +R,(x),

(22) IR4(x)] < (

. p . .
that there is fe(0, 17 with the following property: For every U > 0, there is
V> 0 such that
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@3) )

d< Xf/logh X

X
|R ()] <0m-
Sets & satisfying the above conditions will be called special.
An example of a special set is
(E~1)

Here we may take § = 1/2 and ¢, = 1. Many special sets satisfy the stronger
condition
(2.4) IRy(x)] <€ w(d)

in which case

o = {p+a| p=prime}, where a is a fixed integer.

co=supwlp), f=1 and V=U—-1+4c,.

r
Condition (2.4) occurs for instance in the case of

(E~2 & ={Fn)| n=1,2,3,...}, where F(x)eN[x].

3. Truncated functions and the sieve. Let P denote a set of prime numbers
and P, = [I »p. A typical sieve problem is to estimate

peP.p<y
5L

nesf{x)
{nPy}=1

SVt (x}, y) =

This may be rewritten as

(3.1) SO (x), y)= 2 wld) =} wdld 9.
nesf(x} dlin,Py) d|Py
A straightforward substitution of (2.1) into (3.1} produces too many error terms
arising out of the divisions of P, when y is large and this becomes unwieldy. As
is well known, Brun’s idea was to consider x,, x, satisfying x, (1) = y,(1) = 1
and
(32) P =Y p@ra(d) < 3 ud) € Y udy, @) = o(m),  VnP,
dlw d|n dln
so that when used in conjunction with (3.1) it would lead to bounds for
$e# (x), y). Naturally the y; are to be chosen to keep the error terms under
control. , '
We note that estimating S,(#(x), y} can be considered. as a general sieve
problem for various reasons. Firstly, $%(#(x), y) is a special case. Moreover
gy = 2. udg*{d),

d|{n,Py)

where P* is the set of all primes. So analogous to (3.1) we bave

S(#(),y)= L T, wdg*d.

nesd(x) dl(n. Fy)
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Just as in (3.2} suppose we had y,, x,. satisfying

(3 of@(n) = ?#(d)g*(d)xz(d) < g(n) = E wd)g* (d)
din
%#(d)g (A, = o),  In|P}

then this would lead to the following bounds for S,(s#(x), y):

64 X3, “(d)g*‘d)“‘d)xz(d)—d% IR(g* @)@ < 5,(4 (3. 3)

d| Py d

He
<x 3 HATDEBLE 5 g g+ @y, @),
4P d)F

The idea is to choose y;(d) = 1 on all ‘small & so as to get a main term of
expected size and to make y,(d) small ‘sufficiently often on large 4" in order to
control the remainder terms. There will be more on this in Sections 5 and 6.

The most interesting case of 5, (. (x), y) is when y = x. Apart from certain
special situations the sieve does not yield good estimates for S, (#/(x), y} when y
is close to x and so we cannot usually expect to estimate SQ(M (x))
via §,(e(x), y). However when 0 < g <1, we have 0 < g < g, yelding
S,(e (x)) < S,(#(x), y), which is one reason we succeeded in applying this
method to Probabilistic Number Theory; the second reason is (1.2). Sometimes
it is possible to estimate S (&t (x), ) asymptoticaily for all y using the sieve and
hence for y=x in parucular this feature is dlscussed toward the end of
Section 6.

In many classical sieve problems the Buchstab identity

SP(o# (x), y) = SP(L(x), y)+ T SV(at,(x), p)

ySp<ym
peP

has been used in treating large values y. One more reason for us to consider
S,(#(x), y) in a sieve context is because it also satisfies a mmﬂar identity,

namely
(3.5) S,(s(x), 3) =
yEp<yy

Sg(&f(x), J’l)“l“ Z g*(p)Sg(.%fp(JC), p)-

To prove (3.5) first observe that

(3.6) S (x), ¥)—8,(4(x), y,} = :,:( )(gy(n)-—-gyi(n)).
Next,
3.7 g,m— G'yx(")"-gy(") IT ¢@} =g,m{1— [T (1-g*®)}
| yx;l:m yS{:ﬁ)ﬂ
= g,(m{ 21 §*(p) fll (1—-g*(@)} = Z' g*(0)g,(n).
Sp<y yEq<p y$€7"<y1 )
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So by putting together (3.6) and (3.7) we get
Sg(t (), y) = S (), yi) = ¥ g*® ¥ ¢,

yEp<yy nesa#p(x)
= Y g*p)S, (A (x). p)
yEp<y1

which is (3.5). This Buchstab identity for §,(# (x), y) will be useful in Sections 8
and 9.

Before proceeding further we need examples of y, satisfying (3.3) and for
this the monotonicity principle discussed in the next section is useful.

4. A monotonicity principle.
Teeorem 1. Let h and H be multiplicative functions such that 0 < h < H
and a(n) any arithmetical function. Then for all square-free n we have

(4.1 min Y H(da(d) < Y h(d)a(d) < max ). H(d)a(d).

3ln d|é dr 3n d|é

In particular if

4.2 Y. H(da(d) >0 for all n|P,,
d|n

then

4.3 Y. hd)ad) =0 for all n|P,.

dln )
Proof. We prove only the first inequality in (4.1), the second being
similar.

Letn = p, ... p, be square-free and h(p) = x,,i =1, 2, ..., r. We think of
the x, as variables in the interval {0, H(p;)]. So
(44) ’ Z h(d)a(d) = L(x1’ ey xr)
d|n

can be considered as a linear form in each of the x;. By taking successive
minima over the x, we obtain

4.5) L(xy,....,x)= min Lx;, x5, ..., x) = Lleg, X, ..., X,)
0% SH(p))
= min Lie, x5, X3, ..., X,) = L{e,, €3, X3, ..., X,)

LESTES/{1:D)]

= Lie, e5, ... 8),
where each e; is either 0 or H(p). This means

(4.6) Liey, ez, ... ¢) = L, H(d)d(d),

djg -
where & is the product of all those p; for which e; = H{p,). Clearly (4.1} follows
from (4.4), (4.5) and (4.6). .
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CoroLLarY 1. Suppose H = 0 is multiplicative and y,, x, are such that
for all n|P,

off'(n) = ), w(d) H{d)x2(d) < H*(m)

d|n
= ’;#(d)H (@) < ;Md)ﬂ (@)x1(d) = ofP(n).

Then for any multiplicative h satisfying 0 < h < H we have for all n|P,
o) = 3 uld)h(d)1,(d) < h*(n)

din

;gu@M@€§M@WMd@=dWM

Prpof. The corollary follows from (4.2) and (4.3) by taking a(d)
= (=" uld)(x;(d)—1) in Theorem 1, for i =1, 2.

We think of (4.2) implying (4.3) (and in particular Corollary 1) as
a ‘monotonicity principle’. We had previously observed this principle in [1]
with H = 1 in Corollary 1 and proved it using M&bius inversion. We preferred
the linear forms argument here since it works betier when there are no size
restrictions on H. '

_ According to (4.1) of Theorem 1 the ‘absolute errors’ in Corollary 1 satisfy
o () — h*(n)| < max |oR(E)-H*@), i=1,2.
an

For multiplicative functions bounded by 0 and 1 the following result shows
that monotonicity is also exhibited in terms of the ‘relative error’ and for this
MGébins inversion proves handy: i

THEOREM 2. For each square-free n consider the class C, of all g such that
0<g<1 and g(n) # 0. Suppose y,, x, satisfy (3.2). Then the relative errors

agi(n)
g(n)
~decrease with g*, for ge C,.

=1l fori=1,2,

Proof, By M&bius inversion we have

&7) ) = L g*d) u(f) o{P(8) = ¥, aa“(cS)g*(a)g(i).
d|n old 5 din a
Hence
@) %
(4.8 9 | _ w52 )
) o =%, O

From (3.2) we see that ¢{’() for & > 1 maintains the same sign. Also
g*(0)/g(8) > 0 and decreases with g*. So Theorem 2 follows from (4.8).
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Moneotonicity is useful in providing functions y, satisfying (3.3) by starting
with (3.2). We shall look into this closely in the next section.

5. Brun’s sieve. To construct y,; satisfying (3.2) it is customary to start with
the decomposition

51 o= lZ"{u(d)x,-(d)Jrﬂ(pd)xi(p&)} = 2 uld){x(d)~z,(pd)}
dls dF

in terms of a prime divisor p of the square-free integer #» > 1. If the , are such

that for all d|n/p

(5.2) (=17 p(@d) {xdd)~ :(pd)} = 0,
then (3.2) follows from (5.1). Brun’s original choice of y; is given by

if v(n) < 25+i—1,
otherwise,

i=1,2,

1
(5.3 ¥i(n) = {0 for i==1,2,
where s is a non-negative integer to be chosen optimally. Clearly (5.3) implies
(5.2). The ¥, in (53) are the functions of ‘Brun’s pure sieve’. In this case

(5.4) awm=(mk‘

~1¥"Y, fori=1,2.
Zs+i—1)( ) '

It is however not necessary for (5.2) to hold for all p|n because (3.2) wili
follow even if there is one prime p such that (5.2) holds for all d|n/p. It is
convenient to take p = g(n), the smallest prime divisor of n > 1, which is
equivalent to saying p < g(d) in (5.2) because of the convention g(1) = 0. So, if
(5.2) is to hold just for p < g(d), then any y, satisfying

@ xd=1or0, VP,
() y(d) = 1= y,(t) =1, Vt|d (The y; are said to be divisor closed.),

{il) () = 1, u(t) = (1) = xplpt) = L, ¥V ptiP,, p < q(0),
will suffice. These ¥, are the functions of the ‘combinatorial sieve’. An example
is Brun's refinement of the pure sieve obtained by partitioning [2, y] into
2=p <Yy < ... <y, =y =y and letting

if v((d, PM)) < 2b—i+2j—1,j=1,2,...,71,
otherwise,

59 w=1;

where P, , = P,/P,. A detailed account of the combinatorial sicve with
specific emphasis on Brun’s choices is given in Chapter 2 of Halberstam and
Richert [6] where proofs and discussion on many sieve results utilized here
may be found.

Our interest in such y, lies in their applicability to (3.3). According to
Corollary 1, if 0 < g* < 1, then (3.3) is a consequence of (3.2). In particular we
have
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THEGREM 3. If 4, ¥, are combinatorial sifiing functions with P = P* and g*
satisfies 0 < g* < 1, then (3.3} holds for all n|P}.

Note that in Theorem 3 the specific properties of combinatorial sifting
functions are used only to check (3.2) and these are not necessary to pass from
(3.2) to (3.3) because the latter only requires monotonicity. [t would however be
interesting if specia! properties of the y; could be used to verify (3.3) for certain
g* > 1. An example is

TuEOREM 4. Let x,, ¥, be as in (5.3). Then (3.3) holds for all n if
0 < g*(p) £ 2 for all p.

Proof. In view of monotonicity it suffices to prove Theorem 4 for
g*(n) = 2"™ in which case g(n) = (—1)'". We assume n is square-free
and > L.

With o(n) denoting ¢l)(n) when g*(n) = 2" we have

(5.6) o (n) = ‘; p(d) () % 1 ﬁ?lj % u(de)y,(e)

which by (5.3) is o

(5.7) ;Mé) 2, ke = ,?F w@ Y e,
v(éel)ﬁﬂ.r v(e)&rt W&

where r = 2s+i—1. Next, becanse of (5.4)
(5.8  (=D"7'u@E) % ple) = (=117 %
wersrv ve)Sr-wa)

So from (5.6), (5.7) and (5.8) we have

4 > 0.

(5.9) (— 1) " ten) = 0.
But then notice that
(5.10) oP(m) =1+ T p(d)2"yd) = 1 (mod 2).

1<dln

Thus by (5.9) and (510) we deduce that
(5.11) (=)o 2 1 2 (=) H~1)" = (= 1) "' g(n)

as required.

- In passing from (5.9) to (5.11) we made the convenient observation in (5.10)
that 6%(n) was odd. This might not be the case if g*(p) were not even.
Fortunately the monotonicity principle saved us from considering such g*.

We could have proved Theorem 4 by decomposing the inner sum on the
right-hand side of (5.6) asg

(5.12) %{u(ée)x;(ée)+u(ﬁep)xi(éep)} = %#(«58){xi(5e)~xi(5ep)},
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where m = n/3. This has the advantage of showing how special properties of
Brun’s pure sieve not shared by the more general combinatorial sieve could be
exploited. Indeed since (5.2) holds in the case of the pure sieve for all p|n, the
summands in (5.12) satisfy

(5.13) (- 1) n(de) {1,(66)~ x:{bep)} = 0.

This would not be guaranteed by the combinatorial sieve which satisfies (5.2)
only for p < g(d) whereas in (5.13), p < ¢{5e¢) need not hold.

Theorem 4 it best possible in the sense that it fails if g*(p) is larger. For
instance if g*(p) = 2+¢ for all p, then g(n) = (—1—&)™, whereas for fixed
s, 04 (n) behaves only like 2 polynomial in v(n) of degree 2s+i—1.

In view of the above remarks it would be of interest to determine for a
given combinatorial sifting function y;, the set of all g* for which (3.3) holds.

6. Sieve estimates for § g(&ﬁ’ (x), y). Throughout this section we assume that
0 < g*(p) <2 for all p which is equivalent to —1 < g < 1.

An important parameter that arises naturally while estimating S, {2/ (x), y)
is sieve dimension » = %, which can be defined by

6.1) v o(p)g*(p)

Clearly » exists because o(p) < 1 and 0 < g*(p) < 2. It will also be convenient
if there is c, > 0 such that

< xloglogy+c,.

62) Il _o@ee)
P

It is to be noted that in {6.2) we are not assuming w{p)g*(p) < p.
Our objective is to replace

Wo(y) = pd)g* (do(d)y(d)

e (¥) dIZP:; .

in (3.4) by

pd)g*dwd) 1 (l_w(p)g*(p))'

W) =¥ g —

Py

Although it may not be the case that w(p)g*(p)/p < 1, we certainly have
w(p)/p < | for special sets. So with H(d) = g*(d) and k{d) = w(d)g*(d)/d we see
from (3.3) and Corollary 1 that a direct replacement of W2(y) by W,,(¥) in (3.4)
is not possible because the inequalities go the wrong way! Hence we need to
take into account the error

OR ) = WP —W,.(».
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For this (4.7) is useful. To be more precise, with g*(d) and n in (4.7) replaced by
g*(d)eo(d)/d and P} respectively, we have

(6-3) OR0) =W, ¥ DG,

1<d|Py

where

(6.4) G = 2@ I (1 _w(p)g*(p))"_

d pld

We shall bound &%(y) suitably using (6.3).
Suppose the y; are as in (5.3) and r = 2s+i—1. Then by (5.4)

(e § () 3, ou

1<d|F} m=r \'/ 1 <4|P}

‘ Wd)=m
< 2(’:’)—,;1;(%6(;:))”

©35 | Y ofweal< ¥

1 <d|Py

(Z G exp( T 6).

cp<y p<y

Note that (6.1), (6.2) and (6.4) yield

4
{6.6) 2 Gl < Tloglogy+0(1).
p<y 2
We put
6.7) r [ﬂ?glﬂl_’}r 1,
cy 4

where [ ] is the greatest integer function and A which will satisfy
(5.8) O<ielt™ <1

is to be chosen suitably. At any rate with r as in (6.7) we get

(i)r(lr)r eJ.r = ()Le“ + A)r

because of (6.6). This, when combined with (6.3) and (6.5), gives

W, ()l (Ae * 2y

(Z GEYexp{ ¥ Gp)} <

! p<y pey

(6.9) &R ()l <
With regard to

EQ0) Z IRa(x)|g*(d) x:(d)
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notice that if (2.4) holds then by (6.7)

<1+ Y o@g*p) < cxp{(ilf)_gigg_y+ 1)1ogy}.

Py 2‘2‘

From (6.10) we can obtain an upper bound for E® (y) in the more general
situation when {2.2) and (2.3) hold. To be precise

i XlogX
B < Y R4 ¥ ( gX
2Py |y d
d<XPlogV X 4> XFliogVX

6100  EQ(y

+ 1)(260)”"” %:(d)

= I+ 2, respectively.
Clearly
I, <X og" 1 X Z (2e)" Dy (d)

dIF;

< axp{(l —Mlog X +(V+ Dloglogx+ (_’ﬂo_cgllo_%_lj+ l)logy}
2

by comparison with (6.10). To bound Z, we break it up into
= ¥ + T

dIPL SN dphvid) >N
dEXB/log" X  dSXBjlog¥ X

(UloglogX)/2log2. From (2.5) we quickly get
X
T log"?x”

= Z3+2, respectively,

where N =

25 <y ‘log"?

loglX
As for 2, note that by (2.2)

soexiogx Y ZUTpiggx T (aegr 5 -
0

* ars k=N+1 it 4

vd)> N wd)=k

(2¢,loglogy +Cg)k X(lOgX)—UIGKUM.

oD
< Xlogx 3 1
k=N+1 k!

Thus these bounds for %, j=1, 2,3, 4 imply that

! X
®.11)  EQ) Coisuny

Cy A

It only remains to choose 4 optimally to obtain an estimate for S (= (x), y)
because

XW,,(»)-~ X020 —ER(y) <S(#(x), ) s X

+exp{(1 —BlogX + (F+ 1YoglogX + (

Wo(y)+ X100 (9 + EQX(y)

7 —  Aasia Avithmaliee TT 2
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according to {3.4). On comparing (6.11) with (6.9) our choice is
_ 2xloglogy-logy
(6.12) TS

Since (6.8) is a constraint on A, naturally (6.12) imposes a restriction on y. We
omit the details of the calculations and point out that with (6.12), (6.11}, (6.10)
and (6.9) we have established

THEOREM 5. Let of be special and —1 < g 1. Also let (6,1} and (6.2) hold,
Then

S, (x}, ¥) = XW,, (9){1+0y(log™ " X)}
holds uniformly in g and for
(613) ¥ < Xc;ﬂ/lenglng.

If the stronger condition (2.4) holds then

Syl (x), ¥) = XW,, (H{1+0(™ )} +0(/X)
holds uniformly in g and for y as in (6.13) with = 1.

In order to estimate Sg(‘_szf’ (x), y) for y larger than that permitted by (6.13)
we would need sifting functions superior to those of the pure sieve. But then we
could not be sure that (3.3) holds for all g* satisfying 0 < g*(p) < 2. Therefore
suppose 0 < g* < 1 and that
(6.14) l_coT(p) >¢; for all p.

In addition we assume a stronger version of the dimension in equality (6.1),
namely

(6.15) Y ©@lg*plogr xglog(-%)ws.

X
X1 €<p<xp p xl

With these assumptions and in view of Theorems 2 and 3 all estimates which
can be obtained for §(#(x), y) using combinatorial sifting functions hold
also for S, (e (x), y} with suitable modifications. To illustrate this we now state
a result which is apalogous to Theorem 2.5 in [6], p. 82-83.

THEOREM 6. Let o be special and 0 < g < 1. Also let (6.14) and (6.15) hold.
Then

Sy(s2(x), y) = XW,, ({1 +O(e™*"* )+ 0 (log ™" X)}
holds uniformly in y and g.

We shall omit the proof of this result which can be established using
Brun’s sieve (5.5) because it is similar to the one in Chapter 2 of [6] with
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w(p)g*(p) replacing w(p). In fact since 0< g* < 1, the simple inequality
|R4(x)|g*{d) < IR4(x)| can be used in tireating the remainder terms. Sc¢ in
proving Theorem 6 it is not necessary to consider terms like |R,(x)]c*™@ with
¢ > 1, as was done in deriving (6.11).

Theorem 6 yields an asymptotic estimate for S (s7(x), ¥) when either
a— o0 with X, or x—0 as X - cc. When x-» 0 the asymptotic estimate holds
for all y < X. In particular §,(x) can be asymptotically estimated as x— co if
%x—0. This has interesting implications in Probabilistic Number Theory (see
§8 of [3]).

For small ¢ Theorem 2.1’ of [6], p. 65 provides explicit upper and lower
bounds for S*(«#{x), y) and these are obtained using (5.5). Such bounds would
now hold for Sg(d (x), y) when 0 < g < 1, provided dimension is defined as in
(6.15). In fact if better bounds for S (=/(x), y) are required when 0 < ¢ < 1,
then Rosser’s sieve could be used because the Rosser functions are combina-
torial in nature and Buchstab identities can be established for S, (< (x), y) as
in (3.5).

7. Exceptional cases. In order to apply a sieve method to estimate
S,(#(x), y} it is not necessary that conditions 0 < g*(p) < 2 (resp. 0 < g*(p)
< 1) and (6.2) {resp. (6.14)) should hold for all p. The method would work as
long as the exceptional set P of primes, for which either of these conditions
fail, is sparse. We now describe briefly how S, {sZ(x), y) could be estimated
when P'® is finite and these arguments could be carried over in case P is a
sparsely distributed infinite collection of primes.

We begin with the decomposition

g{n) = h(n)h(n),
where h, h are strongly multiplicative functions generated by
o s T e f, o
Clearly g,(n) = h,(nm)h,(n) and so
(72) 8,(A(x), yp= 3, B ) p@hid) = ) pdh¥@d 3 h»)
nest(x) dln, P5) QP nead glx)

because according to (7.1), h¥(d) = 0 if d¥P{". Since P is finite, the divisors
of P{ are bounded. A convenient property of special sets o is that «, is also
special provided d is “small’. In particular we are guaranteed that .o¢, is special
in (7.2) because d is bounded. So if k, satisfies the conditions on g* in Theorems
5 and 6 then the sieve method would lead to the expression

(73)  S,(#(x), ) _
=Y y(d)h;‘{waM) I1 (1.&?1!%%1&?_))(14«0(%()1, y)))} '

0 H{0
a1 p| P
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|h5 ()| o (d)
=XW, (}’)+0(X|W=(Y)|{max'7d(}( N} Z(‘, *lmg'"”— »
: : !
where P©@ = p*—P©® and #,(X, y) is any function which satisfies
Xod Xo(d
a9 it ) -0 weo) < 2@ momcr, .

From Theorems 5 and 6 it follows that we could choose n, with the property
max n,(X, y) <7, (X, y).
d|P§

So from (7.3) and (74) we obtain

THEOREM 7. Let of be special and P'% finite.

{a) ﬂio;;‘ lpg}é{Pm) suppose that —1 < gp) <1 and (6.2) hold. Then for
y $ Xez xloglog

(7.5) S, (x), y) = XW,
{b) Forp¢ P suppose that 0 < g(p) <
Jor y< X.
COROLLARY 2. In addition to the hypotheses of Theorem 7 (a) (resp.

(b)) suppose that w(py)g*(pe) = p, for some poe P®. Then for p, <y
< Xczﬂlleoglogx (resp. Py <y < X)

IS, {22 (x), y)| < X|Wpr(Dn, (X, y).

If w(po)g*(po) = pg» then W, (y) = 0 for y > p, and so the ‘main term’ in
Theorem 7 colldpses, Such a phenomenon occurs when g(n) = (— 1)*™ and
/= N because w(2)g*(2) = 2. Denoting the sum §,(x, y) by S_,(x, y) in this
case we obtain as a consequence of Corollary 2 and Theorem 5

76)  IS- <7 xzye‘““"’“‘“m +/%,

According to the remarks at the end of Section 8, this bound is not far away
from the truth.

L)+ O(X W ()i (X, ).
1 and (6.14) hold. Then (7.5) holds

for y < xcz/zt-loglogx_

®
8. The sum S, {x, y). The main advantage in using the sieve on S (of (x) ¥)
lies in the wide class of sets & which could be handled. But this put I‘BStrlCllOIlS
on the values g(p). On the other hand if we concentrate only on & = N then
other methods could be employed to treat $,(x, y) even when g takes
arbitrarily large complex values,
For instance we could use the Perron integral. If Re(s) = o > 1 then

(8.1) G,(s) = i_g%:rl(l*‘ﬁ%)'n(lmi)&l

ko
w1 p<y PEY P

)

ey

icm
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is analytic in s provided [g(p)] is not too large and (8.1) gives an analytic
continuation of G, (s) into ¢ € 1. By the Perron formula

82)  S,0x, 0

1 94T %3G (s)ds © a
= om § _y() +0(Z Igy(nﬂ)x lmin{ 1 . log 1 })
a=il s =1 I X X
T‘logm T
n

log -
n

where @ > 1 and T > 2 are to be chosen suitably.
For the sum
Px.y)= 3, 1
rSxqimy 2y

which is a particular case of S, (x, y), de Bruijn [4] vsed (8.2) to obtain
estimates when « is large. The arguments in [4] could be applied to S,(x, y)
with some minor changes. If ¢ is complex valued and |g{p)| < C, then the
inequalities

2 lgf:)i <[1 (1 +L1) < logtx

n€x p<x
g* C+1

(-5 < 1 (5

p<y r p<y P

will be useful in dealing with the error terms in (8.1) and in estimating the

contribution from the integral by closing the contour around the pole at s = 1.

We omit the details which are similar to those in [4] and state
C for all p. Then

and

THEOREM 8. Let g be complex valued and |g(p)| <

Sg(x, }’) = x 1’[ (1 —~—(p))+0(xlogc+2y, e~alogm—alngloga+0(m)).
Py p .
This result is vseful mainly when o is large and in fact the estimate
becomes trivial if « is small.
I g(p) is well behaved, then, for small «, a better approach to S,(x, y) is via
the Buchstab identity

63) 5,603 = 5,00+ 3 4°0)S,(x/p. 2

which is a special case of (3.5). Indeed if g(p) has an average value then S, (x)
can be estimated using Perron’s formula and the Riemann zeta function. This
serves as a starting point in (8.3) to evaluate S (x, y) by induction on [«]

"because log(x/p)/logp < «— 1. Buchstab first used this idea to evaluate @(x, y)

for an arbitrary but fixed o. Subsequently de Bruijn [47] improved Buchstab’s
approach and estimated @{x, y) uniformly in . We note that de Bruijn’s ideas
could be applied more generally to §,(x, y) when g(p) for 2 < p < x has an
average value which is nearly constant; that is the average differs from
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a complex number z by an amount which shrinks to zero sufficiently fast as
x— oo, In particular the method shows that for 3 <o < /logy

x
log®y
and that this bound is best possible except for the irnplicit constants. From (8.4)
and (7.6) we see that Corollary 2 cannot be improved substantially.

We plan to discuss applications of de Bruijn’s method to §,(x, ) in
a subsequent paper with particular emphasis on S_ (x, ).

e” aloge — alogloge + Ofx)

(8.4) 1Sy (x, p) <

9. The small sieve. Erd6s and Ruzsa [5] have established the following
‘small sieve’ result; There exists an absolute constant ¢ such that if x > 1 and
K >0 are arbitrary and P any set of primes for which

Y -<K,
peP P
then
(.1 SPx) = Y lze ™ x
nE€x
(n,Pxh=1

The interest in (9.1). lies in its vniformity with respect to P. Apart from the
value of ¢ inequality (9.1) is best possible as can be seen by taking $*(x) to be

‘/’(xv y) = Z 1,

n<x
pln.psy

K ~ loga.

We have obtained a multiplicative generalization of the small sieve result,
namely

THEOREM 9. There exists an absolute constant ¢ such that if x > 1, K > 0
and g satisfies 0 < g < 1 and

(9.2) 3 At

pEXx p

then uniformly in x, K and g we have
Sg(x) = e x,

Proof. We shall utilize the method of Erdés-Ruzsa suitably generalized
for our purpose. Throughout this section we assume that 0 < g, g* < 1.
At the outset we observe that :
o ' ny
9.3) 5 Iy togx T] (1-—@-@).

nEx PEX p

icm
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To realize (9.3) note that

2(n 2(n n 2(dyg*(d)
gz < ¥ 0 3 K05 gpe(t) < (3 40 5 0D
n¥x asx B dn d d<x d d<x
and so
2 * -1
3 g(d) > 10gx( > wdg(d) (d))
dsx d dsx d
* -1 %
= logx [] (i+g (p)) » logx [] (l—g (p))
ps&x P psx p
as claimed.
Next let y = x*7%, 0 <6 < 1/2. We claim that
(9.4) S,(x, y) = de Fx.

To prove (9.4) consider an integer b < x* and p > x'7°. If m = pb < x, then
g,(m} = g(b). Given b, there are at least w(x/b)—m(x* ") such m. So by (9.3)
and (9.2)

x g*(b)
logx i, b

YoMz ¥ g®{ntb)-nix ")) »

n<x b<x%2
*
> dx H (1—9—@-1) > de " Ex
pEx62 P
as claimed.

We now attempt to evaluate §,(x) from (9.4) by appeal to (8.3). More
precisely let y = x* =™ where k = "%, Then

g* ()

yép<x P

05)  Sylx) = 5,06, 9~ 2 Q*W)Sa(g’f’>?%x_x

yEp<x
> (c,e” 2= Ax,

where

*(p)
9.6) 1= v 22
yEp<x P
If 4 < ¢;e”*%/2, then (9.5) gives a lower bound for S,(x) of the form cge™**x
which is better than Theorem 9. Therefore we shall assume from now on that
A > cge 2K,
For convenience let

-2K

K) = inf{%c(—x—)l g* satisfying (9.2)}.

We shall bound y(K) from below by real type induction on K. In doing so we
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may assume x > ¢ with ¢ sufficiently large because otherwise Theorem 9 is
trivial. .

To start the induction we use Theorem 3 with ¥, given by s = 0 in (5.3). So
9.7

5,0 = 3 Yudgtdyz Y {(1-Yg*@)} 2 x—x ¥

n€xdn n€x pln pEXx

Hence for K < 1/2 Thcolrem 9 ig true.

g*(p)

=z (1-K)x.

Next, let Q denote the set of integers m < x which have a prime divisor
q > x" . Let m = gb. Note that glm) = g(g)g(b). Also m has at most k&
representations of the form gb since it has at most k such prime divisors g,
Therefore

©.8) 00> Y gim) = - )

meQ kxlfksgqu

9@ 2, 9.

bExfg

The integers b in (9.8) can only have prime divisors p < x' =™ 8o by real type
induction and (9.6) we have

09 5,692 5D, v @), M( s g*(p))
P k xkSgss 4 k Spsxl g% P
K—2 '
= u(logk——[(—!-o —~1—) > xp(K - e~ E+D),
k logx

From (5.7) and (9.9) we see that y(K) is bounded below by any y,(X) which
satisfies :

(1-K)
e—(x+2)?o(K“ca e—zx}

for K <1/2,

for K > 1/2.

Clearly y,(K) = e™ =" with a large ¢y -works and that proves Theorem 9.
Regarding an upper bound for S,(x) which is uniform in 0 < g < 1, the

answer is contained in Theorem 6. Indeed since g(n) < g,(n) we have shown
more generally for special sets that

SH(M(X)) <X l—[ (1—-—9*_(1?)%,).) < Xexp{—w Z g*(P)w(p)}

psX pEX 4

70(K) < {

9.10)

and this is best possible exceptl for the value of the implicit constant.
Instead of just a lower bound for S,(x) we desire, in the spirit of (9.10),
a lower bound for S, (s#(x)) given that

¥ g*(p;w(p) <K

UMess & is rather restrictive this problem involves great difficulties. Ome
Instance where an analogue of Theorem 9 could be proved is by taking .« to be

icm
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integers n for which v(n) is odd (or even). However, even for .« as in (E—1)} of
Section 2 we are unable to prove a result like Theorem 9; in fact such an
inequality would imply a deep conjecture of Erdds on the distribution of
numbers of the type p+a devoid of large prime factors.

10. Concleding remarks. For the classical sieve problem of estimating
S (a7 (x), y) the dimension » measures the average amount of sieving done per
prime p. When 0 < ¢ < 1 the quantity S (#(x), y) can be interpreted as the
residual amount after .o¢(x) has been sifted through p < ¥ because the weights
corresponding to n = 0 {(modp) shrink by a factor g(p) when sieving with p. But
when 0 < g < 1 does not hold, the sum §,(s#(x), ¥y} cannot be given a sieve
interpretation in the classical sense. However, it is interesting that as long as
—1 £ g £ 1, sieve methods could be used to estimate S,(=7(x), y) despite the
oscillation in sign of the summands g,(n). In this case estimating S,(o (x), y)is
like treating S(.7(x), y) in dimension %,. In particular if $(=#(x), ) has
dimension x then S,(#/(x),)) with g(n) = (—1)'® is like performing
a 2x#-dimensional sieve on &(x)! It was this unusual feature that motivated this
paper.

We have made many observations about various questions which arise
naturally in connection with results established here. We plan to discuss some
of these problems in detail on a later occasion.
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