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1. Introduction. Let n(z) be the Dedekind eta function defined by
1(z) = exp(niz/12) || {1—exp(2ninz)),
n=1

where z is the standard variable on the upper half-plane. Then it is famous that

n(=1/2) = \/2fin(2).

In 1968, Weil [5] obtained a very natural proof of the above formula by using
the functional equation for the Riemann zeta function. The auther [3] gave
a characterization of #(z} by developing the ideas of Hecke [1] and Weil [5].
{Along with [5] and [1] see also [2] and [6].) Later, in [4], he determined
infinite products satisfying a certain functional equation on the upper
half-plane. In the present paper, we will discuss a slight generalization of the
previous result given in [4].

Let a,(1), a,(2), a,(3), ... and a,(1), a,(2), a,(3), ... be two sequences of
complex numbers such that a,(n), a,(n) = O(n) for some ¢ > 0, and form

oo

o= 3 amn~  and gy =3 alin.

n=1 n=1

Then ¢,(s) and ¢,(s) are convergent Dirichlet series. For any real number 4,
we put q(d) = exp(2niz/4). Further we define, for Im(z) > 0,

(1) J(2) =expnid, 2) ] (1—q(ir )
n=1
and
) f2(2) =exp(2nid,z+ B) ﬁ (1—g(Az)r=,
m=1

where 4, > 0, A, > 0 and §,, &,, B are real numbers. Throughout this paper,
for complex numbers x and w with x %0, x* = exp(wlogx) and the
principal branch is taken for the logarithm. Then thbese infinite products
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converge absolutely and uniformly in every compact subset of the upper
haif-plane. Hence f;(z} and f,(z) are holomorphic in the upper half-plane.

THEOREM. Let N be a positive number, and put M = A, A, N. Assume that
@,(s) and @,(s) can be continued through the whole s-plane as non-zero
meromorphic functions with a finite number of poles and that there exists a real
number k such that

(3) fi{=1/Nz) = (/N zfiff;2).
Then M is a positive integer, {i{z)} and f,(z) can be expressed in the form
4 filz) = II;Ilﬂ(mZ/fll)”""’
and
5) f2(2) = exp(B) Il] n(mz/2, Y,
m|M

where c(m), defined for m dividing M, are complex numbers,

1
(6) 0 = 547, %{mc(m)s
™ %=;%;%@dex
®) k=% cm),
m|M
and
©) B =4(logi,/N) T e(m)—% ¥ c(m)logm.
m|M mlM

Conversely, let M be a positive integer and let ¢(m), for integers m dividing
M, be arbitrary complex numbers such that four numbers

2 cm), ¥ ome(m), Y me(Mim), and Y c(m)logm
m|M m|M mM ) miM
are real numbers. Further, define f,(2), f,(z), k and B by (4), (5), (8) and (9),
respectively. Then f,(2) and f,(z) satisfy the functional equation (3).
From the theorem, we can easily obtain the following corollaries.

COROLLARY 1. Under the same assumptions as in the theorem, if we take
Ay =2, =N=1 and 5, = 1/24, then f,(z) = f,(2) = n{2).

This is a characterization of #{z). ‘

CorROLLARY 2. Under the same assumptions as in the theorem, if we take

Ay d= Ay =4, M = AN and a,(n) = a,(n) for all n, then M is a positive integer
an

(10) fu(2) = f1(2) = [] nlmz/ay,

m|M
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where c(m), defined for m dividing M, are complex numbers such that
c{m) = c(M/m) for any divisor m of M,

1
(11 §y =6, = mm%\} mc (m)
and
(12) k=13 c(m).
m| M

Conversely, let M be a positive integer and let c(m), for m dividing M, be
arbitrary complex numbers such that c(m) = ¢(M/m) for any divisor m of M and
that two numbers

Y. clm) and ¥ me(m)

m|M . m|M

are real numbers. Further, define f (z) and k by the right-hand side of (10) and (12),
respectively. Then f(z) satisfies the functional equation

F(=1/Nz) = (/Nzfiff (2).
Now we consider the case when A, =1, =4, §, =8, = 8, M = A2,

@

P1(5) = @,(8) = p(s) = ), a(mn™*

n=1

and

12 = exp(2midz) f:‘}[1 (1 —qay),

Taking N = 1 in Corollary 2, we have the following.

- COROLLARY 3. Assume that ¢(s) can be continued through the whole s-plane
as a non-zero meromorphic function with a finite number of poles and that there
exists a real number k such that

(13) f(=1/2) = (/iff ).
Then 22 is a positive integer and f(z) can be expressed in the form
(14) fl@)= lgzn(mZ/i)“”),

where c(m), defined for m dividing A*, are complex numbers such that
¢{m) = c(A*/m) for any divisor m of J?,

(15) d= mmuz me(m)
and
(16) k=43 clm).

mja2
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Conversely, let A% be a positive integer and let c(m), for m dividing 2?, be
arbitrary complex numbers such that c{m) = c(A*/m) for any divisor m of 2* and
that two numbers

Soelm) and Y me(m)

m| %2 m|A2
are real numbers. Further, define [(z) and k by (14) and (16), respectively. Then
J{2) satisfies the functional equation (13).
As is easily seen, this is equivalent to the theorem given in [4], since

H 7(mz/ )™ = exp(2nidz) H ﬁ (1 — g (At

mii? m|a2a=1
where 6 is defined by (15). It was not until quite recently that the author found
the above equality.

Remark I. In the theorem and its corollaries, a, (1), a,(2), a,(3), ... and
a, (1), ay(2), a5(3), ... are sequences of rational integers, if, and only if, the
numbers ¢(m) {m|M) are rational integers.

Remark 2. The theta function

o

8zy = [ (1—g@*) (1 +q2)>" 1)

n=1]

is a modular form of weight 1/2 and satisfies

8(—1/2) = J7/i%(2).

Then from Corollary 3 we see that
5

1@
NTE Tem

2. Some lemmas. We shall use the same notation as in the previous
section. For y > 0, we set

G, () = —{log, (iy//N)+(@nd, y/\/N)}
and

G2(0) = —{logf,(iy//N)+ (218, //N)— B
Then from (1) and (2), we have
(17) 6H=7% 3 a—jmn(:zexp(—2nmny/lj\/—b_f) G=1,2.

rn=1m=13

Lemma 1. If y > 1, then

G() <€ exp(—ny/i;/N) (=12
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Proof. By the assumption, 4,(n) = 0(n°), and the inequality 2nm = n+m,
we have

G,y < ) n"exp(——nny/)ujﬁ) f %exp(—mny/lj\/ﬁ)
m=1

n=1
< ;1 eXp(—m’rcy/}Lj\/ﬁ) < CXp(—ny/)Lj\/ﬁ) (Gi=1,2).

as required.
Next, let

E() = /2 /N T+ Do) (G =1,2),
where, as usual, I'(s) and {(s) denote the gamma function and the Riemann zeta
function, respectively.

LemMma 2. Let N > 0 and k be a real number. Then the following two
conditions are equivalent:

(A) f1(=1/N2) = (/Nz/iffy ).
(BY &, (s} and £,(s) can be coniinued through the whole s-plane as mero-
morphic functions satisfying &£,(s) = £,(—s), and

k B 2m6, 1 2m5, 1

is entire and bounded in every vertical strip.

Proof. It follows easily from (17) and Mellin’s inversion formula that

1
(18) G, = ER (j;= £ 5y *ds
and

1
(19) Ga0h =55 [ &y ™ds,

where ¢ is chosen large enough to be in the intersection of two domains of
absolute convergence of ¢, (s) and @,(s). Assume now (B). Then shifting the
line of integration in (18) to Re(s) = -o, we have

GI(J’)::“—l" j'

- & (8)¥  ds-+ {sum of residues of
2mi Ro(s)= —a

integrand at s =1, 0, —1}.

By (19) and the functional equation &, (s} = £,(—s5), we see that

G =5 | Gy

Re:(s) = -
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The residues in the sum are as follows:
2nd,
Resg (s)y™* = ,
s=_1 : \/—]\—Ty :
Res&,(s)y™* = klogy—B,

£=0

2mdy
Res £, ()y ™" = — %,
g= =1 ! -\/ﬁ

Thus we have

nd 2né,y
G, () = Gz(l/}’)+\/ﬁj}+klogy-—B-~\7_];7,

which vields
log f,(iy/5/N) = —klogy+log f(i//N y).

Therefore

SN = v 06N ).
Substituting 1/\/]\7 y for y in the above equality, we obtain

JiE/NY) = (N, (),

which is (A).
Hereafter, Re(s) is taken so large to ensure the validity of the later
argument. Noticing that

I'isy= {e't'd*t where d"t=—,
0
we can deduce from (17) that

69 = | Gyhrd*y.

Then it is easy to see that

[s¢]

(20) B = | G,(y)ywyﬁf G (Uy)y=sd* .

I

Assuming now (A),

log £, (i//N y) = klogy + log f,(iy/</N),

50 that

2nd,y 2nd
Gi(1/y) = Gy(y)+ 2 - L _klogy—B,
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Hence, from (20) we have

B 2, 1 215, 1

hid 420
s+\/}“\f1+s+\/ﬁl—s

1) g@+§+

’—=8

Gy d™y+ | G, (y)y~d*y.
i

—-

Lemma 1 _shows _tha}t the above integrals converge absolutely and uniformly in
every vertlfsal strip in the s-plane and therefore define entire functions of s, so
that (21) gives us an analytic continvation of £, (s) into the whole s-plane as
a meromorphic function. By the same way as above, we know that

k B 2mé, 1 26,

1 = =
gz(_s)‘l‘;f“l*;"‘\/—ﬁ 1+S+\/N— I_S"": { G, (y)y*d _V“f‘{ G,(¥)y~*d™ y.

holds in the whole s-plane. From this and (21), we have the functional equation
1(8) = &y(—3).

This completes the proof of the lemma.

LemMA 3. Let N > 0 and k be a real number. Then (3) holds, if, and only if,
©1(5) and @, (5) satisfy the following four conditions:

() @,(s) and @,(5) can be continued through the whole s-plane as
meromorphic functions.

(b) s(s—p, () (s+1) and s{s—1)@,(){(s+ 1) are entire of finite order.

© M@ ()(—5) = @, ()L(s).

) @,(0) = ~k, o,(—1) = ~24,5,, B = — ¢} (0)~klog(2n/2,/N) and

Resg,(s) = 248,/4,N.
s=1

Proof. The method of the proof is almost the same as that of Theorem 2
in [3]. By Lemma 2, we have only to prove that (B) is equivalent to the above
four conditions. By noticing that

2I'(s)¢(s)cos(ns/2) = 2y {(1 —s),

we find that &, (s) = &,(—s) is equivalent to (c). In the following, o is taken large
enough to be in the intersection of two domains of absolute convergence of
@,(8) and @,(s), and, for brevity, we put ' :

k B 2né, 1 2n8, 1
E(ﬁlwél(s)+?+;+\/ﬁ1+s+\/ﬁl—ws'

Assume now (B). Then (a) and (d) are clear. Further it is easy to see that
s(s—1}p (s){(s+1) is entire in the whole s-plane. Since ¢,(s){(s+1) and
®,{(s){(s+1) are bounded in Re(s) > o, by Stirling’s formula and &,(s)
= ¢,{— ), we know that £, (s) is entire of order 1 there and also in Re(s) < —o,

as is @ ($)L(s+1), because ¢, (s} (s+1) = (Zn/ilﬁ)sél(s)/F(s) and 1/I(s) is

3~ Acta Acithmetiea LI, 3
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an entire function of order 1. Similarly, we can deduce that s(s— 1)¢, ($){(s+ 1)
has order 1 in the strip —o < Re{s} < ¢, since E(s) is entire and bounded in
every vertical strip. Thus s{s—1)@,(s){(s+1) is entire of order 1. Since
£,(5) = &,(—s5), we see that s(s—1}¢,{s){(s+ 1) is entire of order 1 by using the
same way as above.

Conversely, let us suppose that the conditions (a), (b), (c) and {d) are
fulfilled. Then we find that E(s) can be continued through the whole s-plane as
an entire function of finite order. Taking » = o, then E(s) = O(1) on the line
Re(s) = v and alsq on the line Re(s}= —v by Stirling’s formula and
£,(s) = &;(—s). Herce, E(s) = O0(1) in the strip —v < Re(s) <v by the
Phragmen—Lindeldf theorem, which proves (B).

3. On certain Dirichlet series.
LemMa 4. Let D(s) be a convergent Dirichlet series defined by

og

D(s)= 3, emn >

n=1
Assume that D(s) can be continued through the whole s-plane as a meromorphic
Junction of finite order with a finite number of poles and that there exists
a positive number K such that D{(—s) = O{|K?|) for Re(s) sufficiently large. Then,
fK<1,DE)=0and if K=1,
(X1

D(s)= ¥ c(mn™.

where [K] denotes the intégra,l part of K.

Proof. See Lemma 5 in [3].

LeMMa 5. Let D, (s) and D,{s) be two convergent Dirichlet series. Assume
that they can be continued through the whole s-plane as non-zero meromorphic

functions of finite order, which have a finite number of poles and which satisfy
d*D, (s} = D,(—s)} for some positive number d. Then d is a positive integer,

Dis) =Y cmn™* and D,(s) =Y cld/mn™*,

Kld n|d
where c(n), defined for n dividing d, are complex numbers,
Proof. Put

o

Dy(s)= Y cmn™

n=1

and D,(s) = i b(mn™*.
n=1

By our assumptions, we see that

Dy(=8) = O(4)

icm
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for Re(s) sufficiently large. Then it follows from Lemma 4 that d = 1 and

[d}
D,(sy= 3 bmn*.
n=1

Since d°D,{s) = D,(—s), we have

w 14
(22) T clm@dmy =Y b’

n=1 n=1
Let p denote the first valug of the index n such that c(n) # 0 and let g denote
the last value of the index n such that b(n) # 0. Then from (22) we find that
<{pld/p)’ = blg)g’, which implies ¢(p) = b(g) and pg = d. Thus d is an integer.
Repeating the same argument as above, we can prove the lemma.

4, Proof of the theorem. We shall prove the first assertion. By our
assumptions, ¢, (s) and ¢, (s) satisfy the four conditions of Lemma 3. Hence, if
we put D, (s) = @,(s)/{(s) and D,(s) == @,(s)/{(5), then D, (5) and D,(s) can be
continued through the whole s-plane as non-zero meromorphic functions of
finite order, and M*D,(s) = D,(—s). Farther we know that D,(5) and D,(s)
have a finite number of poles in the whole s-plane by (b), {c} and the
assumptions of ¢,(s) and ¢,(s). Then, from Lemma 4 we see that M is
a positive integer and '

Di(s)= Y cmm™ and D,(s)= Y, c(M/mym~*,
m| M m|M

where c(m), defined for m dividing M, are complex numbers. Hence we have

(23) 0ul9=(F, clmm @)

and

24} Py(8) = (IZ c(M/mym™*){(s).
m| M

By noting that {(0) = —1/2, {(—1) = —1/12 and {’(0) = —(log2n)/2, from (d)
and (23) we can easily obtain (6), (7), (8) and (9). Moreover, from (1), (2), (23) and
(24), we find that

fulz) = exp(2nid; 2) [T T1 (1—aq( ™y

mMn=1
and
fole) = exp(2midyz+B) T TT (1—q(Ryye4m,
miM =1

which yield (4) and (5).
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The remaining part of the theorem follows at once from. Lemma 3, since
@,(s) and ¢,(s) are given by (23)Aand (24), respectively.

5. Preofs of corollaries. Corollary 1 is a direct consequence of the theorem.
Now we shall prove Corollary 2. From the theorem and its proof, we know
that M is a positive integer, ¢(s) and ¢,(5) are given by (23) and (24),
respectively. If a,(n) = a,(n) for all n, then o (s) = @,(s), so that c(m)
= ¢{M/m) for any divisor m of M. Since M = A*N, from (9) we have

2B = 3(logM) 3. c(m)— ¥ c(m)logm

m| M miM

= 3(logM) Y, c(m)~ Y, c(M/m)logm

m|M m|M
=4(logM) ¥ c(m)— 3, c(mlog(M/m) = —2B,
m|M m| M

which implies B = 0. Thus Corollary 2 follows easily from the theorem.
Corollary 3 is an immediate consequence of Corollary 2.

6. Proofs of remarks. By (23), (24) and Mébius’ inversion formula, we can
casily show Remark 1. Now we shall prove Remark 2. As is easily verified, 8(z)
may be written as

3 o (1 — q(z)zn)s
@ = Il e gy

Hence we have
8) = [1 (1—q@)™,

n=1

where

1 if 7 = O(mod 4),
an) =<3 if n = 2(mod 4),
—2  otherwise.

It is easy to see that

o

o= ¥ a(mn™ = (—2+5275=2:4"%{(s).

n=1

Since, by (23),
@(s) = {e(D)+c(2)27 +e(H47)L(9),

‘we find that ¢(1) = ¢(4) = -2 and ¢(2) = 5. Then, by the theorem, the remark
is proven. ‘
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