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1. Imtroduction. A basic problem in the theory of sieves is to find good
upper and lower bounds for the sifting function

S, ?,2)= Y L
acaf
fa.P(zn=1

Here & is a finite sequence of integers, 2 a sequence of primes, z = 2 (a real
number} and

Piz) =[] p-

p<z
pe#

_Let 7
| = {aest: a=0(d}

We assume |7, to be written in the form

.ot | :%‘—QX+R(M, d for d|P(z)

where X > 1 is independent of d and ¢ is a multiplicative function satisfying

O<owp<p for ped.
Finally we define
V(@) = [T (t~o0yp).
heo
Then the following theorem, due to Iwaniec ([77), holds true.
TueoreM A. Let y 3 z > 2, s = logy/logz and suppose that there exist
constants » > 0, K = 2 such that

Viw,) (103“’2)”( K ) 1
1+ 2K < W,y
V(w,) < logw, logw, for Wi < w2 ()

(}) % is called the dimension of the sieve.
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Then

. x, K e_s *9?1 d »
(L) S, P, 2) < XV(z)( ()40 ((logy)”3))+d,;(z) IR(sA, d)
and
(12)  S(+#, 2, z} >XV(Z)(ﬁf(S)+0x.x((—lc§;;T,g))— 2, IR(s7, d),

d|P(z}
d oy

holds true. F (s) and f,(s) are the continuous solutions of the following system of
differential-difference equations:
s F(s) = 4, s < Bt
§f(s) = B,, § < Bs
(FFE) = x " s 1),
(" F () =us*"'F, (s—1), s> 8,

The definitions of 4., B,, f, require some knowledge about the nontrivial
solutions of

(3G, (8} = 24, (8)+2eq, (s + 1)
and

(sh(s) = xh, (s)—sch(s+1).

It is known for example that §,—1 is the largest (real) zero of g, (s) if % > 1/2.
Estimates for the largest zero of g,(s) will be proved in this paper.

If 2 = 1 Theorem A was already proved before by Jurkat-Richert ([6],
[97) via Selberg’s sieve, whereas Iwaniec’s proof uses Rosser’s sieve. (%)

If 3 > 1 Iwaniec pointed out in [7] that an iteration of Selberg’s sieve
with Buchstab’s identity would give better results than those in Theorem A.
The first step of this iteration was already made by Ankeny-Onishi ([2]).
A second step has been made by Porter ([10]). There are also numerical results
due to Diamond-Jurkat (unpublished). Making a number of {(plausible)
assumptions, Iwaniec—van de Lune—te Riele ([8]) gave the limit of this iteration.
They showed that instead of (1.1) and (1.2)

S, P, 2) < XV(2)F, (5)+se(x, K, v, 2, X),
S(et, P, 2) > XV @) f,(5)—e(¢, K, y, z, X)

bolds true, where s(x, K, y, z, X) is an upper bound for the error terms. (%)

{?} Indeed it is not exactly the same theorem, but the main terms are the same and the
remainder terms are similar.

%} See [31, [8).
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F,(s) and f,(s) — superior to F (s) and (s} of Theorem A — are the continuous
solutions of the following system of differential-difference equations:
there exist o, (= 1), B, (= 1){*) such that

Fl5) = alféj’ §< o,
fds) =0, s < B
(*F () = ws* Y {s—1), s>a,
(SF ) =% F (s—1), s>8,

where the continuous function ¢,(s) satisfies

1
&, 0<s<2,
= FErerny . 0SS
57%0, () = —xs* "o, (s-2), s§>2.

Numerical values for a«,, f, can be found in [8] and [12].

Results concerning this Buchstab iteration were also proved independently
by Rawsthorne ([11]). However, the question whether the iteration works at
all, was not answered by these papers. '

The work of Rawsthorne was picked up again by Diamond—Halber-
stam—Richert ([4]). They distinguish (according to Rawsthorne) the four cases

o, < p,~1, p,—l=sa,< B, <o, <B,+1l, f.+l<oa,

The cases one and two have been assumed to be impossible in connection with
sieves {[8], [11]). This was meanwhile proved by Diamond-Halberstam—Ri-
chert ({4]). Their proof is based on a good lower bound for the largest real zero
of the function Q,(s) (for a definition see (4.1)). Lower bounds and upper
bounds for the largest real zero of Q,(s) are also proved in this paper. The
results of Theorem 5 were needed in [4]. The cases f, < a, <f,+1,

B.+1 < o, are yet not completely solved. However, it turns out that also upper
bDunds for the largest zero of g,(s) are needed (for a definition see (2.1)). They
are given in Theorem 6.

2. Some definitions and lemmata. Define
F(zx Iz—Znexp(Sz+xj

21) qus) =4q6) =— -
where & is any curve of shape

::“—’L\
T

(*) For details see [8].

du)dz for s>0,x2=1,
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and z7%* = exp(—2xLogz). Note that g(s)e C*(0, cv). It is easy to prove
(see {71, 5.1) that g(s) satisfies

(sg(s)) = »q(s)+xg(s+1).

Moreover let g0 (s) = ¢*(s)(°) — ve N, —be the vth derivative of g(s). Then it
is obvious that

(2.2) {sg™ () = (x~v)g™(s)+xg"(s+1)

holds true. ()
Furthermore we define inductively

(2.3) g0~ V(s) = ¢" " s)

s+1
=2x1 v(sq“”(s)—u I} q(")(t)dt) for —ve Ny, s> 0()

for veN,

and finally we denote
ZP =z the largest zero of ¢i’(s) for x = 1(%)
if 2t exists (see Lemma 2).
-LeMma 1, We have
(2.4) (3¢ = (e—g™ () +2gM(s+1)  for veZ.

Proof. For ve Ny (2.4) is (2.2). Now suppose that (2.4) holds true for some
—veENy. By (2.3) and induction hypothesis we obtain

25 a0 = 5 {aE) x4 1) +26) = g6).

ds 2% —v
On the other hand, again by (2.3} and induction hypothesis
1
(= 9)g® 1 (8) +aeg" Vs 1) = o {l=)sg )+l 1) s+ 1)
s+1

=5 § (o= g™ + g™ e+ 1)dt) = 5g(s)
holds true. Hence ’
@6 S49(s) = (<=1 D(s)+ g™ V(s +1)
or, equivalently by {2.5),
(sq" " P(S)) = (e~ (r—1)q"~2(5) 420"~ s +1).
For the simplification of several expressions we put
o, = Zye—[2].

(*) ¢*(s) and 2™ depend on x, but jor simplicity we omit , if there is no conlugion possible,
(%) Further properties of g can be found in [7].
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LEMMA 2.
(27) ZS‘V) (:'xiStS for v \<‘ MO o {[2%]_ 11 I_‘f 2%¢N:
%2, if 2xeN.
(2.8) XV > A >0 for v < g,

Proof. Let v =%, If 2xe N we have (cf. [7], 5.1)

Z0) = g

Applying for 2x ¢ N Lemma 2 from [7] with @ = x—v, v = [2x]~1, b = %,
N =0 gives, using (2.4),

(29) g2 D) = Qe —1)(2%—=2) ... (o, + 1)

Fa 1 T - sz tl-e™ dz
*(s +F(—°Cx)6[e (exp(%bf ” d“)_l)z._,.rf)-(")

Now ¢~ U(s) < 0 for s»0+ and q™¥~Y(s)-» oo for s—o0. Hence

z% exists and is positive.
Suppose now that z™ exists for some v < %,. By (2.6} we have obviously
5q™N(s) = (2 —v)g" ™V (s)+x(g" V(s + 1)— g 1)s))

and the mean-value theorem now gives the existence of a

(2.10) {els, s+1)
such that
(2.11) sqV(s) = (2 —v}g® ™ () +#g™ (&)

. d
Since g*o)(s)~»co as s-»co and qu‘”’”(s) = gq"(s) for veZ, we have

(2.12) gV (s)—~co  if s=o0 and v < %,.
By the definition of z we have therefore

(2.13) gV >0 for s> 2%,

Choosing now s = z® in (2.11) and using (2.10) and (2.13) gives

(2.14) g¥HNEM <0 for v < x,.

Hence, by (2.12), we see that zU'™" exists with

FAESS 8

('} For the normalization of g™~ V(s) see [7], 5.2, Remark of Lemma 4.
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LemMMA 3. We have

"
V1) o g <
2.13) 1420 g 2071 g 20 +o— Jor x < v <K
and
() {(v—1) (V) FY o< K
(2.16) 142V > 2 > Z +2%~—v Jo

In (2.15) equality holds true, iff v = x.
Proof. s =z in (2.6) with v = » gives, using (2.14),
q(U—l)(Z(“).,|_ 1) < 0
and, by (2.12),
M1 <20 for vz o,
Obviously equality holds true, iff v = 3. With similar arguments we see that

20N <Myl for v <,
In order to prove the remaining inequalities in (2.15) and (2.16) we use the fact
that

(2.17) g" " V(s) is strictly convex for s>z if v < x,.

As long as z* 1 exists — by (2.7) this is the case for v+1 € %, — (2.17) is
obvious by (2.8). Hence we may assume v = x,. If 2xe N, g* M5} is
a polynomial of degree 2 with positive leading coefficient {cf. [7], 5.1) and
therefore trivially strictly convex. If 2:c¢ N, we have, by differentiating (2.9),

@1y .. (41 _ e \dz
ot 1g) o x - @
(2.18) ¢ (s) o) e exp(xj" du)zax >0

0 o U

which proves that g%~ (s) is sirictly convex in this case.
For 0 <y <1 we have now by (2.17) and (2.6)

4°7OE 1) < (1=m)g® D) +ng® ™ (+1)

= (1——n+n———ﬁ)q‘”””(2‘“’) =0

Y—_
H

choosing # = »/(2x—v). This together with (2.12) proves the remaining part of
(2.16).
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Now let v > . Again. by (2.17). we have
(2.19) "1 y) > gt et 4 D (s—(z+ ]))(q(vvl)(ztv)+1)_qcv~1)(zm))

for s > z"+1,
Using (2.6) — with s =z — jn (2.19) gives

q" " V(s) > q("‘”(z(“’+1)(1+(S—(z‘“)+1))(1— a ))

V—x

and this gives for v > x

C,l‘v'”(zm-l-—L > 0.
L —v

Hence, by (2.13), the remaining part of (2.15) is proved.

3. Estimates for the zeros of g(s).

LiMMa 4. Let s >0, reN,, R = (2%]+r—1. Then we have
(3.1) (~1y g% 2 0,
(3.2) (=17 {sg "D (5) — (2 — R—1)g™(s)) = 0,

(3.3) (—1y ( {v) ) (v—1} & q(,u)(s)
i s—1)q™M(s)—{(2x—v)q (s)—x#=v+lm =0,

v € R.
In (3.1), (3.2) and (3.3) equality holds true if 2xe N,

Proof. If 2xeN, ¢ is a polynomial of degree 2x—1 (cf. [7h. Hence .
equality holds obviously true in (3.1) and (3.2) in this case.

If 2x¢N (3.1) follows from (2.18). Applying Taylor’s Theorem to
g Ys-+1) and using (3.1) gives

=gV - 3 406 0 R+1
=1y g® Ds+1) - —e | or v < R+1.
Now we insert this in {2.6). For v = R+1 this gives (3.2) and for v < R this
gives (3.3). Equality in (3.3) again is obvious if 2xeN.

The next theorem will be starting point in order to prove upper and lower
bounds for z{’. We shall use the following definitions. Let

m=1

@y = [] (a+v) for aeR, meN,.(%

v=0

~1
& T (a+v) = 1.

v Q)
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For fixed reN,, x 2 1 we define a sequence of polynomials in z (real) as

follows:
Py(z,r, %) = Pylz) =1,
(34) PI(Z,T', M)=P1(Z)=Z,
Pn+l(z! r, %) = Pn+1(z)

"ot (2= R+ By
P P RRACLE XY

where R = [2x]+r—1 as before. We have the following
TaeorReM 1. Let re{0,1,2,3},(*°) neN,, R=[2«]+r—1.If

=2zP,(z,r, %)—x neNn,

(3.5) s 2 {R+x)3
and
(3.6) Pls—u,r,x)20 forl£v<n,
then we have
37 (=1y "]_:I; P (s~x,r, x)
e

#(Pyy i (500, 1, 50)g® ™{s) = (2% — R+n) P, (s~ x, r, x}g® """ 1)) = 0.

Proof. (3.3) with v = R gives (3.7) for n = 0. Now suppose that

68) (=1r T] Puls—x, 1, )

«(P,(s—x, , x)q‘“‘"‘*”(s)—(Zu-R+m——I)Pm_l(s——%, r, ) gR ") = 0

holds true for all 1 € m < M with 1 < M < n. Then we have

39 (=1 H P ls— (P (s—%)P,(s— )q(R—'m)(S)

~ (20— (R —m)) P(s—) g &=+ D)5

R~1 )
47 )
— P S— X e ————
t( )G—R;m+1(Q+1—R+m)!

R [) (2% (R ﬂ'))l—.’. .

A )Eo ity L=} =0
for

0gi<smg M.

() Pus1(z, r, ) is a polynomial in z of degree n+1 with leading coefﬁucnt 1. Wc omit thc
arguments r, » whenever there is no confusion possible,
(') Adding further conditions, the theorem can also be formulated for r > 4.

icm
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This can be seen as follows:

(3.3) with v = R—m is (3.9) with ! = 0. Now suppose that (3.9) holds true
for some [ with 0 < [ < m—1. We multiply (3.9) with P, (s—x) (= 0) and use
(3.8) with m = I+1. Since

o (2R
im0 (m—=2+1)!
y (3.5) and (3.6), we obtain
!
(=1 n PH(S"%)(PM1(3""%)P1(S—:»c)q“‘“'")(g)

u=0

Pl(s -

— (= (R=m)) P, (s—=#)g " "+ (s)

R~1~1 49 (s)

—xP,, {5—x —=
i )Q=R§m+1(g+1wR+m)!

——xq“‘"'“(s) ZI: (—E—EME(Z%—(R—I))PAS“%)) =0

i=0 (m—l-%—l)'
This completes the proof of (3.9).
Taking now l==m= M in (3.9) gives

-1y mI:]:1 P,(s—%)

u=0

m—1 — — AN
. (q(R—M)(S)(Pm(S_x)Pl(s-Hx)-x igﬂ%%%%ﬂ?ﬁ}ﬂ(s—%))

—(2%—(R~m)) P (s ——x)q”“("'“”(s)) =20

and this proves, by (3.4}, (3.8) for m < n+-1.

Remark. The first polynomials read as follows (x, = 2% —[2:])

Pz, r, %)=z ———(2% R), = z"——g(a,,-}-l——r),

Py(z, 1, %) = z3——;~z((2x—R)1+(2me+1)1)—%(2x~R)2

= 28 222

3 —r+2),

w2+ 3) o+ o,

Py(z, v, %) = 24— 32%(2%— R); +(2x— R+ 1) +2x —R+2),)

— gy2((2— R); +(2%—~R+1);)
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% % 2%—R+2

= z"'-—éxzz(a,,—r+2)—gz(oc —r+2)

P
— L —r+1)(a, r+3)(~w—6'f—'—g——x),

Pz, 7, %) = zs—»g.'za((lxw—R)l +(2x— R+ 1), +(2x -~ R +2), +(25¢—~R+3)))

—%zz((2x—R)2+(2x—R+1)3+(2%—R—|-2)1)

—-%Z((Z% — R)y+(2%— R+1)3)
I@ £{(2%— R) (26— R+2)+ (2 — R)2x — R +3)+ (22— R+ 1){2%— R +3))

“?‘.@””’R) +T—;({2%—-R)(2x—R+2)2+(2x-—.R)2(2x—R+ 3)).

We shall nhow show how Theorem 1 will be used to prove upper and lower
bounds for the zeros z{’ of ¢9(s).
For ne N, reN, let
TE”U') = x,{r, x) the largest (real) zero of Pz, 1, %)
if
P,(z, r, x} has a real zcro

and

m,(r) = m,(r, #} = —oo  if P,(z, r, %) has no real zero.

Then we have

LEMMA 5.
(3.10) Tup1(0, %) > m, (0, %) for nz 0,
(3.11} Tarill, 0) > m (1, %) for n=2,
(3.12) Tyt 1 (2, %) > n,,(z ¥) for nz 2,
{3.13) g1 (3, %) 2w, (3, %) for nz2,

where equality holds true iff n =3 and 2xeN.
Proof. Obviously, by definition,

ny(r) = —o, m)=0,

and, by (3.4),
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n—3%
(ot ~r+pu+1)-y
— P
,JZ‘O (n+1—p)!
for neN if m,(r.x)eR.

If =0, by induction on », using (3.14), we have

(3.14) Poyy{m,(r, %), 7, %) = 7, %), 1, %)

(3.15) Py y(m, (0, %), 0, %) < for n=1.

Since

(3.16) Pz, r, k)=  for z—

(3.10) follows from (3.15) und (3.16).

If r=1, we have

(3.17) m (1, %) < my(1, %) < /%2 < ma(1, )

and, again by induction on n using (3.14)
Pria(m,(1,%),1,%) <0 for n3.

This together with (3.16) and (3.17) proves {3.11).
If r =2 we have

(3.18) —00 = T,(2, %) < My(2, %) < Su/2 € my(2, ).
Since
(ch—l) (cx ) -1
IS (2, BN A = i -
1) +m,(2, %) ol 0, if =,(2, %) > ——y
we have again by induction on n
(3.19) Poii(m(2,%),2,%x) <0 for n 4

This together with (3.16) and (3.18) proves (3.12).
If r=23 we have

(3.20) — 00 = T,y(3, %) < n3(3, %)
and for n =3
() O WS ST %

where cquahty holds true iff &, = 0. Now again by induction on »n, using (3.14),
one proves

Poiy(my(3,2%),3,%) <0 for n=3 if a, %0,
Pia(m,(3,%),3,%) <0 for nz35if a,=0.

This together with (3.16), (3.20) and 75(3, ») = (3, %) < =5(3, %) —
— proves (3.13).

if 2xeN
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TueoreMm 2. Let re{0,2}, R =[2x]+r—1 and ne N. If
7, (r, %) = (R—2x)/3(*1)
and
P(sg, 1, %) <0 for some s,
then
L A .

Proof. It is sufficient to prove

(3.21) 70, %)+ < ZPI-Lom
and
(3.22) (2, W)+ < T,

First we apply Theorem 1 with r = 0, s = x,(0, %)+ x. By (3.10) we have

P,(m,(0,%),0,%) >0 forlgpu<n

Hence, by (3.7) and (3.15),
gt (x, (0, 1) +x) < 0.

This together with (2.12) proves (3.21).
Next we apply Theorem 1 with r =2, s = 7,(2, %)+x. By (3.12) and
7,(2, %) = (R—2x)/3 we have

P(m,(2, %), 2, ¥ >0 forl<u<n

Using (3.19) — note that (3.19) holds also true if n =3 — (3.7) gives
gt 1m0 (r (2 s 43) < 0.
This together with (2.12) completes the proof of (3.22).
TueoreM 3. Let re{l,3}, R =[2x]+r—1 and neN. If
m,(r, ) = (R—2%)/3(*%)
and
P s, v, >0 for all s = s,

(*Y If r = 0 this condition is always satisfied by (3.10). If r = 2 this condition implies that
n = 3; moreovet it is always satisfied if n = 4, by (3.12) and (3.18).

(*3 If r = 1 this condition is always satisfied. If r = 3 this condition is never satisfied for
n < 3 and is always satisfied for n 22 5, by (3.13} and m5(3, ) = /»/2.

icm
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then
2R < g+ (23)
Proof. It is sufficient to prove
2827 (L) +x and 2R o (350 4.
Suppose first that
(3.23) 212=m o (1, s+ %
holds true, By (3.11) we have
(3.24) Pzl My 1, %) >0
Applying Theorem 1 with s = z{24~-"

for Isv<n
(>u) — cf. (3.23) — gives
P"(ZLD"]""")—M, 1, x)q(tz"l”l"")(zﬁ,u"]_”)) =0
and by (3.24) -\
q{[2k]—n-1)(zg‘[2x]—n)) =0,

But this is impossible by (2.14).
Suppose now that

B2 o (3, W)+ x
holds true. By (3.13) we have
{(3.25) P (02742 g 3, 5) > 0

Applying now Theorem 1 with s = z{#1™"*2) gives, using (3.25),

for 1 <v<n

q([2x]~—n+ 1)(z(x[Zx]—n+2)) = 0.

But this is impossible by (2.14).
Remarks. (i) If 2xe N one proves easily (see (3.3) and (3.4)) that

PM+F(Z= r, %)

Pz, 1 ,x)(z ) g I=mz+%) formz0,r ; 0.

Especially, by Lemma 35,
(3.26) 720 =
(3.27)

Since it is known by Iwaniec ([7]} that

np(r,w)+x forxz21,0<r<2,

<
> 3/2.

ZLO) = 752”4.2(3, %)"L’“M for x

lim z®/% = ¢,

Koo

(*} If 2xeN, n=1, r=1 we put z22* V= —oc0,

5 « Acta Arithmetica L1 3
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where ¢ (= 3.59...) is the unique solution of
(3.28) cloge—c =1,
we have, by (3.26) and (3.27),

lim me(r, %)/ =c—1 for 0 <r<3.
BN
(ii} Choosing R = n 3 3r+1 in Theorem 2 gives for real » = |
=z

20 = ma(r, ®)+x  for re {0, 2}

and choosing R = n 2 2r—1 in Theorem 3 gives
{

2 < my(r, w4+ for re{l, 3}.

(iii) It is easy to prove (cf. (3.4); [13], pp. 64, 65) thatfor T <r <3, %

[2x] + 1) [2x]-+1
for x— 3 —

Tf[2x]+r~1(", %)—”F[z;e]h(?‘, 5
Hence, by (3.26), 3.27),

1
[2x]+ for xﬁ%ﬂ _

2 2

(iv) For n =2, r = 0 Theorem 2 gives

22073 5 (0, )+ = x+/x(1 +a,)/2.

Hence for 1.5 < x <2

T2 +r—1s %)_'ngz)xﬁ 2™

S 20 2 st/ u{n—1)
(see also [T]).

For n=2,#=1 Theorem 3 gives

A0 & dmy(1, %) = x+ 5,2,

especially -

(3.29) 20 < b Jxmk—1) for 1gx <15

(see also [T])
We combine the results of Theorem 3 and Lemma 3 in

LemMa 6. Let R = [2]+r—1, re{l,3}, m < []—r,

S.(my 1) = {ﬂg,,,,,(r, x)+x+m for 0 < m <[],

Tr—m(r, %) +x+[%] + i —;:; Jor [x] < m < x,.

v=[x}+1
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Then

(0) H :
2 < mrm min S, (m, 7).
Proof. We have from Lemma 3

29 < {ZL""—I—m for 0 € m < [,
X == m

»
24D+ Y - for [x] <m < %
vl +1 <X Y

and from Theorem 3 for re{l, 3}, m < [2x] —r

z(m’ TER m(r %)"l"%

Similarly we have from Lemma 3 and Theorem 2
LemMaA 7. Let R =[2x]+r—1, re{O, 2}, m < [2x]—-2—71/2,

forﬂsms[x],'

TR_mlFs )+ 2%+ Z 2x —
S (m, )=
o 2 [Jt] x .
Tg—m(rs 2 +m—{¥]+%+ Y E— for [x] <m < %
v=1 . .

Then

28 > max max §,(m, r).

r mz0

Moreover, it is possible to give another lower bound for PN
Define for m < n, » > 1 a sequence of polynomials in z (real) as follows:

TO(Z) = To.n(zs %) = 1:
T (z) = Tz, %) =z,
T (2) = Tm+1,n(za )

"ot L =My,
= 2T (2, ) Ty
Rkt ,Eo o 1— !

(3.30)

w(z %)

for t<m<n.

Let
T, = Tma(®), 1 Sm < n+1, the largest zero of T.(z, %).
Then (cf. proof of Lemma 5)
Q=1 <175 < ... <Tnt1

and |
(3.31) T, (z)>0 for z>r1,, meN,.(*Y

(*) o= —00.
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Lemma 8. Let neN,, 0<m=<n If

(3.32) z 2 Ton-1(0, 3}(*%)

and ' .

(3.33) Z 2 Tn-ma(#)s

. then

(3.34) Prii(z, 0,50 < Thvrmnlz, 2P, (2, 0, %).

Proof. By (3.10) and (3.4) with r = 0 we have
n—1 1 oy —
(D) =x Y @+ 1+ Moy

n=m (n+lwu)'

Tym and z =

(3.35) P, (e <zP P,(z) for z = m,_,(0).

Furthermore we have, if z > T — 1 (0),

(an+1+.u)n—ﬂ.~p

(3‘36) Pn-!-l(z) S (n+1—-»1——u)!

n—g—1 q
Tos@Pu-g@=x 3, Pyf2) 3. Ti(2)

for 0 € g < n—m, which can be seen as follows:
.For q = 0 (3.36) is (3.35). Now suppose (3.36) holds true for some g with
0 <g<n—m—1. Then, by (3.35),
"I (ot L g1
P_()<zP,_ _,(2)—2x Y. =
R P iy wwrsiry
and substituting this into {3.36) gives, if z = 14+1,

Pn-l-l(z) < Z?;+1(Z)P"_l_q(z)

_'%Pn—q-l(z) Zq: Trj,(z)

P,(2)

(e, +n—@)—s+1

i=o (g+2—-4)!
a2 ((1 +1+:u')u}.n
—x LRG3 T T

I (o, +1+ )i -
—X Z P (Z)T+1(Z\ X 4 =
po T (g !

= P""lﬂa(z)(ZTﬁ 1(z)—x é:o T;(Z)WM)

(g+2—A)!
HE-IP e ACRaR e
" Z Bl Z);.Zojr:1 (h+1-2—-p! "

Hence, by (3.30), (3.36) is proved. (3.36) with g = n--m is (3.34).

(%) my{0, %)= —o0.
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THEOREM 4. Let 1 <p<n+l. If
Tpm(s;, 0) <0 for some s, > 0
then
L A
Proof. Choosing m =n in Lemma 8 gives
Poyi(2) < T,(@9P,() if z> max(n,-,(0), 0).
Hence, by (3.10),
Tz >0 for all z> n,,(0),
especially, by (3.31),
Ty € M1 (0).
Now suppose that we have already proved
Poy1(2) € T, (D) Py pis(z)  for z 2 m,,,(0) 2
for some 1 < p < n. We now apply Lemma 8 withm = n—p, Then we obtain
(3.37) Poii(z) < Zmar1(0) 2 1,
Note that (3.32) and (3.33) are satisfied. (3.37) and (3.10) give

for z > m,+,(0).

T, 1 (2)Pr—p(z) for z

T,e1(2) >0
Hence, by (3.31),
Tpr1 S Tn+.1 (0}
and therefore
Poii(2) € T(2)Pyopuy(z) forzzm (02, l<p<ntl.
If now \
T,(s;) <0 for some 5, >0
then
Sz < Ty41(0)
and, by (3.21),
2727 > 50 4.

Remarks. () Toa{z, ®) = 22— (o, +n)x/2, n 2
in Theorem 4, Then

29 > w4 (1) for x = 3/2

1. We take n = [2x] -2

(cf. [TD.
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i) Ton(z, #) = z3—§(2m,‘+2n~1)z—%(qc,,+n~—-1)(oc,,-l—n), n > 2. We take
n = [2%] — 2. Obviously T .- 2(, ¥) < 0 for x = 2.24. Hence, by Theorem 4
{3.38)

Indeed, using Theorem 2 with r = 2, one can prove (3.38) for 2.17 < x
< 2.24, and using Theorem 3, one can prove

29 = 2 for x> 224,

z® < 2% for x £ 215,
4, Some explicit results, We define
sa(s) ¢ oql+1D)
4.1 0.8 =06 =—~—x | ~~——dt for s>1and %> 1,
) =00=3g ] T
where g(s) is defined in (2.1) and the continuous function o(s) = ,(s) satisfies
o(s) = zo—m——s”  for 05 <2,
@42) X 2%e™(x+1)
(s™*a(s) = —xs* " a(s—2) for s>2.(*9)
We denote
4.3) {,= ¥ the largest zero of Q,(s) for » > 1,

if {, exists.
The following two theorems are needed in [41.

THEOREM 5. @, (s) has a unique zero in
(max {2, 20 +1/2}, 20 +1).
This zero is {,. Moreover, we have (, > v(x), where

Ix-—-14 Jor 24 < x,

3—145 for 15< <24,
4.4) v(x) = < 3x—14 Jor 1.4 < x < 1.5,

24+9(x—1)/4  for 1LOS < x < 144,

24248(x—1) for 1 < x <105,

THEOREM 6. We have

@5 A < for 1 <% ~<, 1.34,
26x—141  for 1.34 < » < 1.85,
Remark. Using the results of Sections 2 and 3 it is possible to prove
sharper bounds than those given in (4.4) and (4.5) (c¢f. proofs of Theorem 4 and
Theorem 3). However, the results of (4.4) and (4.5) are sufficient in [4].

(] Deﬁnihg als) = 0 for 5 < 0, this holds even true for 5 > 0.
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Proof of Theorem 5. Since a(s) is strictly increasing in s (cf. [2], [6])
we have

(4.6} 0(s) < —1-(sq(s)——x } g(t+ ydt) = g(—j@ for s > z{.
(s} so1 a{s)

(Note that z® >3 for » > 1 — see [7], 5.3.) From (2.4} we have

@7 (s g (s)) = aes® T*gM s+ 1).

Hence, by (4.1), (4.2} and (4.7) with v = 0, we have

(4.8) Q'(s) = xq(s)(%%z+;(s—l_ﬁ> >0 for s>z

and, by (2.12) and a(s)— 1 for s—co (cf. [2], [6]),

{4.9) Q)= for s— 0.

Hence, by (4.6), (4.9) and (2.16) we obtain

(4.10) £,> 20V > 2041/2.

For the proof of 1+29 > {, we integrate (4.1) by parts, using (4.2) and
(4.7). This gives

(s=Dg(s—1) ¢ q)o(t—2),

= “I-
| Bl PR
Hence O, (z¥+1) > 0, and, by (4.8),

[, <22+ 1.

In order to complete the proof of Theorem 5, it is now sufficient to prove
(4.4).

For x 3> 1.44 we shall prove Thecrem 5 by applying Theorem 2 and
Theorem 4. _ ’

(I). x = 1.44. We first apply Theorem 4 with p =5, n= [2x]—1 and
% > 2.5. It is easily checked that Ty 5,1 (2% — 1.39, ) < 0 for » = 2.5. Hence,
by Theorem 4, .
4.11) 270 > 3%-1.39  for x = 2.5.
I 2<x<25 we apply Theorem 2 with r=2 and n=6. Since

Po(2x—1.4,2,%) <0 for 24 <% <25 and P (2x—142,2,x) <0 for
2 < x < 24 we have

(4.12) 278 > 3e—14 for 24 <% <25
and -
4.13) 2V > 3x—142  for 2 <% <24
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Next we use Theorem 2 with r = 2 and n = 5. This yields

(4.14)

27V = 3x—143  for 1.5 x < 2,

Finally we use Theorem 2 with r = 2 and n =4 and obtain

(4.15)

20V > 3%x—14 for 144 < % < 1.5.

Hence, by (4.10) through (4.15) we have proved (4.4) for » > .44,

II. 1 < % < 1.44, In this case we can no longer use (4.10), because we lose

too much in this inequality.
We define ¢ = @, by

(4.16)

Since s *g(s) is decreasing (cf. (4.2)) and positive for s > 0 (cf. [6]) we have

Hence

X

) = ST

o(s) for s =0,

0<p,ls) <1

L

0.6 < Q&) T +1)( M | "“"'””dr) for 5 > 20

(} 51 tn

and, by (4.7) with v =0 finally

where

0u(5) € Q) T+ 1)g,(s)  for s> 22,

sy = 4(s) = s'~ "Q(S)(—““l) Hs—1)' g(s=1).

We shall prove
4.17)
and

(4.18)

(s)

G2+225(x—1)) <0 for 1.05 < x < 1.44

2(2+248(x—1)) <0 for 1 < x < 1.05.

(Note that this is sufficient to complete the proof of Theorem 5.)

The proofs of (4.17) and (4.18) are based on the following two lemmata (for

details see [5]).

LeMMa 9. We have

q(s)

< 57T a0 (200 1)57 72 4 (o0~ 1) (20— 1) g3

Jor s>0,1<x<

3/2.
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Proof. We have (cf. [8]-

als) = 51 (e DR = )2 1P

e % H (z for » < %,

where
H (2) = e —1 —uz —31(2x—1w*z2  for z =0,

) _p,t

M@=I1
]

dt for z = 0.

Since H,(0) = H () = 0 it is sufficient for (5.1) to prove
-j;H;’(z) = exp{xg(z)—z)a,(2)/z*~d, <0 for z=0,

where

It

X
x
1

a(2) = z+1 -2+ (x—1e*+xe™ %, d, -

and this is easily done.
LemMma 10. Let 2 < s< 4. Then

52\ (s—2) (s—27 (s—2)°
(4.19) “'(S)?l"”( s) <x+1+(%+2)s+(x+3)52+ 2 )

Proof. By (42) and (4.16) we have

@(s) = L= [{(t—2)/t* )t for 2<s< 4.
p
Partial integration and the monotonicity of (t—2y*3/f*** give (4.19).
Proof of Theorem 6. For x <% z® <2 foliows from 2zl <

+\/2—c(:~c—1) (cf. [6]).
If 4 <% < 1.5 we apply Theorem 3 with r = 3 and n = 4. (Note that

7,(3, %) = % in this range) We have
Pyz,3,%)>0 forzz2—x %< x<134
and |
Puz,3,%) >0 forzz>1léx—141,134 <x <15,

This proves Theorem 6 if » < 1.5.
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For 1.5 < x < 1.85 we apply Theorem 3 with r = 3 and n = 4. It is easily
checked, that
Pz, 3, >0

and this completes the proof.

for z = 16x—141,15 < x < 1.85
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ACTA ARITHMETICA
LI (1988)

Eqguidistribation of Frobenius classes
and the volomes of tubes

by

B. Z. Moroz (Bonn)

1. Let G be a compact Lie group that fits in an exact sequence
(1) 12T 5GHo1,

where & is an n-dimensional real torus and H is a finite group. Given a
countable index set 2 and a set of conjugacy classes {s,| pe #} in G, we are
interested in the following equidistribution problem. Let

|]: #—+R,

be a map satisfying the asymptotic formula (8) below and let &/ < G. For each
x in R,, let

N (A, x) = card{p| peP, o, nd # B, |p| <x}.

One studies the asymptotics of A4 (&, x) as x - o0. Without loss of generality
we can assume that .o/ is invariant under conjugation, ie.

(2) Tl =of for teG,
so that
3) A (e, x) = card{p| pe?, 0, % &, |p| < x}.

The manifold G inberits the natural Riemannian structure from Z. Let p be
the Haar measure on G normalized by the condition u(G) = 1, and suppose
that o satisfies the following condition:

G u( o)) = O(C(a)5”)
where dsf denotes the boundary of & and where %;(s#) denotes the

%

with o >0,

. d-neighbourhood of &, ie. the subset

(5 {x| xeG,olx, &) < d};



