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1. Let K be a normal extension of the rationals with metacyclic Galois
group of order pm, where p is a prime and m|p— 1. The main result of this paper
(Theorem 2) yields certain necessary conditions for K to have a Minkowski
unit; in case of prime m and small p they are also sufficient (Theorem 2 (iii}).
The first of these conditions (conditon (b)} is a relation involving the class
numbers of certain subfields of K, condition (c) requires the surjectivity of the
norm from the units in K to those in the only normal proper subfield of K, and
condition (d) requires the existence of a Minkowski unit in the above-men-
tioned subfield.

Our results are similar to those obtained by D. Duval ([2], Théoréme 5.2)
concerning real fields with Galois groups of the type (p, p). We shall also
correct a mistake in the papers of N. Moser [5] and [6] (Lemme VL5 and
Lemme 4.4, respectively).

We shall use the following notation and definitions:

For any number field 4 we put:

U, = the group of units in A,

V, = the group of roots of unity in 4,

E, = the quotient group U /V,.

If A is normal, then the above abelian groups have a natural structure of
Z[Gal(4/Q)]-modules. For any group I' acting on a set X, we define:

X' = {xeX: yx=x,yel},

I~ =% yeZ[I],

yel

{y> = the subgroup of I generated by yel.

We say that a normal extension A of the rationals with I' = Gal(4/Q) has
a Minkowski unit if E, is a cyclic Z[J"]-module. In the case of real A this holds

if and only if A has a conjugate system of fundamental units.
Let M,, M, be Z[I'Jmodules and let f be a l-cocycle from
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ZY(r, Homy(M,. M )). Recall that {is a map [~ Homg(M,, M,) such that if we
write f(p)(m) = f,(m), then for all me M, and y, 5l we have

Flom) = 2f(om) 1, (5m).
On the Z-direct sum M, @ M, we can define the action of I' by

Pimy, my) = (?ml +f,my), sz)

for ye I’ and m; e M, mye M,. The Z[I'l-module M obtained in this way is
denoted by (M,, M,; f). If the choice of the cocycle [ is obvious we write
simply M = (M,, M,). The Z[I']-module M is called an extension of M, by
Mz-

2. Let G be a metacyclic group of order pm, where p is a prime and
m|lp—1. Thus

G={ct:i=0,..,p—1;j=0,...m-1}
and to = a"r, where r is an mth primitive root of unity mod p.

Let K be a normal extension of the rationals with Gal(K/Q) = &. We put:
k=K<,
L = K<’>,
{ is a pth primitive root of unity,
A is the ring of integers in (),
P =A(1-0),
i is the automorphism of Q({) mapping { onto {,
Al =An Q(C)WJ);

=4, n 2,
0 is an mth primitive root of unity.

On A and Z[(] we can introduce a Z[G]-module structure in the
following way. We let o act on A4 as multiplication by {, and 7 as the
automorphism yr. On Z[{'], o acts trivially and t acts as multiplication by 0, In
this way all ideals of Z[07 as well as those of A which are y~invariant acquire
a Z{G]-module structure.

Consider the Z[G]-modules
Fy={xeEg x* %" w1l and E, = Eg/Ey.

Thus E; is a Z[G-extension of £, by E,. It was shown in [5] (Prop. I116) that

m—1
EK o @ .a)e']aj,

i=0
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m—1
where 0 < ¢; < m—1 and the a; are ideals of 4,, the class of the ideal [T q;
a - - . - - .=D
being uniquely determined by Ez. Since ¢ acts trivially on E, one olg ains

m—1
M By~ ( @ 7a, b),
j=0
where b is a Z[{r)>]-module of Z-rank m—1.
If we put
a = (EK: ELEL"' . El."m . lEk).
then by Théoréme 7 of [3] we get the equality
(2) th(m-'l)(m-?- 0L . thhg

3. We now give a necessary condition for K to have a Minkowski unit in
the general case;

TueoreM 1. If a real metacyclic extension K of degree pm over { has
a Minkowski unit. then

hhl =p'hy withtz=m—1.
Proof. Using the formula 7/¢’ = ¢*'+/ and Corollaire to Proposition I3
of [7], we have
E oy = EX™ = (B and
where wir—1)= 1(modp), 0<j<m—1. Since Ey ~ R =Z[G)/ZG", by
Proposition I3 of [7], we got

E, = (Ex)<a>

m=—1
(EK:ELE(J’W(L)"‘E:rw(m—l)(L)Ek) = (R: Z R(‘IJT>+R<G)>
Jj=0

The index a, however, does not depend on the choice of a generator of (v}
according to (2), so one has

m—1
G = (R: ¥ R<“’T>+R<“>).
i=0
Using Proposition 14 of [7] we obtain

a = (R:R,),

m-—1
where R, = {a) "R+ ¥ {¢/t)”R.

=0 -
Since for any subgroup H of G, G~ Z[(] is an ideal of H™ Z[(], we have
a Z-isomorphism

Z[GY/T ~ R/R,,
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where T = {o)~ Z[G]+ ¥ {c't)~Z[G].
Pt
Now we need ’

N
LemMMa 1. Let H < G and let G = () Hg, be the decomposition of G into the
i=1
union of disjoint right cosets. Then

N
H~Z[G] = H" Y Zg,

i=1

Proof. Since for every ye Z[G]

Z Z Ay, hg[,

hel i=1

one o¢btains

dy- Lwgi wg;
weH

Hy=3} i Y. G xhg =}, i

xeff i=1 weH xsH i=

by substituting w = xh. Finally,

Hy=%Yw % (2 tamtwg)g:

weH i=1 xeH

This lemma gives

m-—1
T = o7 Z[{)]+ Y (o'~ Z[{a)].
j=0
Now we shall use the formula
(3) a={Z[{G]:T)

to estimate the index a. For convenience we shall assume that arithmetical

operations on indices running from 0 to p—1 are performed mod p. If
p—im—1

x=3 Z Ao’ e Z[G] is an element of T,
i=0 j=

ay; and o, such that

, then there exist rational integers

p~1lm=—1 m—-1p—-1  m-

x= 3 Z wr;’o'+ YN ay Z (¢*1)) o,

i=0 j= 5=0 k=0 =0
Applying the formula o't/ = /o (r¥ = 1 {mod p)), we have
(o°Y = igvs
where @, =0, ¢, =F+7+ ...

+7 with 1 <j<m—1. Thus
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m=—Lwm—1p-1 p—lm-—-1

x= 3 ¥ ¥ a tu’a“”’f*"-kz Z w e’

s=0 j=0 h=0 i=0 j=
p=1lm-1
=2 Z(w+2a; s005) V0
i=0 j=0
by substituting i = s;+h in the first term. It follows that
m—1
(4) Ay = o+ 20 B sy
o=
where 0 p—1, 0<jEm—1.

Let ;,au = AU——A‘O and let, for 1 £d <m—2and d+1 <j < m~1, x{P be
integer solutions of the following system of linear congruences:

d
(5) 2, xif ¢l + 9] = 0 (med p),
h=1
where 0 < w < d—1. The system (5) is always solvable because 0, ¢4, ..., ¢,

are distinct mod p.
Now we shall show that

p—1
(6) Fﬁo) = Z iy = 0 (mod p)
i=0
for l£j<m—1 and
p—1 4
4 F® =3, i(uy+ 3, xipa) = 0(mod p)
i={Q © k=1
for 1 £d €m—2,d+1 <j<m—1. The congruences (6) follow immediately

from (4). To prove (7), we use {4) to get
FP =[w;—o,+ E 5.“) {0 — ®0)] Z g

P

+ z Z Chy S8 Z id Z Gis
=0 i=0 =0
-1 m-1 p—1 d m=-1
$TET AT G L P T @
i= h = 8=

i=Q  h=1 s=0

p—t
Since Y, ¥ =0

i=0

F

(mod p) one obtains

m—1p-1

D) {f xﬁ[(ww,.)d—iﬂ+[(i+s<oj)='—_i“:1}a,-s

5=0 i=0 h=1

m=1p~1d—1% L a

55 (“Yewulor s 5 4ot Jag= 0ot
h=1

§=0 (=0 w=0

it

by (5.
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Thus the coordinates of x are zeros of the linear forms F which turn out
to be linearly independent mod p. To prove this suppose that there are integers
™ such that

i

m—1 m—2 m-1

P=Y pres Y Y atnp
j=1 d=1 j=d+1
is a linear form with coefficients vanishing mod p.
Though «? are defined only ford+1 <j < m—1we extend their range by
putting &% = 0 for 1 €<j<d We also put xi? =0 for d+1<h<m—1.
Using (6) and (7), we get

m—1p—1 m—2 m—-1 p—1

Fe 2ot X 2

j=11i= d=1 j=d+1i=

p—-lm—2 m—1

Z PP+ ), Y X Z Mol

=0 d=1 j=d+1 k=1

p—~1lm—1m-—2 p—1lm-1m—2 m—1

SY T Ayt Y Y Y Y B,

i=0 j=1 d=0 i=0 h=1 d=1 j=d+1

r=1m—1

SN PR W T

i=0 j= t=d+1

by substituting in the last but one line j for # and ¢ for j in the second term.
Since the coefficients of F are all equal to 0(mod p) it follows that for
d+1 << m-—1

m=—2 m—1

4+ 3 (@+ Y wf®x)i = 0(mod p).

d=1 r=d+1

But by definition x¥? =0 for d+1 <j <

o= m—1, so

m—2

2. @i’ = 0 (mod p),

d=1

m—1 we ob‘:cain
o = 0 (mod p),

which proves the linear independence mod p of the m{m— 1)/2 linear forms F@.
Since by Théoréme 10 of [3] the index a is a power of p, (3) implies now

where i=0, ..., p—1. Thus for d+1 <j <

a = p",
m(m—1)/2. This together with (2) establishes Theorem 1.
4. Now we shall prove three lemmas.

Lemma 2. Let My, M., N be Z[G]-modules and
L1 eZY G, Homa(M,, N)), f,€Z' (G, Hom,(M,, N)).

where w >

icm

Minkowski units in certain metacyclic fields 387

If Homgq(N, M)=0 and the extensions (M,, N; f), (M, N;f") are
Z[Gl-isomorphic, then there exists a Z[G]-isomorphism

Mo@M, DM, N; f,,f, ) = (M0®M1, NQfovaf)@Mp
where v is a suitable automorphism of N.

Proof. Since Homg (N, M) = 0, we can use Corollary (34.5) of [1].
Thus there exist /e Aut(M,), ve Aut(N) and ¢ceHomg(N, M) such that
Afgm) = f{vm)+gc(m)—clgm), g€,

and thus we can define a Z[Gl-isomorphism
Vi (M,@®M @M, N; fo, L[+ (M,@&M, N; fov, DM,
by putting
(mg, my, my, n)i(mo, 2m, —imy—c(@m), vi, m; —Amy —c(n}).
From now on we confine ourselves to the case where m = ¢ is a prime.
Levma 3. If v is a Z[G)-generator for the Z[Gl-module Z[0], then
An(y) = Z[Gl(1— o)+ Z[G]<{z>",
where Anly) denotes the annihilator ideal of y.

Proof. If a, § are Z[G]-generators of Z[#], then they are units in the ring
Z[0], so there is a Z[G]-isomorphism ¢ of Z[0] such that p(x) = B. Since

An(¢(#)) = An(o) we may assume y = I, Let
p—lq.—l . -
= ¥ Y ayo't' e Z[G]
{=0 j=0

be an element of An(1). Then
q—1p—1 q—2p—1

): Zaug = 2 Z(a,_, Qg1 =0,
=0 i= =0 i=

80
p—1 1l
Yy = Y, gy
=0 {=0
for j=0,...,g—1. Therefore we have
r— lq 1 p=lg-1
Z Aot + Z Z (ay— am)cr f
i= OJ
. —lp i .
m(z ;00" E o+ Z z (ay; — aw){o’ v/ — 7))
i=0 =0 =0 i=

e Z[G){ty~ +Z[G](1-0).

Since the opposite inclusion is obvious, Lemma 3 is proved.
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Lemma 4. If e > | and a is anideal of A, then the Z[Gl-module Z [F1BZ4a
is not cyclic.

Proof Assume to the contrary that Z[0] @ #*a is cyclic with a generator
(v, (1 —{)u). Then, by Lemme 1() of [8], y is a generator of Z[d] and (1 —{)%
is a generator of #°a.

g—1
If we put 6 = Y W/[(1-{)%u], then 6c4,, and dePa since e = 1. It
i=0
follows that 5e £, a; but #, totally ramifies in O(() and so é e #*a. Now
applying the identity
g—1
Z[Glx = ) AYix),
i=0

xe%%a, we obtain
ZIGI " (1=0u = Z[G]-6 = A6 c Piq = p°+1q
and
ZIGIA—a){1-0'u = Z[G)(1 -{F*1u « o7 1
because 1 < e < g—1. By Lemma 3
An(y)(1—0u < Petig,

Lemme 1(ii) of [8] now implies that (¥, (1 —{)u) cannot be a generator for
Z[0]1@®#*a, contrary to our assumption. This completes the proof of Lemma 4.
Two Z[G]-modules M and M’ are said to be in the same genus if for every
prime [, the Z,[G]-modules Zn®M and Z,@M’ are Zy[G}-isomorphic,
where Z, is the localization of Z at 1
Now we are able to prove

THEOREM 2. Let K be a real metacyclic extension of degree pg over Q, where
P. q are odd primes for which glp—1, ¢*>¥p—1. Then:
() If K has a Minkowski unit, then there exists an ideal a<a A, and

-1
(a) Eg = (6—) P ZONBZ[]a,
ja1
where all extensions (%, Z[0]) are non-trivial,
o) B s
hy ’

(© Nin(Eg) = E,
(d) the field k has a Minkowski unit,
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(i) Conditions (b), (c) of (i) are necessary and sufficient for E, to be in the
same genus as Z[Gl/ZG™. _

(iii) If the class number of the field QO is 1, then (b), (¢} and (d) are
necessary and suffcient for K to have a Minkowski unit.

Proof. According to (i)

s g1
Ey o~ (@ Qaj(l}-, b)@ @ gnejaj,
J=0 J=s+1

where the extensions (#%a » D) are non-trivial. The Z[{tr>]-module b is an
ideal of Z[0] and by Lemme 2(i) of [87 it must be cyclic; hence, by Proposition
4 of [8] it is isomorphic to Z[(]. Singe, by Proposition 6 of [4], there is exactly
one non-trivial extension (24, Z[0]) (¢; # 1}, we may apply Lemma 2 to
deduce that the e;’s are distinct for 0 €] < s. Furthermore, Proposition 6 of
[8] and the assumption of the cyclicity of Ey yields that, for s+1 <j < g—1,
the ¢;’s are also distinet. Since there is no non-trivial extension of & by Z[0]
{see (3) in [4]), we obtain

§ g—1
Ex~{@ Pa;, ZIN)D @ P,
1=0 j=s+i
Ay G

Using Lemma 4 and Lemme 3 of [8] we get s = 4—2 and e¢,_; = 0. Thus

finally we obtain (i) (a) because E is determined up to isomorphism by the
g—1
ideal class of the ideal [] a;=a. Now, (b) is a consequence of (a), of

J=0
Proposition 2.4 in [6] and of (2), and (c) results from Corollaire of [7].
Since Z[G1/ZG™ is cyclic and has Z-rank pg—1, we can write, by the
same reasons as for Ej,
g—-1
Z[G)/26™ ~ (@ 2, Z[M))@Z[{]a,
=0

i
i1

where we may assume (aj, pg)=1. Suppose that Ey and Z[G]/ZG™ are in the
same genus. In particular, for le{p, 4}, Zy®Ey is Zy[Gl-cyclic and if we
assume (1), we have

i

Zy®Eg = (@ F, Zy[07),

j=0
where &) = Z,,[{](1~{). Since the above module is Zy[G]-cyclic, since
(#¢, Z[0} is non-trivial if and only if (#F, Zgy[0]) is so for | €{p, g} (see (25.15)
in [17), and since all lemmas and propositions used in the preof of (i) (a) are
also valid for Z,,[G]-modules, we can proceed as above to obtain (i) (a). Owing
to Proposition 2.3 and 2.4 of [6], this gives (b) and (c).
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Now suppose that (b) and (c) hold. Then Proposition 2.3 of [6] and (c) give

g—1
Ey = (@ #,0)@2°,
j=0
IE3
where 0 < e < g—1 and (a, pg) = 1. Using Proposition 2.4 of [6] and (b)
together with (2) one has e = 0. This proves (ii) because it suffices to localize at
the primes dividing G to show that Ex and Z[G]/ZG™ are in the same genus.
To prove (iii) we need only show that conditions (b), (¢) and (d) are
sufficient. The condition for p in (iii) shows that (a) and (b) imply

g—1
(8) By = (® &, 0)@Z[(].

=1
According to the proof of Proposition 2.3 of [6], Ngu(Eg) and pb are
Z[GJ-isomorphic, so conditions (c) and (d) imply that b is Z[G]-cyclic, ie,
b ~ Z{#). Since there is exactly one, up to isomorphism, Z[G]-cyclic module
of Z-rank pg—1, namely Z[G]/ZG", and this module is isomorphic to that in
(8) with b replaced by Z[0], we conclude that E, is Z[G]-cyclic. Thus we have
shown Theorem 2.

Remark 1. Condition (i) (a) of Theorem 2 corrects a mistake in Lemme
VL5 of [5] and in Lemme 4.4 of {6]. The proofs of these lemmas base on the
fact that every element of Z[GJ/ZG"~ has a representative whose sum of its
coefficients is zero, which is not true.

Remark 2. In (iii) of Theorem 2 condition (d) can be dropped if we
assume that g < 19.
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