200	

ACTA ARITHMETICA LI (1988)

Minkowski units in certain metacyclic fields

by

ROMAN MARSZAŁEK (Wrocław)

1. Let K be a normal extension of the rationals with metacyclic Galois group of order pm, where p is a prime and m|p-1. The main result of this paper (Theorem 2) yields certain necessary conditions for K to have a Minkowski unit; in case of prime m and small p they are also sufficient (Theorem 2 (iii)). The first of these conditions (condition (b)) is a relation involving the class numbers of certain subfields of K, condition (c) requires the surjectivity of the norm from the units in K to those in the only normal proper subfield of K, and condition (d) requires the existence of a Minkowski unit in the above-mentioned subfield.

Our results are similar to those obtained by D. Duval ([2], Théorème 5.2) concerning real fields with Galois groups of the type (p, p). We shall also correct a mistake in the papers of N. Moser [5] and [6] (Lemme VI.5 and Lemme 4.4, respectively).

We shall use the following notation and definitions:

For any number field 1 we put:

 $U_{\Lambda} =$ the group of units in Λ ,

 V_A = the group of roots of unity in Λ ,

 E_A = the quotient group U_A/V_A .

If Λ is normal, then the above abelian groups have a natural structure of $Z[Gal(\Lambda/Q)]$ -modules. For any group Γ acting on a set X, we define:

$$X^{\Gamma} = \{ x \in X : \ \gamma x = x, \ \gamma \in \Gamma \},$$

$$\Gamma^{\sim} = \sum_{\gamma \in \Gamma} \gamma \in Z[\Gamma],$$

 $\langle \gamma \rangle$ = the subgroup of Γ generated by $\gamma \in \Gamma$.

We say that a normal extension Λ of the rationals with $\Gamma = \operatorname{Gal}(\Lambda/Q)$ has a *Minkowski unit* if E_{Λ} is a cyclic $Z[\Gamma]$ -module. In the case of real Λ this holds if and only if Λ has a conjugate system of fundamental units.

Let M_1 , M_2 be $Z[\Gamma]$ -modules and let f be a 1-cocycle from

 $Z^1(\Gamma, \operatorname{Hom}_{\mathbf{Z}}(M_2, M_1))$. Recall that f is a map $\Gamma \to \operatorname{Hom}_{\mathbf{Z}}(M_2, M_1)$ such that if we write $f(\gamma)(m) = f_{\gamma}(m)$, then for all $m \in M_2$ and $\gamma, \delta \in \Gamma$ we have

$$f_{\gamma\delta}(m) = \gamma f_{\delta}(m) + f_{\gamma}(\delta m).$$

On the **Z**-direct sum $M_1 \oplus M_2$ we can define the action of Γ by

$$\gamma(m_1, m_2) = (\gamma m_1 + f_{\gamma}(m_2), \gamma m_2)$$

for $\gamma \in \Gamma$ and $m_1 \in M_1$, $m_2 \in M_2$. The $Z[\Gamma]$ -module M obtained in this way is denoted by $(M_1, M_2; f)$. If the choice of the cocycle f is obvious we write simply $M = (M_1, M_2)$. The $Z[\Gamma]$ -module M is called an extension of M_1 by M_2 .

2. Let G be a metacyclic group of order pm, where p is a prime and m|p-1. Thus

$$G = \{\sigma^i \tau^j : i = 0, ..., p-1; j = 0, ..., m-1\}$$

and $\tau \sigma = \sigma^r \tau$, where r is an mth primitive root of unity mod p.

Let K be a normal extension of the rationals with Gal(K/Q) = G. We put:

$$k = K^{\langle \sigma \rangle},$$

 $L=K^{\langle \tau \rangle},$

 ζ is a pth primitive root of unity,

A is the ring of integers in $Q(\zeta)$,

$$\mathscr{P}=A(1-\zeta),$$

 ψ is the automorphism of $Q(\zeta)$ mapping ζ onto ζ^r ,

$$A_1 = A \cap Q(\zeta)^{\langle \psi \rangle},$$

$$\mathscr{P}_1 = A_1 \cap \mathscr{P},$$

 θ is an mth primitive root of unity.

On A and $Z[\theta]$ we can introduce a Z[G]-module structure in the following way. We let σ act on A as multiplication by ζ , and τ as the automorphism ψ . On $Z[\theta]$, σ acts trivially and τ acts as multiplication by θ . In this way all ideals of $Z[\theta]$ as well as those of A which are ψ -invariant acquire a Z[G]-module structure.

Consider the Z[G]-modules

$$\widetilde{E}_K = \{ x \in E_K : x^{1+\sigma+\dots+\sigma^{p-1}} = 1 \}$$
 and $E_0 = \widetilde{E}_K / E_K$.

Thus E_K is a Z[G]-extension of \tilde{E}_K by E_0 . It was shown in [5] (Prop. III6) that

$$E_K \simeq \bigoplus_{j=0}^{m-1} \mathscr{P}^{e_j} \mathfrak{a}_j,$$

(1)
$$E_K \simeq \left(\bigoplus_{j=0}^{m-1} \mathscr{P}^{e_j} \mathfrak{a}_j, \mathfrak{b} \right),$$

where b is a $Z[\langle \tau \rangle]$ -module of Z-rank m-1. If we put

$$a = (E_K; E_L E_{L^{\sigma}} \dots E_{L^{\sigma^{m}-1}} E_k),$$

then by Théorème 7 of [3] we get the equality

(2)
$$h_K p^{(m-1)(m+2)/2} = ah_k h_L^m$$

3. We now give a necessary condition for K to have a Minkowski unit in the general case:

Theorem 1. If a real metacyclic extension K of degree pm over Q has a Minkowski unit, then

$$h_k h_L^m = p^t h_K$$
 with $t \ge m - 1$.

Proof. Using the formula $\tau^j \sigma^i = \sigma^{ir^j} \tau^j$ and Corollaire to Proposition I3 of [7], we have

$$E_{\sigma^{jw}(L)} = E_K^{\langle \sigma^{j_{\tau}} \rangle} = (E_K)^{\langle \sigma^{j_{\tau}} \rangle}$$
 and $E_K = (E_K)^{\langle \sigma \rangle}$

where $w(r-1) \equiv 1 \pmod{p}$, $0 \le j \le m-1$. Since $E_K \simeq R = \mathbb{Z}[G]/\mathbb{Z}G^{\sim}$, by Proposition I3 of [7], we get

$$(E_K: E_L E_{\sigma^{\mathsf{w}}(L)} \dots E_{\sigma^{\mathsf{w}(m-1)}(L)} E_k) = \left(R: \sum_{j=0}^{m-1} R^{\langle \sigma^{j} \tau \rangle} + R^{\langle \sigma \rangle}\right).$$

The index a, however, does not depend on the choice of a generator of $\langle \sigma \rangle$ according to (2), so one has

$$a = \left(R: \sum_{j=0}^{m-1} R^{\langle \sigma^j \tau \rangle} + R^{\langle \sigma \rangle}\right).$$

Using Proposition I4 of [7] we obtain

$$a=(R;R_1),$$

where
$$R_1 = \langle \sigma \rangle^{\sim} R + \sum_{i=0}^{m-1} \langle \sigma^i \tau \rangle^{\sim} R$$
.

Since for any subgroup H of G, $G^{\sim}Z[G]$ is an ideal of $H^{\sim}Z[G]$, we have a Z-isomorphism

$$Z[G]/T \simeq R/R_1$$
,

Now we need

Lemma 1. Let H < G and let $G = \bigcup_{i=1}^{N} Hg_i$ be the decomposition of G into the union of disjoint right cosets. Then

$$H^{\sim} \mathbf{Z}[G] = H^{\sim} \sum_{i=1}^{N} \mathbf{Z}g_{i}.$$

Proof. Since for every $y \in Z[G]$

$$y = \sum_{h \in H} \sum_{i=1}^{N} a_{hg_i} hg_i,$$

one obtains

$$H^{\sim} y = \sum_{x \in H} \sum_{i=1}^{N} \sum_{w \in H} a_{kg_i} x h g_i = \sum_{x \in H} \sum_{i=1}^{N} \sum_{w \in H} a_{x^{-1}wg_i} w g_i$$

by substituting w = xh. Finally,

$$H^{\sim} y = \sum_{w \in H} w \sum_{i=1}^{N} (\sum_{x \in H} a_{x^{-1}wg_i}) g_i.$$

This lemma gives

$$T = \langle \sigma \rangle^{\sim} \mathbf{Z}[\langle \tau \rangle] + \sum_{j=0}^{m-1} \langle \sigma^{j} \tau \rangle^{\sim} \mathbf{Z}[\langle \sigma \rangle].$$

Now we shall use the formula

$$(3) a = (Z \lceil G \rceil; T)$$

to estimate the index a. For convenience we shall assume that arithmetical operations on indices running from 0 to p-1 are performed mod p. If $x = \sum_{i=0}^{p-1} \sum_{j=0}^{m-1} \lambda_{ij} \tau^j \sigma^i \in \mathbb{Z}[G]$ is an element of T, then there exist rational integers a_{ij} and ω_i such that

$$x = \sum_{i=0}^{p-1} \sum_{j=0}^{m-1} \omega_j \tau^j \sigma^i + \sum_{s=0}^{m-1} \sum_{h=0}^{p-1} a_{hs} \left(\sum_{j=0}^{m-1} (\sigma^s \tau)^j \right) \sigma^h.$$

Applying the formula $\sigma^i \tau^j = \tau^j \sigma^{i\bar{r}^j}$ $(r\bar{r} \equiv 1 \pmod{p})$, we have

$$(\sigma^s \tau)^j = \tau^j \sigma^{s \varphi_j}$$

where $\varphi_0 = 0$, $\varphi_i = \bar{r} + \bar{r}^2 + \ldots + \bar{r}^j$ with $1 \le i \le m-1$. Thus

$$x = \sum_{s=0}^{m-1} \sum_{j=0}^{m-1} \sum_{h=0}^{p-1} a_{hs} \tau^{j} \sigma^{s\varphi_{j}+h} + \sum_{i=0}^{p-1} \sum_{j=0}^{m-1} \omega_{j} \tau^{j} \sigma^{i}$$
$$= \sum_{i=0}^{p-1} \sum_{j=0}^{m-1} (\omega_{j} + \sum_{s=0}^{m-1} a_{i-s\varphi_{j},s}) \tau^{j} \sigma^{i}$$

by substituting $i = s\varphi_i + h$ in the first term. It follows that

$$\lambda_{ij} = \omega_j + \sum_{s=0}^{m-1} a_{i-s\varphi_j,s},$$

where $0 \le i \le p-1$, $0 \le j \le m-1$.

Let $\mu_{ij} = \lambda_{ij} - \lambda_{i0}$ and let, for $1 \le d \le m-2$ and $d+1 \le j \le m-1$, $x_{hj}^{(d)}$ be integer solutions of the following system of linear congruences:

(5)
$$\sum_{h=1}^{d} x_{hj}^{(d)} \varphi_h^{d-w} + \varphi_j^{d-w} \equiv 0 \pmod{p},$$

where $0 \le w \le d-1$. The system (5) is always solvable because $0, \varphi_1, ..., \varphi_d$ are distinct mod p.

Now we shall show that

(6)
$$F_j^{(0)} = \sum_{i=0}^{p-1} \mu_{ij} \equiv 0 \pmod{p}$$

for $1 \le j \le m-1$ and

(7)
$$F_j^{(d)} = \sum_{i=0}^{p-1} i^d (\mu_{ij} + \sum_{h=1}^d x_{hj}^{(d)} \mu_{ih}) \equiv 0 \pmod{p}$$

for $1 \le d \le m-2$, $d+1 \le j \le m-1$. The congruences (6) follow immediately from (4). To prove (7), we use (4) to get

$$F_{j}^{(d)} = \left[\omega_{j} - \omega_{0} + \sum_{h=1}^{d} x_{hj}^{(d)}(\omega_{h} - \omega_{0})\right] \sum_{i=0}^{p-1} i^{d}$$

$$+ \sum_{i=0}^{p-1} i^{d} \sum_{s=0}^{m-1} a_{i-s\varphi_{j},s} - \sum_{i=0}^{p-1} i^{d} \sum_{s=0}^{m-1} a_{is}$$

$$+ \sum_{i=0}^{p-1} i^{d} \sum_{h=1}^{d} x_{hj}^{(d)} \sum_{s=0}^{m-1} a_{i-s\varphi_{h},s} - \sum_{i=0}^{p-1} i^{d} \sum_{h=1}^{d} x_{hj}^{(d)} \sum_{s=0}^{m-1} a_{is}.$$

Since $\sum_{i=0}^{p-1} i^i \equiv 0 \pmod{p}$ one obtains

$$F_{j}^{(d)} \equiv \sum_{s=0}^{m-1} \sum_{i=0}^{p-1} \left\{ \sum_{h=1}^{d} x_{hj}^{(d)} \left[(i + s\varphi_{h})^{d} - i^{d} \right] + \left[(i + s\varphi_{j})^{d} - i^{d} \right] \right\} a_{is}$$

$$\equiv \sum_{s=0}^{m-1} \sum_{i=0}^{p-1} \sum_{w=0}^{d-1} {d \choose w} s^{d-w} i^{d} \left[\varphi_{j}^{d-w} + \sum_{h=1}^{d} x_{hj}^{(d)} \varphi_{h}^{d-w} \right] a_{is} \equiv 0 \pmod{p}$$

by (5).

Thus the coordinates of x are zeros of the linear forms $F_j^{(d)}$ which turn out to be linearly independent mod p. To prove this suppose that there are integers $\alpha_i^{(d)}$ such that

$$F = \sum_{j=1}^{m-1} \alpha_j^{(0)} F_j^{(0)} + \sum_{d=1}^{m-2} \sum_{j=d+1}^{m-1} \alpha_j^{(d)} F_j^{(d)}$$

is a linear form with coefficients vanishing mod p.

Though $\alpha_j^{(d)}$ are defined only for $d+1 \le j \le m-1$ we extend their range by putting $\alpha_j^{(d)} = 0$ for $1 \le j \le d$. We also put $x_{hj}^{(d)} = 0$ for $d+1 \le h \le m-1$. Using (6) and (7), we get

$$F = \sum_{j=1}^{m-1} \sum_{i=0}^{p-1} \alpha_{j}^{(0)} \mu_{ij} + \sum_{d=1}^{m-2} \sum_{j=d+1}^{m-1} \sum_{i=0}^{p-1} i^{d} \alpha_{j}^{(d)} \mu_{ij} + \sum_{i=0}^{p-1} \sum_{d=1}^{m-2} \sum_{j=d+1}^{m-1} \sum_{h=1}^{d} i^{d} \alpha_{j}^{(d)} \mu_{hj}$$

$$= \sum_{i=0}^{p-1} \sum_{j=1}^{m-1} \sum_{d=0}^{m-2} i^{d} \alpha_{j}^{(d)} \mu_{ij} + \sum_{i=0}^{p-1} \sum_{h=1}^{m-1} \sum_{d=1}^{m-2} \sum_{j=d+1}^{m-1} i^{d} \alpha_{j}^{(d)} \mu_{ih}$$

$$= \sum_{i=0}^{p-1} \sum_{j=1}^{m-1} \left[\alpha_{j}^{(0)} + \sum_{d=1}^{m-2} (\alpha_{j}^{(d)} + \sum_{t=d+1}^{m-1} \alpha_{t}^{(d)} \chi_{jt}^{(d)}) i^{d} \right] \mu_{ij}$$

by substituting in the last but one line j for h and t for j in the second term. Since the coefficients of F are all equal to $0 \pmod p$ it follows that for $d+1 \le j \le m-1$

$$\alpha_j^{(0)} + \sum_{d=1}^{m-2} \left(\alpha_j^{(d)} + \sum_{t=d+1}^{m-1} \alpha_t^{(d)} x_{jt}^{(d)} \right) t^d \equiv 0 \pmod{p}.$$

But by definition $x_{ji}^{(d)} = 0$ for $d+1 \le j \le m-1$, so

$$\sum_{d=1}^{m-2} \alpha_j^{(d)} i^d \equiv 0 \pmod{p},$$

where i = 0, ..., p-1. Thus for $d+1 \le j \le m-1$ we obtain

$$\alpha_j^{(d)} \equiv 0 \pmod{p},$$

which proves the linear independence mod p of the m(m-1)/2 linear forms $F_j^{(d)}$. Since by Théorème 10 of [3] the index a is a power of p, (3) implies now

$$a=p^{w}$$
,

where $w \ge m(m-1)/2$. This together with (2) establishes Theorem 1.

4. Now we shall prove three lemmas.

LEMMA 2. Let M_0 , M_1 , N be Z[G]-modules and

$$f, f' \in Z^1(G, \operatorname{Hom}_{\mathbf{Z}}(M_1, N)), \quad f_0 \in Z^1(G, \operatorname{Hom}_{\mathbf{Z}}(M_0, N)).$$

If $\operatorname{Hom}_{\mathbf{Z}[G]}(N, M_1) = 0$ and the extensions $(M_1, N; f), (M_1, N; f')$ are $\mathbf{Z}[G]$ -isomorphic, then there exists a $\mathbf{Z}[G]$ -isomorphism

$$(M_0 \oplus M_1 \oplus M_1, N; f_0, f, f') \simeq (M_0 \oplus M_1, N; f_0 \vee, f) \oplus M_1,$$

where v is a suitable automorphism of N.

Proof. Since $\operatorname{Hom}_{\mathbf{Z}[G]}(N, M_1) = 0$, we can use Corollary (34.5) of [1]. Thus there exist $\lambda \in \operatorname{Aut}(M_1)$, $\nu \in \operatorname{Aut}(N)$ and $c \in \operatorname{Hom}_{\mathbf{Z}}(N, M_1)$ such that

$$\lambda f'_g(m) = f_g(vm) + gc(m) - c(gm), \quad g \in G,$$

and thus we can define a Z[G]-isomorphism

$$\Psi: (M_0 \oplus M_1 \oplus M_1, N; f_0, f, f') \to (M_0 \oplus M_1, N; f_0 \vee, f) \oplus M_1$$

by putting

$$(m_0, m_1, m'_1, n) \xrightarrow{\Psi} (m_0, 2m_1 - \lambda m'_1 - c(n), vn, m_1 - \lambda m'_1 - c(n))$$

From now on we confine ourselves to the case where m = q is a prime.

LEMMA 3. If γ is a Z[G]-generator for the Z[G]-module $Z[\theta]$, then

$$\operatorname{An}(\gamma) = \mathbf{Z}[G](1-\sigma) + \mathbf{Z}[G]\langle \tau \rangle^{\sim},$$

where $An(\gamma)$ denotes the annihilator ideal of γ .

Proof. If α , β are Z[G]-generators of $Z[\theta]$, then they are units in the ring $Z[\theta]$, so there is a Z[G]-isomorphism φ of $Z[\theta]$ such that $\varphi(\alpha) = \beta$. Since $An(\varphi(\alpha)) = An(\alpha)$ we may assume $\gamma = 1$. Let

$$x = \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} a_{ij} \sigma^i \tau^j \in \mathbf{Z}[G]$$

be an element of An(1). Then

$$x \cdot 1 = \sum_{j=0}^{q-1} \sum_{i=0}^{p-1} a_{ij} \theta^j = \sum_{j=0}^{q-2} \sum_{i=0}^{p-1} (a_{ij} - a_{i,q-1}) \theta^j = 0,$$

SO

$$\sum_{i=0}^{p-1} a_{ij} = \sum_{i=0}^{p-1} a_{i,q-1}$$

for j = 0, ..., q-1. Therefore we have

$$x = \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} a_{i0} \sigma^{i} \tau^{j} + \sum_{i=0}^{p-1} \sum_{j=0}^{q-1} (a_{ij} - a_{i0}) \sigma^{i} \tau^{j}$$

$$= \left(\sum_{i=0}^{p-1} a_{i0} \sigma^{i}\right) \sum_{j=0}^{q-1} \tau^{j} + \sum_{j=0}^{q-1} \sum_{i=0}^{p-1} (a_{ij} - a_{i0}) (\sigma^{i} \tau^{j} - \tau^{j})$$

$$\in \mathbf{Z} \lceil G \rceil \langle \tau \rangle^{\sim} + \mathbf{Z} \lceil G \rceil (1 - \sigma).$$

Since the opposite inclusion is obvious, Lemma 3 is proved.

Lemma 4. If $e\geqslant 1$ and a is an ideal of A_1 then the Z[G]-module $Z[\theta]\oplus \mathscr{P}^e$ a is not cyclic.

Proof. Assume to the contrary that $Z[\theta] \oplus \mathscr{P}^e \mathfrak{a}$ is cyclic with a generator $(\gamma, (1-\zeta)^e u)$. Then, by Lemme 1(i) of [8], γ is a generator of $Z[\theta]$ and $(1-\zeta)^e u$ is a generator of $\mathscr{P}^e \mathfrak{a}$.

If we put $\delta = \sum_{j=0}^{q-1} \psi^j [(1-\zeta)^e u]$, then $\delta \in A_1$, and $\delta \in \mathcal{P}\mathfrak{a}$ since $e \ge 1$. It follows that $\delta \in \mathcal{P}_1\mathfrak{a}$; but \mathcal{P}_1 totally ramifies in $Q(\zeta)$ and so $\delta \in \mathcal{P}^q\mathfrak{a}$. Now applying the identity

$$Z[G]x = \sum_{j=0}^{q-1} A\psi^{j}(x),$$

 $x \in \mathcal{P}^e \mathfrak{a}$, we obtain

$$Z[G]\langle \tau \rangle^{\sim} (1-\zeta)^e u = Z[G] \cdot \delta = A\delta \subset \mathcal{P}^q \mathfrak{a} \subset \mathcal{P}^{e+1} \mathfrak{a}$$

and

$$Z[G](1-\sigma)(1-\zeta)^e u = Z[G](1-\zeta)^{e+1}u \subset \mathscr{P}^{e+1}\mathfrak{q}$$

because $1 \le e \le q-1$. By Lemma 3

$$\operatorname{An}(\gamma)(1-\zeta)^e u \subset \mathscr{P}^{e+1}\mathfrak{a}.$$

Lemme 1(ii) of [8] now implies that $(\gamma, (1-\zeta)^e u)$ cannot be a generator for $Z[\theta] \oplus \mathscr{P}^e \mathfrak{a}$, contrary to our assumption. This completes the proof of Lemma 4.

Two Z[G]-modules M and M' are said to be in the same genus if for every prime l, the $Z_{l}[G]$ -modules $Z_{(l)} \otimes M$ and $Z_{(l)} \otimes M'$ are $Z_{(l)}[G]$ -isomorphic, where $Z_{(l)}$ is the localization of Z at l.

Now we are able to prove

THEOREM 2. Let K be a real metacyclic extension of degree pq over Q, where p, q are odd primes for which q|p-1, $q^2 \nmid p-1$. Then:

(i) If K has a Minkowski unit, then there exists an ideal $a \triangleleft A_1$ and

(a)
$$E_{\mathbf{K}} \simeq (\bigoplus_{\substack{j=0\\j\neq 1}}^{q-1} \mathscr{P}^{j}, \mathbf{Z}[\theta]) \oplus \mathbf{Z}[\zeta] \mathfrak{a},$$

where all extensions $(\mathcal{P}^j, Z[\theta])$ are non-trivial,

(b)
$$\frac{h_k h_L^q}{h_K} = p^{q-1}$$
,

- (c) $N_{K/k}(E_K) \approx E_k$,
- (d) the field k has a Minkowski unit.

(iii) If the class number of the field $Q(\zeta)^{\langle\psi\rangle}$ is 1, then (b), (c) and (d) are necessary and suffcient for K to have a Minkowski unit.

Proof. According to (1)

icm

$$E_K \simeq (\bigoplus_{j=0}^s \mathscr{P}^{e_j} \mathfrak{a}_j, \mathfrak{b}) \oplus \bigoplus_{j=s+1}^{q-1} \mathscr{P}^{e_j} \mathfrak{a}_j,$$

where the extensions $(\mathcal{P}^{e_j}\mathfrak{a}_j, \mathfrak{b})$ are non-trivial. The $Z[\langle \tau \rangle]$ -module \mathfrak{b} is an ideal of $Z[\theta]$ and by Lemme 2(i) of [8] it must be cyclic; hence, by Proposition 4 of [8] it is isomorphic to $Z[\theta]$. Since, by Proposition 6 of [4], there is exactly one non-trivial extension $(\mathcal{P}^{e_j}, Z[\theta])$ $(e_j \neq 1)$, we may apply Lemma 2 to deduce that the e_j 's are distinct for $0 \leq j \leq s$. Furthermore, Proposition 6 of [8] and the assumption of the cyclicity of E_K yields that, for $s+1 \leq j \leq q-1$, the e_j 's are also distinct. Since there is no non-trivial extension of \mathcal{P} by $Z[\theta]$ (see (3) in [4]), we obtain

$$E_{K} \simeq (\bigoplus_{\substack{j=0\\e_{j}\neq e_{i}\\e_{j}\neq 1}}^{s} \mathscr{P}^{e_{j}}\alpha_{j}, Z[\theta]) \oplus \bigoplus_{\substack{j=s+1\\e_{j}\neq e_{i}}}^{q-1} \mathscr{P}^{e_{j}}\alpha_{j}.$$

Using Lemma 4 and Lemme 3 of [8] we get s = q-2 and $e_{q-1} = 0$. Thus finally we obtain (i) (a) because E_K is determined up to isomorphism by the ideal class of the ideal $\prod_{j=0}^{q-1} a_j = a$. Now, (b) is a consequence of (a), of Proposition 2.4 in [6] and of (2), and (c) results from Corollaire of [7].

Since $Z[G]/ZG^{\sim}$ is cyclic and has Z-rank pq-1, we can write, by the same reasons as for E_K ,

$$Z[G]/ZG^{\sim} \simeq (\bigoplus_{\substack{j=0\j\neq 1}}^{q-1} \mathscr{P}^j, Z[\theta]) \oplus Z[\zeta] \mathfrak{a}',$$

where we may assume $(a'_{l}, pq) = 1$. Suppose that E_{K} and $Z[G]/ZG^{\sim}$ are in the same genus. In particular, for $l \in \{p, q\}$, $Z_{(l)} \oplus E_{K}$ is $Z_{(l)}[G]$ -cyclic and if we assume (1), we have

$$Z_{(l)} \otimes E_K \simeq (\bigoplus_{j=0}^{q-1} \widetilde{\mathscr{P}}_l^{e_j}, Z_{(l)}[\theta]),$$

where $\widetilde{\mathscr{P}}_l = Z_{(l)}[\zeta](1-\zeta)$. Since the above module is $Z_{(l)}[G]$ -cyclic, since $(\mathscr{P}^e, Z[\theta])$ is non-trivial if and only if $(\widetilde{\mathscr{P}}_l^e, Z_{(l)}[\theta])$ is so for $l \in \{p, q\}$ (see (25.15) in [1]), and since all lemmas and propositions used in the proof of (i) (a) are also valid for $Z_{(l)}[G]$ -modules, we can proceed as above to obtain (i) (a). Owing to Proposition 2.3 and 2.4 of [6], this gives (b) and (c).

^{7 -} Acta Arithmetica LL4

Now suppose that (b) and (c) hold. Then Proposition 2.3 of [6] and (c) give

$$E_K \simeq \bigl(\bigoplus_{\substack{j=0\\j\neq 1}}^{q-1} \mathscr{P}^j, \, \mathfrak{b} \bigr) \oplus \mathscr{P}^e \mathfrak{a},$$

where $0 \le e \le q-1$ and (a, pq) = 1. Using Proposition 2.4 of [6] and (b) together with (2) one has e = 0. This proves (ii) because it suffices to localize at the primes dividing G to show that E_K and $Z[G]/ZG^{\sim}$ are in the same genus.

To prove (iii) we need only show that conditions (b), (c) and (d) are sufficient. The condition for p in (iii) shows that (a) and (b) imply

(8)
$$E_{K} \simeq \left(\bigoplus_{\substack{j=0\\j\neq 1}}^{q-1} \mathscr{P}^{j}, \mathfrak{b} \right) \oplus \mathbb{Z}[\zeta].$$

According to the proof of Proposition 2.3 of [6], $N_{K/K}(E_K)$ and pb are Z[G]-isomorphic, so conditions (c) and (d) imply that b is Z[G]-cyclic, i.e., $b \simeq Z[\theta]$. Since there is exactly one, up to isomorphism, Z[G]-cyclic module of Z-rank pq-1, namely $Z[G]/ZG^{\sim}$, and this module is isomorphic to that in (8) with b replaced by $Z[\theta]$, we conclude that E_K is Z[G]-cyclic. Thus we have shown Theorem 2.

Remark 1. Condition (i) (a) of Theorem 2 corrects a mistake in Lemme VI.5 of [5] and in Lemme 4.4 of [6]. The proofs of these lemmas base on the fact that every element of $Z[G]/ZG^{\sim}$ has a representative whose sum of its coefficients is zero, which is not true.

Remark 2. In (iii) of Theorem 2 condition (d) can be dropped if we assume that $q \le 19$.

References

- C. W. Curtis and I. Reiner, Methods of representation theory, Wiley-Interscience, New York 1981.
- [2] D. Duval, Sur la structure galoisienne du groupe des unités d'un corps abélien réel de type (p, p), J. Number Theory 13 (1981), 228-245.
- [3] F. Halter-Koch and N. Moser, Sur le nombre de classes de certaines extensions métacycliques sur Q ou sur un corps quadratique imaginaire, J. Math. Japan 30 (1978), 237-248.
- [4] Lena Chang Pu, Integral representation of non abelian groups of order pq, Michigan Math. J. 12 (1965), 231-246.
- [5] N. Moser, Constraintes galoisiennes sur le groupe des unités de certaines extensions de Q - applications arithmétiques, Thése, Grenoble, 1978.
- [6] Sur les unités d'une extension galoisienne non abélienne de degré pq du corps des rationnels, p et q nombres premiers impairs, Ann. Inst. Fourier (Grenoble) 291 (1979), 137-158.
- [7] Unités et nombre de classes d'une extension Galoisienne diédrale de Q, Abh. Math. Sem. Univer. Hamburg 48 (1979), 54-75.

N. Moser, Théorème de densité de Tchebotareff et monogénéité de modules sur l'algèbre d'un groupe métacyclique, Acta Arith. 42 (1983), 303-323.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY Plac Grunwaldzki 2/4 50-384 Wrocław, Poland

> Received on 4.3.1987 and in revised form on 22.6.1987

(1713)