

120 J. Nikiel

- [14] J. Nikiel, Topologies on pseudo-trees and applications, to appear.
- [15] B. J. Pearson, An hereditarily locally connected continuum which is not the continuous image of an arc, Glasnik Mat. 18 (38) (1983), 335-341.
- [16] A Hahn-Mazurkiewicz theorem for hereditarily locally connected continua, Glasnik Mat. 19 (39) (1984), 323-333.
- [17] J. N. Simone, Concerning hereditarily locally connected continua, Colloq. Math. 39 (1978), 243-251.
- [18] L. B. Treybig, Concerning continuous images of compact ordered spaces, Proc. Amer. Math. Soc. 15 (1964), 866-871.
- [19] Concerning continua which are continuous images of compact ordered spaces, Duke Math. J. 32 (1965), 417–422.
- [20] "Extending" maps of arcs to maps of ordered continua, in Topology and order structures, Math. Centre Tracts, vol. 142, 1981, 83-93.
- [21] Arcwise connectivity in continuous images of ordered compacta, Glasnik Mat. 21 (1986), 201—211.
- [22] A characterization of spaces that are the continuous image of an arc, Topology Appl. 24 (1986), 229—239.
- [23] L. B. Treybig and L. E. Ward, Jr., The Hahn-Mazurkiewicz problem, in Topology and order structures. Math. Centre Tracts, vol. 142, 1981, 95-105.
- [24] E. D. Tymchatyn, The Hahn-Mazurkiewicz theorem for finitely Suslinian continua, General Topology and Appl. 7 (1977), 123-127.
- [25] L. E. Ward, Jr., Recent developments in dendritic spaces and related topics, in Studies in topology, Proceedings of a conference held at Charlotte, Academic Press, 1974, 601-647.
- [26] A generalization of the Hahn-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 58 (1976), 369-374.
- [27] An irreducible Hahn-Mazurkiewicz theorem, Houston J. Math. 3 (1977), 285-290.
- [28] G. T. Whyburn, Analytic topology, Amer. Math. Soc. Colloquim Publications, vol. 28, 1942.
- [29] Cut points in general topological spaces, Proc. Nat. Acad. Sci. USA 61 (1968), 380-387.
- [30] W. Bula and M. Turzański, A characterization of continuous images of compact ordered spaces and the Hahn-Mazurkiewicz problem. Topology Appl. 22 (1986), 7-17.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WROCŁAW Pl. Grunwaldzki 2/4 50-384 Wrocław Poland

> Received 3 June 1985; in revised form 16 December 1985

On irreducibility and indecomposability of continua

by

Roman Mańka (Warszawa)

Abstract. Kuratowski (1927) showed that in metric continua their points of indecomposability are always points of irreducibility. The aim of this paper is to exhibit a general form of those Hausdorff continua for which the result of Kuratowski does not hold.

- 1. Introduction and preliminaries. In this paper X will always be a *Hausdorff continuum*, shortly a \mathcal{F}_2 -continuum, i.e. a connected and compact topological space which satisfies the \mathcal{F}_2 -axiom of separability. A point a of X is said to be a point of indecomposability of X if there is no decomposition of X into two proper subcontinua which both contain a, i.e. for every two subcontinua K_1 and K_2 of X
- (1.1) $a \in K_1 \cap K_2$ and $K_1 \cup K_2 = X$ imply $K_1 = X$ or $K_2 = X$. A point a of X is said to be a *point of irreducibility* of X if there is $b \in X$ such that no proper subcontinuum of X contains both a and b, i.e for every subcontinuum K of X
 - (1.2) $a \in K$ and $b \in K$ imply K = X;

X is then said to be irreducible between a and b.

Directly by the above two definitions, every point of irreducibility is a point of indecomposability, and the converse assertion:

(1.3) Every point of indecomposability is a point of irreducibility has been proved for metric continua in [10] (Théorème XIX, p. 270). In connection with some fixed point theorems [4], [12], [13] and [15], the assertion (1.3) has been proved for hereditarily decomposable \mathcal{F}_2 -continua in [14] (Theorem 1, p. 52, where in fact no axiom of separability is used). In [2], a \mathcal{F}_2 -continuum has been constructed which is indecomposable but not irreducible, i.e. its every point is a point of indecomposability but no point is a point of irreducibility, so that the above assertion (1.3) is not true for an arbitrary \mathcal{F}_2 -continuum X.

In the present paper, we shall characterize those \mathcal{F}_2 -continua X which have this singularity, i.e. such X that

(1.4) There exists a point of indecomposability of X which is not a point of irreducibility of X:

122

we shall then say that X has the Kuratowski singularity. This characterization, proved in Chapter 3, is as follows: X is a union of two subcontinua $I \neq X$ and C = Y - rsuch that I is irreducible between some point $a \in I$ and every point $b \in I \cap C$ every composant C_n of C (i.e. the union of all proper subcontinua of C which contain $p \in C$) meets I and C is indecomposable in X. We call C indecomposable in X (a notion extracted from the proofs of the fixed point theorems in [5], [6] and [8]) if for every two subcontinua $K_1, K_2 \subset X$

(1.5) $C \subset K_1 \cup K_2$ implies $C \subset K_1$ or $C \subset K_2$. which is equivalent to saying that for every subcontinuum $K \subset X$

(1.6) Int_C $K \neq \emptyset$ implies $C \subseteq K$:

namely (1.6) obviously implies (1.5), and (1.5) implies (1.6) by applying the decomposition theorem (cf. [11], p. 133): If C is a subcontinuum of a \mathcal{T}_2 -continuum X and X-C is disconnected, then there exists a decomposition of X into two proper subcontinua which both contain C.

We shall also prove in this paper that the Kuratowski singularity cannot be obtained when a metric continuum is taken for C in the above description. To this end, we shall give a common generalization of the results of [10] and [14] mentioned above (Remark 2 and Corollary 1 at the end of Chapters 3 and 4).

In the final Chapter 5, we include an improvement of the theorems of [3] and [17] on the connectedness of the set of all points of indecomposability of a \mathcal{F}_2 -continuum (Corollaries 2-4).

Some results of this paper were communicated to the Topology Semester at the Banach Center in Warszawa on June 28, 1984.

2a. On points of indecomposability. Given a point $a \in X$ and a subcontinuum $C \subset X$, we shall say that X irreducibly contains a and C if X is minimal with respect to the property:

$$a \in X$$
 and $C \subset X$.

THEOREM 1. A point $a \in X$ is a point of indecomposability of X if and only if there exists a subcontinuum $C \subset X$ such that

(2.1) X irreducibly contains a and C;

(2.2) C is indecomposable in X:

and then either $C = \overline{\operatorname{Int} C}$ or C reduces to one point.

Proof. Sufficiency. Suppose (2.1) and (2.2) hold and take two subcontinua $K_1, K_2 \subset X$ such that $a \in K_1 \cap K_2$ and $K_1 \cup K_2 = X$. Then $C \subset K_1$ or $C \subset K_2$ in view of (1.5).

If $C \subset K_1$, then by (2.1) we have $K_1 = X$.

If $C-K_1 \neq \emptyset$, then $\operatorname{Int}_{C}K_2 \neq \emptyset$ and hence $C \subset K_2$ in view of (1.6) so that by (2.1) we have $K_2 = X$.

Necessity. Suppose that a is a point of indecomposability of X, i.e. (1.1) holds.

Let $C_* \subset X$, where $\tau \in \mathcal{T}$, be a nested family of nonempty subcontinua such that for every $\tau \in \mathcal{T}$

(2.3) X irreducibly contains a and C_{-} .

Take a subcontinuum $K \subset X$ which contains a and $\bigcap C_z$. Then

$$(2.4) \varnothing \neq \bigcap_{\tau \in \mathscr{T}} C_{\tau} \subset K$$

and hence $K \cup C$, is a subcontinuum of X which contains a and C for every $\tau \in \mathcal{T}$. By (2.3), $K \cup C_{\tau} = X$ for all $\tau \in \mathcal{F}$ and therefore $K \cup \bigcap C_{\tau} = X$. It follows from (2.4) that K = X, i.e. X irreducibly contains a and $\bigcap C_{\tau}$.

It follows from the Kuratowski-Zorn lemma that there exists a subcontinuum $C \subset X$ such that

(2.5) C is minimal with respect to the property (2.1): in particular, C satisfies (2.1).

Before proving (2.2), we shall show that C is indecomposable.

Let C_1 and C_2 be subcontinua of C such that $C = C_1 \cup C_2$ and take, by using the Kuratowski-Zorn lemma, two subcontinua $K_1, K_2 \subset X$ such that for i = 1and i = 2

(2.6) K. irreducibly contains a and Ci.

Then $K_1 \cup K_2$ is a subcontinuum of X which contains a and C, and by (2.1) we have $K_1 \cup K_2 = X$. Since $a \in K_1 \cap K_2$ in view of (2.6), and a is a point of indecomposability of X by assumption, it follows from (1.1) that $K_1 = X$ or $K_2 = X$. Thus, by (2.6), X irreducibly contains a and C_i for i=1 or i=2. Hence, by (2.5), we have $C_1 = C$ or $C_2 = C$.

We have thus proved that

(2.7) C is indecomposable.

Now we can prove (2.2).

If $a \in C$, then by (2.1) we have C = X and hence C is obviously indecomposable in X by (2.7).

If

 $(2.8) \ a \in X - C$

then by (2.1) and the decomposition theorem X-C is connected and thus

(2.9) $\overline{X-C}$ is a subcontinuum of X.

Case 1. $X-C \neq X$.

Since a is a point of indecomposability of X by assumption, by (2.8), (2.9) and the decomposition theorem $X - \overline{X - C}$ is connected. It follows from (2.7) that

(2.10)
$$\overline{X - X - C} = C$$
.

Let K be a subcontinuum of X such that

(2.11) $\operatorname{Int}_{\mathcal{C}} K \neq \emptyset$.

If $K \subset C$, then by (2.7) we have C = K, so that (1.6) implies (2.2).

If $K-C \neq \emptyset$, then $X-C \cup K$ is a subcontinuum of X which contains a by (2.8) and (2.9). Hence $X-(X-C \cup K)$ is connected by (2.1) and the decomposition theorem, and since this is an open and nowhere dense subset of C in view of (2.11), it follows from (2.7) that it is empty, i.e. $X=X-C \cup K$. Therefore by (2.10) we have $C \subset K$. Thus, in view of (1.6) and (2.11), we have verified that (2.2) holds.

By (2.10), we have $\overline{\text{Int }C} = C$ in case 1.

Case 2. $\overline{X-C} = X$.

First, it will be proved that

(2.12) X is irreducible between a and every $p \in C$.

To this end, take a subcontinuum K of X which contains a and p. Then $K \cup C$ is a subcontinuum of X which contains a and C and therefore, by (2.1), we have $K \cup C = X$. Hence K = X by the equality X - C = X which proves (2.12). By (2.12) and (2.5), C reduces to one point.

2b. On the irreducibility of a union of two continua. Given two subcontinua A and B of X and a point $p \in X$, we shall say that A is irreducible between p and B if A is minimal with respect to the property:

$$p \in A$$
 and $A \cap B \neq \emptyset$.

LEMMA 1. If $p \in A - B$ and A is irreducible between p and B, then A - B = A and A is a unique subcontinuum of $A \cup B$ which is irreducible between p and B. Proof. Since A - B is connected by the decomposition theorem, the formulas

$$p \in \overline{A-B}$$
 and $\overline{A-B} \cap B \neq \emptyset$

imply, by the irreducibility of A between p and B, that A - B = A.

Further, if K is a subcontinuum of $A \cup B$ which is irreducible between p and B, then by the proved part of the lemma (with K taken for A) we have $K = \overline{K - B}$. Since $K - B \subset A - B$, it follows that $K \subset A$. Hence, by the irreducibility of A between p and B, we have K = A.

Theorem 2. Let C be an indecomposable subcontinuum of X such that X irreducibly contains a and C and let

$$a \in X - C$$
 and $X - C \neq X$.

Then a is a point of irreducibility of X if and only if $X - C \cap C_p = \emptyset$ for some $p \in C$.

Proof. Sufficiency. Suppose that $X-C\cap C_p=\emptyset$ for some $p\in C$ and let K be a subcontinuum of X which contains a and p. Since X irreducibly contains a and C, X-C is a subcontinuum of X by the decomposition theorem. By Lemma 1, C is a unique subcontinuum of X which is irreducible between p and X-C. Hence $C\subset K$ and therefore K=X because X irreducibly contains a and C by assumption.

Necessity. Let X be irreducible between a and some $p \in X$. Since $\overline{X-C}$ is a subcontinuum of X and $a \in X-C \neq X$, we have $p \in X-X-C$.

Suppose, on the contrary, that $X - C \cap C_p \neq \emptyset$. Then there exists a proper subcontinuum L of C which contains p and meets the subcontinuum X - C of X. Then L is nowhere dense in C by the indecomposability of C, so that $X - C \cup L$ is a proper subcontinuum of X which contains a and p, a contradiction.

Remark 1. The following is an extension to \mathcal{T}_2 -continua of a theorem of [7] (p. 314, Theorem A): A decomposable \mathcal{T}_2 -continuum X is irreducible between its two points p and q if and only if there exist two subcontinua A and B of X such that $X = A \cup B$ and $A_B \cap B = \emptyset = A \cap B_B$.

Sufficiency. If the above equalities hold, then by applying Lemma 1, A is uniquely irreducible between p and B and B is uniquely irreducible between q and A. Thus for every subcontinuum $K \subset X$ which contains p and q we have $A \subset K$ and $B \subset K$, and hence K = X.

Necessity. If X is decomposable and irreducible between p and q, then there exists a proper subcontinuum L of X such that $p \in Int L$. Define

$$B = X - L$$
 and $A = X - B$

so that A and B are subcontinua of X by the irreducibility of X and the decomposition theorem. Also, A is irreducible between p and B, i.e. $A_p \cap B = \emptyset$. Analogously, by the irreducibility of X, we have $L \cap B_q = \emptyset$, and since $A \subset L$ by the definition of A and B, it follows that $A \cap B_q = \emptyset$.

3. A characterization of the \mathcal{F}_2 -continua which have the Kuratowski singularity. We need one more

LEMMA 2. Let C be a subcontinuum of a \mathcal{T}_2 -continuum X and let $a \in X - C$. Then X irreducibly contains a and C if and only if X - C is a subcontinuum of X which is irreducible between a and C; and then X - C is irreducible between a and every point of $X - C \cap C$.

Proof. Sufficiency. If X-C is a subcontinuum irreducible between a and C, then by Lemma 1, X-C is a unique subcontinuum of X which is irreducible between a and C. Thus for every subcontinuum $K \subseteq X$ such that $a \in K$ and $C \subseteq K$ we have $X-C \subseteq K$ and hence K = X.

Necessity. Suppose that X irreducibly contains a and C so that the set X - C is connected by the decomposition theorem. Then X - C is a subcontinuum of X which satisfies the conditions

$$a \in X - C$$
 and $X - C \cap C \neq \emptyset$.

If, on the contrary, there exists a proper subcontinuum L of X-C such that $a \in L$ and $L \cap C \neq \emptyset$,

then there exists an open subset of X which is disjoint with L and meets C. Since $L \cap C \subset X - C \cap C$ are boundary subsets of X - C, it follows that $L \cup C$ is a proper subcontinuum of X which contains a and C, a contradiction.

Theorems 1 and 2, in view of Lemmas 1 and 2, directly imply

Theorem 3. A \mathcal{F}_2 -continuum X has the Kuratowski singularity if and only if X is a union of two subcontinua

$$I \neq X$$
 and $C = X - I$

such that the following three conditions are satisfied:

(3.1) I is irreducible between some $a \in I$ and every $b \in I \cap C$.

(3.2) $I \cap C_p \neq \emptyset$ for every $p \in C$,

(3.3) C is indecomposable in X.

We now give three examples illustrating the above description of the Kuratowski singularity.

Example 1. Let C be an indecomposable \mathcal{F}_2 -continuum with exactly one composant, as constructed in [2]. Then (3.1)-(3.3) are fulfilled with I reduced to a point of C.

EXAMPLE 2. Let C be an indecomposable \mathcal{F}_2 -continuum with exactly two composants (as constructed in [2]) and let A be any arc having only its end points p and q in common with C. Take a homeomorphic image I of the $\sin 1/x$ — curve having exactly the arc A for the continuum of condensation and let a be the end point of I which is opposite to A. Define

$$X = I \cup C$$
 so that $I \cap C = \{p, q\}$.

Then the conditions (3.1)–(3.3) are satisfied (only (3.3) needs a longer proof which consists in showing that $K \cap C$ has exactly two components for every subcontinuum K of X such that $\emptyset \neq K \cap C \neq C$, and then $\mathrm{Int}_C K = \emptyset$ which verifies (1.6).

EXAMPLE 3. Let C be the simplest Knaster indecomposable continuum on the Cartesian plane (as described in [11], p. 204, Example 1) and let A denote the unit arc of the x-axis, so that the intersection $A \cap C$ is the Cantor set. Take again a homeomorphic image of the $\sin 1/x$ — curve having exactly A for the continuum of condensation and let a be the end point of I which is opposite to A. Define

$$X = I \cup C$$
 so that $I \cap C = A \cap C$.

Then X does not have the Kuratowski singularity, because the condition (3.3) is obviously not satisfied.

Remark 2. The Kuratowski singularity cannot be realized when any indecomposable metric continuum C is taken in the description given in Theorem 3, as will follow from Corollary 1 at the end of Chapter 4. The problem whether the Kuratowski singularity can be obtained with any indecomposable \mathcal{F}_2 -continuum C having infinitely many composants remains open.

4. Points of unique irreducibility. We need yet another generalization of irreducibility (which appears implicitly in papers [4], [5], [6], [12], [13] and [15], and also in Chapter 2a of this paper). Namely, a point p of a subcontinuum C of a \mathcal{I}_2 -continuum X is said to be a point of unique irreducibility of C in X if there is $q \in C$ such that C is a unique subcontinuum of X which is irreducible between p and q.

Lemma 3. Let C be an indecomposable subcontinuum of X. If C is uniquely irreducible between p and q in X, then for all

$$p' \in C_p$$
 and $q' \in C_q$

C is uniquely irreducible between p' and q' in X.

Proof. Take subcontinua $K \subset C_n$ and $L \subset C_q$ so that

(4.1)
$$C = C - (K \cup L)$$
,

(4.2) $p, p' \in K$ and $q, q' \in L$,

and let M denote an arbitrary subcontinuum of X such that

(4.3)
$$p', q' \in M$$
.

Then $K \cup M \cup L$ is a subcontinuum of X which contains p and q by (4.2) and (4.3). By assumption, $C \subset K \cup M \cup L$ and hence $C - (K \cup L) \subset M$. By (4.1), $C \subset M$.

Lemma 4. Let C be an indecomposable subcontinuum of X and $p \in C$. If p is a point of unique irreducibility of C in X, then C is indecomposable in X

Proof. Let C be uniquely irreducible between p and q. Since for every subcontinuum K of X with $\operatorname{Int}_C K \neq \emptyset$ we have $C_p \cap K \neq \emptyset \neq K \cap C_q$ (cf. [11], p. 209, Theorem 2 and its proof valid also for \mathscr{T}_2 -continua), by applying Lemma 3 with arbitrary $p' \in C_p \cap K$ and $q' \in K \cap C_q$, we have $C \subset K$.

Consider now the converse implication:

(4.4) If C is indecomposable in X, then there exists a point of unique irreducibility of C in X,

which appears in the proof of [5] and in a theorem of [9] (p. 680, Theorem 10). The assertion (4.4) is not true in general as the Example 2 above shows. Theorem 3, in view of Lemmas 1-3, directly implies

THEOREM 4. A \mathcal{T}_2 -continuum X has the Kuratowski singularity if and only if X irreducibly contains some point a and a subcontinuum C with Int $C \neq \emptyset$ such that (4.4) is not satisfied.

However, (4.4) holds when C is metrizable, as will be shown in the next theorem which yields a generalization of a crucial argument of [6] through a modification of the proof of [16].

THEOREM 5. Let C be a metrizable subcontinuum of a \mathcal{F}_2 -continuum X. Then C is indecomposable in X if and only if C is indecomposable and contains a point of unique irreducibility in X (and then every point of C has this property).

Proof. Sufficiency follows directly from Lemma 4.

Necessity. Let $a \in C$ and let

$$B(p_1), B(p_2), ...$$

be a sequence of open balls in C such that for every n = 1, 2, ...

 $(4.5) p_n \in B(p_n) \subset C - \{a\},\$

(4.6) the balls $B(p_n)$ are a base of $C - \{a\}$.

For every n = 1, 2, ..., let K_n denote the component of a in $X - B(p_n)$ so that

(4.7) $K_n \subset X - B(p_n)$ for all n = 1, 2, ...

Let C(a, X) denote the set of all $p \in C$ such that there exists a subcontinuum L of X satisfying

(4.8) L is irreducible between a and p

and $L \neq C$. Then, in view of (4.8) and the unique irreducibility of C in X, we have

 $(4.9) C-L \neq \emptyset.$

With this notation, the following equality holds true:

$$(4.10) C(a, X) = \bigcup_{n=1}^{\infty} K_n \cap C(a, X).$$

Indeed, if $p \in C(a, X)$, then there exists a subcontinuum $L \subset X$ which is irreducible between a and p, and then, in view of (4.6), (4.8) and (4.9), we have $L \cap B(p_n) = \emptyset$ for some n. It follows, according to (4.7), that $p \in K_n$.

Now, in order to apply the Baire category theorem, we shall verify that

(4.11)
$$\operatorname{Int}_{\mathcal{C}}(K_n \cap C(\alpha, X)) = \emptyset$$
 for all $n = 1, 2, ...$

But contradicting (4.11), we have $\operatorname{Int}_C K_m \neq \emptyset$ for some m, and then $C \subset K_m$ by the indecomposability of C in X. Hence $B(p_m) \cap C \subset B(p_m) \cap K_m$, and thus, by (4.7), we have $B(p_m) \cap C = \emptyset$, a contradiction to (4.5).

Theorems 4 and 5 directly imply a common generalization of the theorems of [10] and [14] mentioned in the introduction (cf. [10], p. 270, Théorème XIX and [14], p. 52, Theorem 1):

COROLLARY 1. If every indecomposable subcontinuum of a \mathcal{F}_2 -continuum X is metrizable, then every point of indecomposability of X is a point of irreducibility of X.

5. Further corollaries. Following [3] and [17], we shall denote by E_X the set of all points of indecomposability of a \mathcal{T}_2 -continuum X. Theorems 1 and 3, in view of Lemma 2 and some results of [10], imply

THEOREM 6. E_X is connected and

$$(5.1) \varnothing \neq E_{x} \neq \chi$$

if and only if X has the Kuratowski singularity and X is decomposable.

Proof. Sufficiency. Assume that, according to Theorem 3, there exists a decomposition

$$(5.2)\ I \cup C = X$$

into subcontinua I and C such that the conditions (3.1)–(3.3) are satisfied for some $a \in E_X$ and all $b \in I \cap C$. We have

(5.3)
$$a \in I - C$$

because X is decomposable by assumption.

For every $p \in C$, there exists a decomposition of X into two proper subcontinua: $K_1 = C \neq X$ by (5.2) and (5.3), and $K_2 = K \cup I$ where K is any proper subcontinuum of C which contains p and meets I by (3.2). It follows that

$$(5.4)$$
 $E_x \subset I$

by (5.2) and the definition (1.1) of the point of indecomposability. If, on the contrary, $E_X \cap I_h \neq \emptyset$, then there exists $g \in E_X$ such that

$$q \in I_h$$

and then we have a decomposition of X into two proper subcontinua: $K_1 = I \neq X$, because of the decomposability of X, and $K_2 = L \cup C$ where L is any proper subcontinuum of I which contains q and b, by the definition of the composant I_b . If follows, in view of (5.4), that $E_X \subset I - I_b$.

To prove the converse inclusion, let $a' \in I - I_b$. Since $I - I_b = I - I_{b'}$ for every $b' \in I \cap C$, it follows that X irreducibly contains a' and C in view of Lemma 2. By Theorem 1, according to (3.3), we have $a' \in E_X$.

Consequently, $E_X = I - I_b$, and the set $I - I_b$ is connected (cf. [11], p. 210, Theorem 3 and its proof valid also for \mathcal{F}_2 -continua).

Necessity. Suppose, on the contrary, that the Kuratowski singularity does not occur so that for every $a \in E_X$ the \mathcal{F}_2 -continuum X is irreducible between a and some $b \in X$. Since then we have $E_X = (X - X_b) \cup (X - X_a)$ by the irreducibility of X, the connectedness of E_X implies that X is indecomposable, a contradiction.

Theorems 3 and 6 immediately imply the following improvements of the results of [17] (p. 208-210, Theorems 1 and 2):

COROLLARY 2. E_X is nonempty and connected if and only if either X is indecomposable or there exists a decomposition of X into two proper subcontinua I and $C = \overline{X-I}$ which satisfy the conditions (3.1)–(3.3), and then $E_X = I - I_b$ for all $b \in I \cap C$.

COROLLARY 3. E_X is disconnected if and only if X is decomposable and irreducible between two points.

To prove the next corollary, let us note the following

LEMMA 5. Let a \mathcal{F}_2 -continuum X be a union of two subcontinua $I \subset X$ and C = X - I. Then

- (i) C is indecomposable in X if and only if the quotient space X|I is an indecomposable \mathcal{T}_2 -continuum.
- (ii) $I \cap C_p \neq \emptyset$ for all $p \in C$ if and only if the \mathcal{T}_2 -continuum X|I has exactly one composant.

Proof. (i) follows from the obvious fact that, considering the natural function f from X onto X/I, for every subcontinuum $K \subset X$ the continuum f(K) has nonempty interior in X/I if and only if K has nonempty interior in C.

(ii) Necessity is obvious.

Sufficiency. Suppose, on the contrary, that $C_p \cap I = \emptyset$ for some $p \in C-I$. Then it suffices to show that the composant of $P = \{p\} = \{f(p)\}$ in X/I is disjoint with $\{I\}$.

But otherwise there is a proper subcontinuum K of X/I which contains the elements P and I of X/I. Then the continuum $f^{-1}(K)$ has empty interior $\operatorname{Int}_C f^{-1}(K)$, and on the other hand by Lemma 1, $C \subset f^{-1}(K)$, a contradiction.

Theorem 3 reformulated by using Lemma 5 yields the following improvement of [3] (p. 191, Main Theorem):

COROLLARY 4. E_X is connected and $\emptyset \neq E_X \neq X$ if and only if there exists a proper (and not reduced to one point) subcontinuum $I \subset X$ which is irreducible between some $a \in I$ and every $b \in I \cap \overline{X-I}$, and the quotient space X/I is an indecomposable \mathscr{T}_2 -continuum with exactly one composant.

References

- D. P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach, Pacific J. Math. 47 (1973), 303-309.
- [2] Indecomposable continua with one and two composants, Fund. Math. 101 (1978), 129-134.
- [3] A. Emeryk and A. Szymański, Continua with a connected set of points of indecomposability, Colloq. Math. 37 (1977), 185-191.
- [4] R. G. Gurević, General point of view on λ-dendroids and fixed point theorems, Fund. Math, 100 (1978), 109-118 (in Russian).
- [5] C. L. Hagopian, A fixed point theorem for plane continua, Bull. Amer. Math. Soc. 77 (1971),
 351-354.
- [6] Another fixed point theorem for plane continua, Proc. Amer. Math. Soc. 31 (1972), 627-628.
- [7] J. R. Kline, Concerning the sum of two continua each irreducible between the same pair of points, Fund. Math. 7 (1925), 314-322.
- [8] J. Krasinkiewicz, Concerning the boundaries of plane continua and the fixed point property, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 21 (1973), 427-431.
- [9] J. Krasinkiewicz and P. Minc, Mappings onto indecomposable continua, ibid. 25 (1977), 675-680.
- [10] K. Kuratowski, Théorie des continus irréductibles entre deux points, II, Fund. Math. 10 (1927), 225-275.
- [11] Topology, Vol. II, Warsaw-New York, 1968.
- [12] R. Mańka, End continua and fixed points, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 23 (1975), 761-766.
- [13] Association and fixed points, Fund. Math. 91 (1976), 105-121.
- [14] On the characterization by Kuratowski of irreducible continua, Bull. Acad. Polon. Sci., Sér. Sci. Math. Astronom. Phys. 26 (1978), 49-55.

- 1151 Fixed point theorems for λ -dendroids, Fund. Math. 108 (1980), 119-128.
- [16] S. Mazurkiewicz, Un théorème sur les continus indécomposables, ibid. 1 (1920), 35-39.
- [17] M. H. Proffit, On composants of Hausdorff continua, ibid. 71 (1971), 207-213.

INSTYTUT MATEMATYCZNY PAN INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCHENCES Snindeckich 8 00-050 Warszawa

> Received 23 May 1985; in revised form 27 January 1986 and 30 April 1986