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Whitney continua of graphs admit all homotopy types of compact
comnected ANRs

by

Hisao Kato (Hiroshima)

Abstract. In this paper, it is proved that if X is a compact connected ANR, then there exist
a graph G and a Whitney map o for C(G) such that for some #& ©, »(6), @~(¢) is homotopy
equivalent to X.

1. Introduction. By a compactum we mean a compact metric space. A continuum
is a connected compactum. Let C(X) denote the hyperspace of nonempty subcon-
tinua of the continyum X. C(X) is metrized with the Hausdorff metric (see e.g. [4]
and [8]). One of the most convenient tools in order to study the structure of C(X)
is a monotone map : C(X) - [0, w(X)] defined by H. Whitney [13]. A map
w: C(X) ~ [0, w(X)] is said to be a Whitney map for C(X) provided that

() o({x}) =0 for xe X, and »

(i) o(4) <w(B) whenever 4, Be C(X) and AgB.

The continua {w™(z)} are called the Whitney continua of X. We may think of the
map o as measuring the size of a continuum. Note that ©~1(0) is homeomorphic
to X and o Yw(X)) = {X}. Naturally, we are interested in the structure of
o~ }(t) (0 <z <w(X)). In [10], J. T. Rogers proved that for any continuum X and
any Whitney map  for C(X), there is an induced injection r*: H Ho~'@)) - HY(X),
where H"(X) denotes the n-th Cech cohomology. Also, it is proved that if H'(X)
is finitely generated, then for any Whitney map o for C(X) and some ¢ € (0, (X)),
HY(0™(2)) = H(X) for 0<#< 1, (see [10], [5] and [2]). In [9], A. Petrus showed
that there is a Whitney map o for C(D) such that & *w~*(r)) # 0 for some >0,
where D is a 2-cell. This example shows that there is no injection H' (w™4(2)) » H'(X)
for n22. In [3, (2.6)], we showed that there is a graph (1-dimensional connected
polyhedron) G(n) such that for any Whitney map o for C(G(m)), there is no injection
H"(0™'(#)) & Z - H'(G(m)) = 0 (1 2) for some t e (0, o(G(@))). In fact, @~ *(z)
is homotopy equivalent to the n-sphere $" (n>2). In [1], R. Duda has carried
out an incredibly detailed study of hyperspaces of graphs. Also, see [3] for some
results on' Whitney continua of curves.

The aim of this paper is to prove that for any compact connected ANR X,
1 — Fundamenta Mathematicae 129, 3
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there are a graph G and a Whitney map o for C(G) such that for some 7> 0, o™ (t)
is homotopy equivalent to X, i.e., Whitney continua of graphs admit all homotopy
types of compact connected ANRs.

2. Preliminaries. In this section, we list some facts which will be needed in the
sequel.
The following fact is well known (see e.g. R. Brown, Elements of modern top-
ology, McGraw-Hill, London 1968, p. 240).
(.1)Let X = {X.}i=1,2,...n and ¥ = {Y}1=1,2,... x be finite families of compact
ANRs such that () X, and (\ Y; are empty sets or ANRs for any subset E of
ieE ieE

{1,2,..,n}. Let f: U X, = U Y;beamap suchthat f(X}) = Y, foreachi=1,2,...,n.
=1 i=1
IFflN X2 N X;— () Y, is a homotopy equivalence for any subset Eof {1, 2, ..., n},
ieE ieE

ieE
then f is @ homotopy equivalence.

Let (P, <) be a partially ordered space. Then a map w: P— [0, ) is said

to be a Whitney map if
(i) o(p) = 0 for pe Min P,

(ii) @(p) < w(g) for p< g, and

(iii) o(p) = w(g) for p, g€ Max P.

Thus a Whitney map @ for C(X) is a Whitney map in the above sense for C(X)
ordered by inclusion.

We need the following facts:

(2.2) (L. E. Ward, Jr. [11]). Let P be a compact metric partially ordered space
such that Min P and Max P are disjoint closed sets and let Q be a closed subset of P such
that Min Q « MinP and Max Q = MaxP. Then a Whitney map for Q can be extended
to' a Whitney map for P.

(2.3) (M. Lynch [6]). Let X be any continuum and A € C(X). Then for any Whitney
map o for C(X) and any t e [w(4), o(X)], the set

Cld,0,t) = {Bew '(t)] Bo4}
is an AR.

3. Main theorem. First, we prove the following theorem.

(3.1) TuroreMm. Let K be a finite simplicial complex and |K| = P. Assume that P
is connected. Then there exists a Whitney map o for C(IK|) such that for some
te(0, o(IK 1]_)), w™(2) is homotopy equivalent to P, where K denotes the 1-skeleton

of K.
Proof. Let K" denote the n-skeleton of K. Consider the sets
& ={|L|| Lis a subcomplex of K* and |L| is connected},
oy = {|L|e | |L| is contained in some simplex of K},
o, = {|L|e&]| |L| is not contained in any simplex of K}.
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Then & = &y Uy Let G= |K'|. Set o = Fy(G)u & where Fy(G) = {{x}| xe G}.
Since & is a finite set, we can easily see that there is 2 map 't o — [0, c0) such
that
(i) 0'(B) =0 for B = {x}e F\(G),
(i) w'(B)<1 for Be &7,
(iii) 0'(B)>1 for Be o,, and
(iv) if 4,Be s and AE B, then o'(4) < w'(B).

By (2.2), there is a Whitney map w: C(G) — [0, o(G)] which is an extension of w’.
Now, we shall prove that ™*(1) is homotopy equivalent to P, For any 4 € (@),
consider the set

C4,0,1) = {Bew ()] BoA}.

By (2.3), if w(4) <1, then C(4, w, 1) is a nonempty AR. If (¥, W) e K%, then
w({V, W)) < 1. Hence we have

o™i() = U{C(V,w, 1) VeK°}.
Let {Vy, V4, ..., i} = K°. Assume that (V,, Vi, ..., V) € K. Then

UKV ¥l i,je{0,1,..,k}}esd;.
Hence we have

k
iQOC(V;, o, DU KV, V)l 1,7e{0,1, ... k}}, 0, 1) # @.

13
Conversely, we shall show that if ) C(¥;, w, 1) # @, then {(Vy, Vi, ..., Vipe K
k i=0
Let 4€ () C(V;, w, 1). Choose a connected subcomplex L of K* such that |L] < 4
i=0

and [L|>{V;, ¥y, .., Vi}. Since o(|L]) < w(4) = 1, |L| is contained in some simplex
of K, which implies that (¥,, Vi, ..., ¥;> € K. Hence we conclude that for any

k
Vo, Vis v, Vi3 <K®, Vo, Viy o Vid €K if and only if (}C(Vi, @,1) # @.
i=0

k
Next, we shall show that if {V;, ¥y, ..., Vi) € K, then [} C(V;, o, 1) is an AR.
i=1

Let & = {L} be the family of subcomplexes L of K! such that |L| e o; and
[LI={F;, V3, ..., V). Then we can easily see that

NC,o, )= U C(L, 0, 1).
i=0 Leg

Let Ly e & be such that [Ly] = (Vy, Vi, ..., Viy € K. For each L e &, consider the
k
set A(L) = C(|Ly| w, 1)u C(L], »,1). Note that [ C(Vy, @,1) = U A(L) and
i=0 Le¥

A(L) is an' AR. In fact, since |Lo|u|Llesof;, C(Lol,®, )nC(L],w,1)
= C(|Ly| V|L|, w, 1) is an AR which implies that A (L) is an AR. We shall show
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that if 2 is a subset of &, then [} A(L) is an AR. In fact, we have
Le @

N AE@) = () (C(Ly|, @, YU C(L], @, 1))
Le® Le? .
= C(ILOI’ws 1)U(Q C(IL!: w, 1)) #J.

if ﬂ C(L], 0, 1) = C(U L], w, 1) # &, then U |L] is contained in some sim-
plex o of K; hence ILoIU U |L| = 6. This 1mphes tlmt w(IL(,[u U |LD) < 1. Hence
C(lLe|, o, 1)m ﬂ c(Ll, o, 1) = C(|Lo| v U L], w, 1) is an AR, Wluch implies that
N A(L) is an AR If ﬂ C(L, 0, 1) = 0 lheu ﬂ A(L) = C(|Ly|, », 1) is an AR.

Le?

Consequently, we conclude that for any subset & of £, A(L) is a nonempty AR.
Le?

Hence we see that ﬂ C(Vy,w,1) = | A(L) is an AR.
i=0 Le®?

Consider the barycentric subdivision SdK of K and the decomposition
{St(¥, SdK)} Ve K"}, where the symbol St(V,SdK) denotes the closed star.
We have proved that for any subset {¥g, ¥y, ..., ¥} of K°, the following statements
(a), (b) and (c) are equivalent.

k
(@) iﬂ St(Vy, SAK) # B
=0
(b) <V0> Vls ey Vk> e K.
k

(c)iQ) C(Vy, 0,1y # 3.
k k
Moreover, {) St(¥;, SdK) and () C(V;, @, 1) are ARs. Hence we can construct
i=0 i=0

amap 1 P= {J \ St(V,8dK) —» o~ 1(1) =VL£(°C(V, ®, 1) such that

VekK
F(8t(V,8dK)) c C(V, w, 1)

for each ¥ e K°. By (2.1), fis & homotopy equivalence. Hence »™*(1) is homotopy
equivalent to P. This completes the proof.

In [12], J. B. West proved the following theorem.

(3.2) TuroreM (J. E. West [12]). Every compact ANR has the homotopy type of
a compact polyhedron.

Hence we have

(3.3) THEOREM." For every compact connected ANR X, there exist a graph G and

a Whitney map « for C(G) such that for some te(0, ®(G)) w™'(t) is homotopy
equivalent to X.

_ (3.4) TrEOREM. Let K be a finite simplicial complex and P= |K). Assume that P
is connected and dimP = n. Then there is.a Whitney map @ for C(K*|) such that
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for some positive numbers t; <t < .. <t <o(KY), o7} (=1,2,..
homotopy equivalent to |K'|, where K' denotes the i-skeleton of K.

Outline of proof. The proof is similar to the proof of (3.1). Consider the
set

,H) is

& = {|L]] L is a subcomplex of K* and |L| is connected} .

For each j = 0, 1, ..., n, consider the set

of; = {|L] € #| |L| is contained in some j-simplex of K} .

Also, let
# = {|L| e &||L] is not contained in any simplex of K}.

Choose real numbers ¢; (i = 1,2, ..., n) such that 0 = ¢, <ty <f, < ... <1,. Since
& is a finite set, we can define a map o’: LUF(|K*]) > [0, ) such that
@) o'({x}) =0, for {x} e F(IK']),

(i) ;<o) <ty for ded;—ot;_4 (j=1,2,..., 1),

(i) o'(4)>t,, for A€,

(iv) if 4, Be Fy(|K']) and AS B, then w(4) <w(B).
Then there is a Whitney map  for C(|K*|) which is an extension of @ (see (2.2)).

Assume that || € &. Note that o (L)) <t; ({ = 1,2, ..., n) if and only if |L| is
contained in some simplex of K. In the same way as in the proof of (3.1), we see
that »~(#,) is homotopy equivalent to |K'| (i = 1,2, ...,n).

(3.5) Remark. In [7], Lynch proved that if X is a compact connected 1-dimen-
sional ANR and o is any Whitney map for C(X), then o™ *(#) is an ANR for eac}
0 <t < w(X). Also, in [3] we proved that if G is a graph and  is any Whitney map
for C(G), then w™'(z) is a compact polyhedron for each 0 <t < w(G).

For a neighborhood of ¢ = 0, we have the following

(3.6) ProposimioN (cf. [3, (2.3)]). Let X be a compact connected 1 ~dimensional
ANR and let & be any Whitney map for C(X). If X contains a simple closed curve,
assume that t, = min{w(S)| S is a simple closed curve in X }. Otherwise, assume
that ty = w(X). Then w™(t) is homotopy equivalent to X for each 0 <1 <t,.

Proof. Since X is a Peano continuum, X admits a convex metric ¢. The proof
is similar to the proof of [3, (2.1) and (2.3)].

We close this paper with the following questions.

QUESTION 1. Let G be a graph and let o be any Whitney map for C(G). What
is the homotopy type of the Whitney continuum @~ 1(t)? How many homotopy types
do Whitney continua ™ '(t) admit?

QUESTION 2. Let X be a continuum. Does there exist a curve (1 -dimensional
continuum) X' such that X' admits a Whitney map o for C(X') with the property
that for some t>0, w™(¢) has the same shape as X, i.e., Sho~i(f) = ShX?
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Sur la quasi-continuité et la quasi-continuité approximative
par

Zbigniew Grande (Bydgoszcz)

Abstract. We prove that every cliquish (d cliquish) function is the limit of a2 sequence of quasi-
continuous (d quasicontinuous) functions (4 denotes the density topology).

Soient R I'ensemble des nombres réels et T une topologie dans R.

Une fonction f: R — R est dite T quasi-continue (T cliguish) au point x € R
lorsqu’il existe pour tout nombre £> 0 et pour tout entourage Ue T du point x un
ensemble nonvide Ve U, Ve T tel que

[f@O-S()l<e

pour tout ¢t e ¥V (oscf<e).
v

Etant fixés I'ensemble mesurable (au sens de Lebesgue) 4 < R et le point x € R,
la limite supérieure

. mAnx—h,x+h])
lmsup ——7——
B0+ 2h

est dite la densité supérieure de Tensemble 4 au point x. S'il existe la limite

. m(An[x—h,x+h)
lim ——————— =

1 s
-0 2h

x est dit un point de densité de I’ensemble 4.

La famille composée de Pensemble vide et detous les ensembles 4 < .R.tels que
tout point x € 4 est un point de densité de P’ensemble A est une topologie. Cette
topologie est dite la topologie de densité (IS]) )

Désignons par T, la topologie euclidienne et par Ty la topologie de densité
dans R. Si K est une famille de fonctions f: R - R, alors B(K) désigne la famille
de toutes les fonctions f de la forme f = limf,, ol toutes les fonctions f,e K
n=1,2,... ne - .

Désignons par Q (Q,) la famille de toutes les fonctions T, quas1-con?1m.1es
(T; quasi-continues) et par P (P;) la famille de toutes les fonctions T, cliquish
(T cliquish). :
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