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Thus the existence of B-ideals follows, for example, from the Continuum
Hypothesis. Now, it is easy to see that each B-ideal is a P-ideal (but not necessarily
maximal). Indeed, suppose that 4, € J, where J is a B-ideal. We may assume that the

sequence is increasing. If B, = 4,\n, then the B,’s are in J and min B, — 0, and
n

hence, for some Z, B= {J {B,: neZ} is in J. But 4,S4B,< B for each new,
and hence J is a P-ideal. -
Finally, we prove the following

PROPOSITION. Assuming CH, there is a B-ideal, and hence a P-ideal, which
cannot be extended to a P-point. In particular, there are nonmaximal B-ideals.

Proof. The Balcar-Frankiewicz-Mills Theorem shows that the space G(2°)
(the Gleason space of the Cantor set) can be embedded into * as a closed P-set X,
Hence the family

F={dcw: X 4%}

* i a P-filter. If F were extendible to a P-point p then, since {p} = () {d*: 4 ep}
and 4N X # @ for each A € p, we would have p € X, which is impossible, because X
is separable and without isolated points. The dualJ = {w\4: 4 e F}isthen a P-ideal
not extendible to a P-point and, in fact, it is a B-ideal: suppose that 4, J and
min4, - co. Let 4 eJ almost contain each A4, and let e, = 4,\A4. There is an

n
infinite Z < o such that {g,: neZ} is a disjoint family. It is possible to form 2°
almost disjoint subunions {J {e,: neZ,}, for almost disjoint Z, =Z. One of them
is in J, for otherwise we would have 2° nonempty open-closed disjoint subsets of X,
which. is impossible as G'(2”) has countable cellularity.
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Nielsen reduction in free groups with operators
by

Gert Denk and Wolfgang Metzler (Frankfurt)

Abstract. The Nielsen method is generalized to an equivariant situation, in which the variables
of a free group are freely permuted by an operator group G. Critical elements W = A-x(4)2,
x e G ocour, which are analysed in detail. An equivariant Grushko-Neumann Theorem is deduced
and applications to low-dimensional CW-complexes are given.

§ 1. Introduction. Let G' be an arbitrary group, F(ay, ..., a,) a free group of
finite rank, and let F be the normal closure of F in G*F. F is freely generated by
the xa;x~ %, x € G, with G operating on F by conjugation. Alternatively we may
think of F as a free group with basis x(a;)) (& xa;x™"), x € G, which is freely per-
muted by G. The length of an element W of F is understood to be the length with
respect to the (in general infinite) basis x(a;) and is denoted by |W].

If Wiy,.., W, are finitely many elements of F, then we denote by
Gp(Wy, ..., W,,) the subgroup of F gencrated by the W,; by Gp(Wy, ..., W,) we
denote the smallest G-invariant subgroup of F containing the W, i.e. the subgroup,
which is generated by all x(W)), x€ G. (Wi, ..., Wy) is called a G-generating system
of ap(Wi, vy W,). A G-generating system is called (G-) free or a (G-) basis of
Gp(Wy, ..., W,), if the x(W)), xe G, i=1,..,m are free in the ordinary sense.
If a G-invariant subgroup of F has a G-basis, then this subgroup is said to be
G-free.

Gp(Wy, ..., W,) remains unchanged if the m-tuple (Wy, ..., W,) is subject
to Nielsen transformations (NT), i.c. a finite sequence of the following elementary
transformations:

@) W, » Wi for some i (inversion),
) @) W,— W\W, i j (multiplication),
(iii) deletion of some W;, where W;=1.

For (_ii)(Wi, ..., W) we may enlarge this list by
@ (v) Wy— x(W;) for some i, xe G ((G-) conjugation) .
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Transformations which are finite sequences of (i)... (iv) are called relative
Nielsen transformations (RNT). (The notion “relative” comes from the applications
to pairs of 2-complexes, see § ITI, (c).) By (i), (i) and (iv) it is possible
(3) to multiply W, on the left or right with x(W)', i # j (generalized multipli-

cation).

A relative Nielsen transformation (not containing deletions) transforms a G-free
m-tupel (Wy, ..., W,,) into another G-free m-tupel.

In analogy to the “absolute™ case, where G does not occur, the following Relative
Nielsen Theorem holds:

THEOREM 1. If 6p(W1, s W) = F, then there exists a finite sequence & of
length-reducing or length-preserving elementary relative Nielsen transformations which
transforms (Wy, ..., W,,) into the standard basis (ay, ..., a,) of F.

It follows that m >n. If moreover m = n, then @ does not contain deletions,
and thus (Wy, .., W,) turns out to be a basis.

But in contrast to the absolute case, there arise difficulties in generalizing
Theorem 1 to a relative Nielsen reduction method for arbitrary (W, ..., W,),
ie.,if Gp(Wy, ..., W,) may be a proper subgroup of F. We describe these difficulties
together with a brief “history of Theorem 1”.

In 1944 Renée Peiffer, in her study [14] of identities of relations, mentions the
case “m = n, G a free group of finite rank”. The proof of her Theorem 4 contains
the claim that length-reductions can be performed as in the absolute case. Elvira
Strasser Rapaport gave a complete proof of this case about 20 years later ([15], Theo-
rem 1). Rapaport was interested in applications to the Andrews—Curtis conjecture,
and her approach was refined subsequently by R. Craggs [4].

W. Browning and the second author have independently treated the more general
case “m = n, G arbitrary” ([2], [11] Thm 7). Both point out that a relative Nielsen
reduction method would have to consider elements of the form

) W=A4x(4)™", A4#1,x#1,
which cancel “essentially” against G-conjugates of themsclves. But, fortunately,
these elements do not occur in the case m = n, as a G-basis of F must project to
a basis of F under the natural projection F — F given by x(a) — a;, whereas
W = A-x(4)~* projects to 1.

We will call elements of type (4) critical elements. They are responsible for the
additional difficulties in the relative case:

ExampLe 1. Let W # 1 be the element W = a-x(a)~*, where F(q) is of rank 1
and x is a generator of G = Z,, n> 1. Then
(5) Wex(W)« .. x" Y (W) = 1.

Thus W is not a basis of Gp(W). Further the result of every relative Nielsen trans-

formation applied to W fulfills (5) or the inverse relation and hence cannot be a basis
either. . : '
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This shows that, in general, there exists no relative Nielsen transformation
converting (Wi, ..., Wy,) into a G-basis of Gp(Wy, ..., W,).

Moreover, Gp(W)" of Bxample 1 is not even G-free, for otherwise we could
apply Theorem 1 to W, expressed as a G-word in a basis (Wy, ..., W,,) of Gp(W)
= ~G—]E)w(Wl, ey W) = F(Wy, ..., W,). This would yield »z = 1 and establish W as

a basis of Gp(W), which it is not.

Thus a relative Nielsen-Schreier subgroup theorem does not hold in general.

Denk [5] avoided the restriction m = n in Browning’s and Metzlér’s pr09t: of
Theorem 1 by applying the Grushko-Neumann Theorem. An analysis of eritical
elements in the reduction process had been bypassed once more. .

Such an analysis is the goal of the present paper (Main Theorem a.nd its 1'3roo’t"
in § TI). It turns out that — as in (5) — relations of G cause the “misbehaviour
of critical elements (compare ihe considerations leading to ( 1?5) below): As a con-
sequence of the main result we obtain a relative Nielsen—Schreier subgroup theorem
for (locally) free operator groups G (Theorem 2).

Likewise we will deduce Theorem ! from the main theorem, as well as a rela-
tive (= operator) version of the Grushko-Neumann Theorem (Theorer'n 3). In
addition to these consequences, §I1T contains applications to Presenta‘uons ‘and
low-dimensional CW-complexes which were the motivatif)n for this paper: A direct
application of Theorem 2 is a basis theorem for identities of presentatxgn.s ,(The-
orem 4). Theorem 5 shows that the crucial collapsing z%rgum'ent of P. erght s pa-
per [18] can be replaced by an algebraic onc on relative Nielsen transformations

of bases. ’ .
The paper contains a condensed version of the first author’s thesis [6].

§ IL. Critical elements and the reduction process. By G-conjugation, 'a critical
element W can be normalized to W' = A'-x'(d)7', 4" # 1, such the?t A" — con-
sidered as a reduced word in G*F — starts in F. 4’ is called the essent'zal part_ of W,
x' the operator part of W. Let us call critical elements Wy, ‘I/If'z equivalent if they
determine the same essential part. Thus the sublist X of critical elements of an
m-tupel (Wi, ..., W,,) is partitioned into equivalence classes Kj. Let Gp (Kj) denote
the subgroup of F, which is generated by all W€K, and let Gp (Kp) beits G~clo;url;:.
U, < G is defined to be the subgroup of G generated by all operator parts of the
W ek, N '

i Th/ii following list of (partly) elementary facts on critical elements will be of
importance:

..1 . ..
(6) If W is critical with essential part A and opelrator part x, then W™ is critical
with essential part 4 and operator part x .

(N If Wy = u(A-x ()Y and W, = ug(d-x,(4)~ ") are _clritical with .C(:::Slentil:ﬁ
part 4 and operator parts x; resp. X, then Wy iy XqUs (W) is critical Wi
essential part 4 and operator part Xi'Xa.
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Here and in the sequel the operator part 1 is assigned, if the result of a multiplication
of critical elements is the “degenerate critical element” 1.
Let A, be the essential part determined by Kj. Because of (6) and (7)

(8) every element of Uj can be realized as the operator part of a critical element
W e Gp(Kp) with essential part 4.

(9) All W, € K, have the same length |W;| = 2[4,
(10) The length of We Gp(Kp) is a multiple of 2]4,|.

This follows, because x(A,,)”1 and y(4,) in such a product cancel totally or not at all.
A converse of (8) is given by

(11) If a product We ap(Kﬁ) has length [W|< 2|4, then W is trivial or critical
with essential part 4;. Its operator part is the product of the operator parts
of the factors, i.e., if W= J[u (W) with s, = %1, W, € K, and x,, is the

¥
operator part of W, then [] xf* is the operator part of W.
v

(11) can be deduced from (10), (6) and (7) by first restricting to factorizations. of W,

in which no proper subproduct has the value 1. The general case then follows
inductively.

(12) If the critical elements Wie K, have corresponding operator parts x;,

. ¢ . , .
i=1,.,rnandif(x,..,x) = (x, .., x.), » <ris a Nielsen transformation
of operators, then ¢ induces a relative Nielsen transformation (Wys oy W)

o
> (W1, ., Wi) of critical elements with essential part A,.

In fact: an inversion gives rise to an inversion by (6), a multiplication to a gene-
ralized multiplication by (7), a deletion to a deletion. So & in particular consists
of elementary steps which preserve or reduce the sum 3wl

The x; in (12) are called freely independent, if r' is necessarily equal to r, i.e.,
if there exists no ¢ containing a deletion.

ExaMpLE2. Let F(a, b) be given and G be a free group of rank 1 generated
byx. Choose W; = ab-x"!(a™), W, = ax~(a™"), W3 = x¥a)*b~*. Then
Wi = W, W, would be a length-reducing transformation, if the operators of the
terminal letter of W, and the initial letter of W3 were not different. In fact, there is

no length-reducing generalized multiplication between Wy and W;. But the critical
element W, gives rise to

(13) k=Wt W = x" @) 2@,
which can be used to form the RNT Wy = Wik Wy = a. Further transformations
to the standard basis (a, b) of F(a, b) are now obvious:

K itself is critical and acts as a catalyst: both halves of & react with one of the

remaining factors of Wj-k-W,, and afterwards the desired length-reduction is
possible,
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‘Whereas ordinary Nielsen reduction can be performed by considering products
of two and three factors, phenomena as in Example 2 suggest allowing the occurrence
of catalysts between the factors in order to handle the operator case: Let (Wy; ..., W,,)
be given, then the empty word k = 1 is called a catalyst. k € Gp(Kp) is called a catalyst
for x(WD), y(W]), e, ne{~1, —1}if [k] = 2|4, [x(W) k| = (W} and |k-y (W)
= |W)|; x(W}) k-y(W]) then is called a 2-product with catalyst, likewise in the case
k= 11. ;:(Wf)~k1 Wikyy(Wi)e,me {~1, +1} is called a 3-product with catalysts,
if x(W9 ke Wy # 1 as well as Wy ky y(W) # 1 are 2-products with catalysts
and x (W9 Jey Wyky-y(W)) is not a 2-product with ca‘f_a_lyst ky Wik, Wie Ky,
each of &y, ko, Ky "Wk being a eritical element of Gp (Kjy) which is trivial or has
the essential part 4;. All products in these definitions are assumed to be reduced
words in the z(W,)%L, o .

A nontrivial catalyst k € Gp (K}) is critical with essential part 4;. Ina 2~pro-d1'1ct
with catalyst x(W?)-k-y(W7) both halves of such a k react with one of. the remaining
factors as in Example 2. Because k # 1 we may assume that k is given as a pro-
duct [T in the z2(W,)L, W, € K;, such that no subproduct has the value 1. Th.en
adjacent factors in J] cancel exactly half of each other. Together with
|x(W?) k| = |W;| and [k-y(W})| = |W] this implics that ‘
(14) the transitions x(W}) — x(W{)-k and y(W)) - k- y(W}) can be performed

in length~-preserving elementary steps.

We can now state the ’

MAIN THEOREM. Let (Wy, w., W,y) be an m-tuple of elements W, F. Then there
exists a relative Nielsen transformation .

’ @ (Wla-": Wm)'_)(Wi!"-ﬂ Wr’n')
consisting of length-reducing or length-preserving elementary transformations such that
the W, fulfill
(15 (RO) Wi # 1, |

(*)  The operator parts of the Wi in each K; are freely independent.

(16) For each 2-product with catalyst either ,
RY) (W) Ty (W) Zmax{| W], [Wjl}
or

() (W ky(W)) =1, Wi, W;e K, keGp(Kp)

holds.
(17) For each 3-product with cataiysts ' , ,

R2) [x(W") Jey Wik y (Wi > | Wil = Wl + Wil

holds. i o 1
Remarks. (RO), (R1) and (R2) correspond to the Nielsen properties m'the abso! p;'t;
case. (R1) states that, even after inserting an admissable catalyst, nefther zca(1 ;S
nor y(W;") cancel more than half. (R2) states that in any 3-product with catalysts,
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W, does not cancel totally, no matter how &, and k, have been chosen. () and (+) are
new properties in the relative case.

In every 2-product with catalyst of type (+), k& is trivial or — compare the argu-
ment preceding (14) — can be given as a product of critical elements, such that no
subproduct has value 1. If x| is the operator part of W e K, (+) thus yields a re-
duced nontrivial word w(x;) of value 1 in G. Such a word raises the question, whether
the x, are freely independent or not, hence of a possible application of (12) including
a deletion. . :

If in (5) we collect all but the first and the last factor to a catalyst, Example 1
gives a case of (+), where () is fulfilled. In fact, all of the properties (15), (16), (17)
of the Main theorem hold.

Examples of this type can be constructed from (6) and (7), whenever G has
a finitely generated nonfree subgroup,

On the other hand, if G is (locally) free, then the existence of w(xy) is incompa=
tible with (x). Hence

(18) the case (+) does not occur in the Main Theorem, if G is (locally) free,

The Main Theorem will be proved by the construction of a reduction process.
Two of its steps parallel the “Nielsen modifications of type 1 and 2" of the absolute
case and will be given similar names. But between these there is an important “inter-
mediate modification”, which does not change lengths but increases the number of

critical elements of a generating system. These steps are the subject of the following
lemmata.

Lemma 1. If (Wy, ..., W,) violates (16) for some 2-product with catalyst
x(W)k-y(W)) and i # j, then there exists @ RNT of length-reducing or length-
preserving elementary steps which replaces W, or W, by a shorter element. (This
transition is called a modification of type 1.)

Proof. By inversion and/or conjugation of the product we may obtain the case
y=1, |Wi=|W,. Then [x(Wi) kWil <|W| for some product ke Gp(Kp).

(2) If k does not contain a z(W,)** — in particular, if k = 1 — then we apply
the transformation W, -+ x(W})-k-W].

(b) If some z,(W)*! is contained in k, but no zz(W_,)"“, then we apply the
transformation

Wi Wy x(WD, kW] x(W}) k- Wi, kW],

In both cases, (14) guarantees that we can do without length-increasing elementary
steps. .

(c) The case that & contains G-conjugates of WE! and Wi would yield that
both are nontrivial elements in the K; given by k. Then, because of (10),
|W| <|Wi| = 2|4, implies |W| = 0. Thus (+) would be fulfilled, contrary to the
assumption that (16) is violated. Hence this case cannot occur. M
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In ordinary Nielsen reduction the products WiW} nced no special attention.
This is not so in the relative case, which leads to a new type of modification:

LemMA 2. Let Wy, i = 1,...,m be nontrivial elements of F fulfilling (16) for
i # j. Then for each 2-product with catalyst the following holds:

(18) (W ke y (Wi 2 \Wil, if W, is noncritical,

19) R1) if W, is noncritical, |x(Wi)-k-y(Wi)| > W, or W,—x(Wi-k is
a RNT of length-preserving steps, x(Wi):k being critical. (This transition is
called an. intermediate modification.)

(20) If W, is criticl, then |x(W}) k-y(WI| W], or & = n and the given product
is of type (+)

Proof. We may assume y = 1. First we prove (18):

The case % = 1 is trivial: As 2-products with catalysts are assumed to be
reduced as words in the z( WE!, we have x 5 1. Because of W, 5 1 there is no
cancellation at all in x(W,)*-W; % We even get |x(W)) Wi >|W).

k # 1 implies | W] = |kl: If zo(Wys) is the last (critical) factor of a reduced
Z(W,)E? factorization of k, i.e. k= E zo(WE), | W] < k| would imply

@D XKz =[x (W) -kl = Wil <[kl = Wl »

violating (16) with i # v, (since W, is critical and W, not). If |[W}f is odd,. then
Wi = Loz, (@) R, |L| = |R| = 3(IW;|—1). A violation of (.lf%) would imply
#(R)-k-R™ =1 and xzq(al}) z(ay") = 1. x would then be trivial and tihlerefore
also k = 1. The given product in (18) would not be reduced in the‘z(W.V) .

If |W;| is even, let LR be the decomposition into halves. ‘A violation of (12’3’)
would imply x(R)-k-R™! =1 and |x(L)-L™'|<|W). As in the “odd case”,
% and k would be trivial and again the given product not be reduced.

Proof of (19). We assume that the inequality is violated. The case k = 1
cannot occur because for || odd the middle letter of W; would have to cancel
against a G-conjugate of itself, which is impossible, and for even |W,| the cancella-
tion would establish W, as critical. So we have k # 1 and by Q1): [W| =kl

Once more we conclude “|W,| even” by the middle letter arigument,' as ‘above.
Let Wi = L-R with |L| = |R| = $|W,|. The violation of the mxequahty in (1?2
requites so much cancellation as to yield x(R) kL = 1. Then x( Wi)'k = x({,) 'L
is critical. W, was not critical and hence does not occur in the given factopzatt;m
of k. (14) implies that W, — x(W{)-k can be performed in length-preserving ele-
mentary steps. . ’ ' .

Proof of (20). In addition to y = 1 we may assume that W} is normalized,
ie. Wi= Ag-z(dp)"". ‘

The case k = 1, ¢ = ~p is treated as in the proof of"(18). ) .

For k =1, & = 5 the given product is equal to x(Ap) xz(A) ™ -Agrz(4Ag) ™"
The length of it is smaller than | W] if and only if xz = 1 and x = z, but then (G has
2-torsion and) we clearly have a case of (+).
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If k # 1, the case |W;| < |k| can be ruled out similarly as in (21): the only modi-
fication is that we may assume [W,,| = |k|; hence i 5 vo holds as before.

For k# 1, &= —n, |Wi| =k, [x(W])k W | <|W] would require can-
cellation of amount xz(dg)~*-k-z(4p) =1, |x(4p)- 45! <2|4y|, hence x =1
and k = 1, being a contradiction. Thus |x(W}) kW | = |W)| holds.

In the case k# 1, & =1, Wi =K, [x(4y) xz(dp)"* k- Ay z(dp) ™| < W)
= 2|4,| similarly requires xz(dg)~ 'k Ay =1 and soﬂﬂther cancellation in
x(4p)'2(4;)" 1. This implies x = z, k = 2%(d4y) 45" € Gp(Ky), (thus 2* # 1), and
establishes this case as one of type (+). B

Given (Wy, ..., W,,), we define for each je {1, ..., m} M, to be the system of
all W} such that, for appropriate choices of the remaining factors, (R2) is violated
with W; as middle factor and some x(W7) as first factor:

[x(W5) Koy Wk y (W] < [Wi = [ W[ + W)
We first collect criteria which will be used to guarantee that M, ; is empty:
(22) If (16) is fulfilled and [W)| is odd, then M; = O.

Proof. In a 3-product with catalyst x{W}) ky W;ky y(W)") (16) guarantees
that W; can be reduced from right and left not more than half. Hence at least the
middle letter of W; remains uncancelled and (R2) is valid. M

(23) Let (16) and (R1’) be fulfilled and W; # 1 be a noncritical element of even
length, If then [x(W7)'k-W;|>|W,| holds for all 2-products with catalysts
x(W)-k-W;, i #], then M; = .

(In this case the left half of W; is called G-isolated.)

- Proof. In x(W}) ky W ko y(W}), (a) W; is cancelled from the left less than
a half, if i +# j, because of the inequality of the assumption, But the same holds for
i =j:.If e = 1, this follows from (R1'). If ¢ = ~1, we argue as in the beginning of
the proof of (18): the case k = 1 is trivial and otherwise we get || = |k|. More
than the asserted cancellation would yield x(L™Y)+kL = 1, W; = L*R being the
decomposition of W, into halves. Then, as W; is not contained in the K given by k,
k-W; = x(L)*R itself would violate the inequality of the assumption. (b) W, is
cancelled from the right at most half because of (16).

(a) and (b) together imply that W; is not cancelled totally, M

(24) Let (16) be fulfilled and all W, be nontrivial, and let W;e K} be a critical
element. Then the following are equivalent:
(a) for each 2-product with catalyst |x(W}) -k W,| = |W,| implies & = 1 or
ke Gp(Kp) is critical with essential part 4.
) M;= 9.
(In this case W, is called anti-G-isolated.)
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Proof. If (a) is violated, i.e. [x(W}) &k W;| = |W,| holds for some k s 1 and
either k& ¢ Gp(Kj) or k has essential part # Ap, then x(W})-k-W;-z(k™ %) zx(W})
(for W; = A- 2(4)™*) is a 3-product with catalyst, in which W; is cancelled totally.
Hence M; # &. If (a) holds, then each hypothetical 3-product with catalysts and
middle factor W, in which W; is cancelled totally, turns out to be a 2-product
with catalyst &y W, k, of the form which is excluded by definition. B

Remark. In (23) one can give a symmetric condition for the right half of W;;
it holds if and only if the condition for the left half of W} * holds. (a) of (24) holds
if and only if the corresponding criterion for W;-k+y(W;)" holds; thus we do not
distinguish between right and left in the definition.

(25) Let (16) be fulfilled and W] e M;. Then there exists a 2-product with catalyst
such that |x(W)* k-W;| = |W|| and |k| <|W}].

Proof. Let x(W)) ky W; ky y(W) be a 3-product with catalysts in which W
cancels totally. By (22) |W;] is even. Because of (16) W is cancelled half from both
sides and we get: [x(W{)ky W) = [W|, |W; ko y(WH| = |W)] and [W|>|W}|
zlkil, W2 |W)lzlkyl. We are finished if [W)> k. If |[Wj| = |ky|, let
W; = L'R be the decomposition of W, into halves and ky = A4-z(4)”*. Then
2(4)" = L and thus x(W))’ ends with z7}(L™") = A. It follows that zx(W;) W,
fulfills the conclusion with |k| = 0<|W,]. &

For the following lemma we assume that the W, are ordered so that
IWi<|Wisil, i=1,..,m—1 and that for all W, of equal length the noncritical
ones are listed prior to the critical ones.

LeMMA 3. Let (RO), (16) and (R1) be fulfilled, M, = @ for v < j—1 and M; # O+
Then there exists @ RNT @ in which every elementary step preserves the length and
which transforms critical elements into critical ones, such that afterwards (at least)
one of the following cases holds: (i) M’ = @ for v <j, (ii) (16) and (R1') are not both
valid any more, (iii) the number of critical elements has increased. (This transition is
called a modification of type 2.)

Proof. Because of M, = @ for v<j—1, at least one half of a noncritical W
of even length, v<j~1 is G-isolated. Applying inversions, we thus may assume

(26) the left half of a noncritical W, of even length, v<j—1, is G-isolated., - .

By (22) | W) is even, Let Wy be in M;. Because of (25) this yields a 3-product with
catalysts ky, k, and |k,| <|W|, in which W, is cancelled totally. Thus we have

(X (WD) Joy Wyky y (WD < (W =W +IWl
(W) Jey W)l = [Wil, Wyl y (W) = (W
(28) AU B AR
If WieM,, i+#j, and W, is noncritical, we define a RNT o) by
(29) ol Wy (x (W) kW) -

@7
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If WieM;, i+ j, and W, is critical, then W;°e M, holds also, which implies
W.e M. Let W; = z(L;)-L; * be the decomposition of ;. Then we define 2 RNT
¥ by ,

(30) P W e WY X (W) ey W

of") and Y{? are well defined and, because of (14), can be performed without length-
increasing elementary steps. Define @ to be the product of these transformations
in any order. This makes sense as one transformation does not block the application
of another; in particular, o) and ¢{., do not conflict with each other: Because
of (28) only W of at least the length of W, are modified; the necessary catalysts are
shorter than W, and the critical generators to form these catalysts have not been
altered.

The elementary transformations of ¢ are even length-preserving: A length-
reduction is impossible for gof’g by (16). Critical W, are transformed into critical ones
throughout, and the essential part of the result is not shorter than the one of w,.

The result of the transformation is denoted by W] with correspond-
ing My, etc. We assume that (if) is not valid and show this to imply M, = &, v<J:
M;=0:

Case 1. W; = W, is noncritical. The left half of W) is G-isolated: If W¢e M i3
i # j, then W} has been transformed to end with a G -conjugate of the right half
of W{”. Any 2-product with catalyst and x(W{k'- W) = |W{| thus would
yield [y(W))-k'-Wj| = |W}| for some 2-product with the same catalyst, violating
(R1"). Hence, because of (16),

(€3] [x (W) k' Wj| > |W)]|

holds for WyeM;, i+ j and all (2-products with catalyst) x(W*)-k'-Wj. But
this is also true for W ¢ M. 12 i # ji The fact that no W, with |W,| <|W)| has been
changed has the consequence that the necessary catalysts for a violation of (31) do
not exist. By (23) Mj is void.

Case 2. Wj = W, is critical. In this case, W) turns out to be anti-G-isolated:
Let us consider a 2-product with catalyst and |x(W;)*-k'-Wj| = |Wj|. For
W,'.e M;, W{* ends with a G-conjugate of Lit, Wy = Ly y(L)™* being the decom-
position of W;. As half of W, has to cancel in the given product, there is a relation
v(L)~ k' L; = 1, which implies &' = 1 or: k' and WS" have the same essential
part. But this is also true for W? ¢ M;, as no new relevant catalysts have been pro-~
duced. By (24) we thus gt Mij=0 S

M, = @, v<j=~1: This is evident for |W,| <|W,}: Because of (28) these W,
have neither been transformed nor have relevant new catalysts appeared, Even in the
case |W,| = |W,| there are no new catalysts. It might only be that W, itself has
been transformed to yield M? s @. This is excluded (for |W,| = [W)[) as follows:

Let W, be noncritical. |W,)] is even (like |W}]) and, because of (26), has a G-iso-
la-ted left half. By (23) (Wi kW, > [W,| = |W,| holds for every (2-product
~ With. catalyst) x(W; Y-k W,. ‘ .

icm®
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The inequality can be rewritten as |x™'(W;*)-x~'(k~Y)- W)| > |W,|, implying
w;l¢ M, (by (25)). The right half of W, ! thus has not been changed which implies
that the left half of W, has remained G-isolated. By (23) we get M, = &

If W, is critical, W, is anti-G-isolated. Then the transformation of W, must have
been performed with a trivial catalyst because of (24), (27) and (28). The order con-
vention preceding the formulation of Lemma 3 and (30) together now yield W; to
be critical with the same essential part as W,. But then M, = @ implies M; = @
which is a contradiction. &

We are now ready for the

Proof of the Main Theorem. We consider finite systems of (W, ..., W,),
in which the W, are ordered as in Lemma 3. Two such systems will be compared
anew with respect to: (o)) the number of elements, (8) the length sum, (y) the number
of critical elements, () the first M, (from left to right) with M; # @. If all these
coincide; then the systems are called equivalent. Otherwise we let the first different
measure of (), (), (y), (8) from left to right determine the order. (In the case of (y)
(Wi, ooy W) <(Wy, ..., Wy), if there are more critical ; than W;; in the case
of (8) (Wy, ..., W) <(Wi, ..., W,), if the first nontrivial M, occurs later than in
(W1, ..., W), or, if all M are trivial but not all M;.) If §'is a given equivalence class
and / an upper bound for the length sum, then

(32) there are only finitely many classes R < § such that the length sum of R does
not exceed /.

The reduction procedure is the following: Stait with a given system (Wy, ..., W)
and consider whether all of the criteria (15), (16) for 7 % j, (16) and (R1’), (R2) are
fulfilled. If so, then the conclusion of the main theorem holds; if not, then we focus
on the first of these criteria (from left to right) which is not valid and replace
(W4, .... W,) by a smaller system (according to the order defined above) as follows:

Case 1. If (15) is violated then we can apply deletions or elementary operations
of type (12) which preserve the number of elements, do not increase the length, and
eventually also make possible a deletion, Reorder the result according to Lemma 3.
(Wy, ..., W,) is teplaced by a smaller system. (This may be called a modification
of type 0.)

Case 2. If (15) holds, but (16) is violated for some i s j, then by Lemma 1.we
can apply a modification of type 1 to replace (W, ..., W,) by a system of an equal
number of elements and smaller length which (after reordering) is a smaller system.

Case 3. If (15) holds and (16) for 7 % /, but (16) and (R1) are not both fulfilled,
then by Lemma 2 we can apply an intermediate modification preserving the number
of elements and the length but increasing the number of critical elements. Reorder.
(Wi, .., W,) thus is replaced by a smaller system. g

Case 4. (15), (16) and (R1’) hold, but (R2) is violated. By Lemma 3 we can appl:
a modification of type 2 yielding a system of equal number of elements and equal
length sum, If (iii) is not valid but (i) is, then the new system is already ordered pro-
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perly and smaller than the old one; if (iii) is valid, then it becomes smaller (after
reordering the Wj); if (ii) is valid, then a further application of a modification of
type 1 or an intermediate modification yield a smaller system.

As (even in case 1) the length is not increased, it is bounded by the initial value I,
Hence by (32), the reduction must terminate after a finite number of steps yielding
a system (W7, ..., Wy,) which fulfills (15), (16) and (17). H&

Remark. Under suitable decision hypotheses on G the reduction process can
be turned into an algorithm. They hold, in particular, if G is free of finite rank
(compare the discussion in the concluding § 3 of [3]).

§ III. Consequences and applications.

(a) Let Wi, ..., W, € F be nontrivial elements fulfilling (16) and (17), and let
8

(33) W= [lwW), &=1=211<i<m
y=1

be a reduced word in the u(W)*! in which no subproduct of type (+) occurs.
Then

(34 (W2 % {ve{l,.., s} with: W, noncritical}
and
(35) |W| = max{|W,|}.

Proof. From left to right we collect factors to catalysts (possibly trivial), such
that (33) is rewritten as

(36)

where each V), is one of the (W), ¥, -k, Visy is a 2-product with catalyst and
the k, cannot be enlarged with respect to these requirements. As (+) does not occur,

cancellation in (36) leaves (at least) the left half of Vi, the right half of ¥, and (at
least) ‘one letter of each V. Hence we get

Gn W12 3w, +3I W)+ (~2),

G8) W HW |+ W+ 4 (€ {2, ..., s—1} with: W,, noncritical}

and (34).
7 For the proof of (35) we note

®
(36) implies
®.

We=VikyViky ks Vs,

max{|W, |} = max{|V,|}.

IW| 2 max{|V,]},
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as in the absolute case, see [8], Proposition 2.13. () and (f) together yield the desired
result. B

(39) If (RO), (16) and (17) are fulfilled, then every We Gp(W,, ..., W) can be
written as W = []u(W3), in such a way that (34) and (35) hold,

v
because in an arbitrary product of G-conjugates of the W' we may cancel sub-
products of type (+). »
Proof of Theorem 1. Apply the main theorem to transform (Wi, ..., W,)
to (W1, wvs W) As Gp(W7, ... ,‘ﬂr) = F, cach g; can be written according to (39):

8

a = v]_’]1 u(Wi".
Because of (35), all W, in this product are of length 1, hence noncritical. (34) then
implies s = 1, which yields that the final system (Wj, ..., W5 contains some
G-conjugate of afl, We may assume without loss of generality (Wi, ..., W)
= (@1, rs Gy Wys1s oy Wip). The case m' > n now can be excluded, as (16) would
be violated. ®

THEOREM 2. Let G be (locally) free, Wy, ..., W,,e F. Then Gp(Wy, ..., W,,)
is G-free.

Proof. Apply the Main Theorem to transform (W, ..., W,,) to (W1, ..., Wy).
Because of (18), there is no product of type (+) for the final system (W5, ..., Wy).
(35) then vields that every nontrivial reduced word in the x(W;)*! determines a non-
trivial element of F. Hence (Wj,.., W) is a G-basis of Gp(Wy,..., W,,). H

(b) Let m be the normal closure of Gy *... % G, in G * Gy * ... % G,,.
With notations analogous to those in § I we get

THEOREM 3. Any G-generating system (Wy, ..., W,,) of Gy * ... * G, can be trans~
Jormed by a relative Nielsen transformation such that each element of the final system is
contained in some G.

Proof. (i) We first assume G to be finitely generated. Then there is an epimor-
phism ¥: G — G, where G is a free group of finite rank and an epimorphism
¢: G+ Fay, ..., a,) — G * Gy % ...  G,, which maps @, to W, and coincides with y
on G. Stallings’ proof of the Grushko-Neumann Theorem [16] yields a new product
decomposition G  F(ay, ..., a,) = G Fo Fy % ...+ F, such that the factor G re-
mains unchanged (the corresponding loops are not subdivided in Stallings® process),
Fy is mapped by ¢ to G and F, to Gy, j = 1, ..., m. We may assume without loss of
generality that F, vanishes, for, as the image of @ already is G, we can apply ordi-
nary Nielsen transformations to yield a situation in which F, is mapped trivially
and thus can be thrown to the remaining F;. ¢ can now be factored as

@: G Fy .. xF, 5 GxFy .. xF, 5 GGy #...%G,,

8 ~ Fundamenta Mathematicae 120, 3
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the factorization arising from . The ¢q(¢) yield a G-generating system of
Fy%..% F,©G#%Fy %..xF,, which, by Theorem 1, can be transformed into an
assorted one. By means of ¢,, this RNT projects to a transformation as required by
the assertion.

(i) If G is not finitely generated, we note that nevertheless G x ... » G, is finitely
generated. In expressing a finite system of generators of Gy ... * G, as G'-conjugate
products of the W;, only finitely many elements of G occur. These constitute a finitely
generated subgroup G, of G which can be used to replace G in (i). B

Remark. In [5], Theorem 3 is deduced directly from the (ordinary) Grushko~
Neumann Theorem.

(c) The case m = n of Theorem 1 was used in [11] to treat simple homotopy
equivalences of relatively I-dim CW-complexes:

(40) If f: K — K’ is a map of connected CW-complexes inducing the identity on
the common connected subcomplex L and an isomorphism 7y(K) — 7,(K"),
and if K—L as well as K’ — L are finite and of dim < 1, then fif a simple homo-
topy equivalence and homotopic rel. L to a formal deformation which involves
expansions of dimension at most 2.

The operator group for the proof of (40) is G = =,(L). Wall [17] subsequently
removed the connectivity hypothesis on L.

In [11] the dimension problem of simple homotopy equivalences between
(relatively) 2-dimensional complexes was also treated, i.e. the question, whether
moves of dim<3 suffice ((generalized) Andrews—Curtis. problem). By means of
relative Nielsen transformations it was shown to be equivalent to a problem about
identities of group presentations. These are defined as follows:

I p = {xqg, e, %Ry, .o, R, is a finite presentation, then we consider the
projection  p: F(xg, e, %) ¥ F(¥yy coey ¥ = F(X(, ooy %) given by  x; - x;,
¥; = Ry(x)). It induces a map ¢: F — F(x,) of the normal closure F of F(y)) in
G * F(y;) with G = F(x,). The kernel of g is the group of identities of p. Of particular
relevance for the Andrews—Curtis problem and the Whitehead-asphericity problem
-are Peiffer identities, i.e. identities of type

(r,8) = r-sr~teg(r)st-q(r)™%, r,sefF.

Theorem 2 immediately implies

THEOREM 4. Every F(x,)-finitely generated F(x;)-subgroup of identities of p is
F(x;))-free. B

By the remark after the proof of the Main Theorem, the reduction to a G-basis

“in Theorem 4 can be performed effectively.

Peiffer elements may be critical (for instance, (r, r)), and there is no obvious
deduction of Theorem 4 from Theorem 1. Hence the study of identities was a main
reason for developing a relative Nielsen reduction method for subgroups. Applica-
tions of Thecrem. 4 'to the above problems are part of our current work

icm

Nielsen reduction

195

The translation of the Andrews-Curtis problem into an algebraic one involves
3
the following result of P. Wright [18]: A formal deformation K2/“I2 between.
3

finite, connected CW-complexes (> indicates that only moves of dim <3 occur)
can be replaced by another one in which each 3-cell is collapsed immediately after
its introduction (transient moves). The proof of P. Wright uses a composition argn-
ment on homotopies of attaching maps which can be carried over to an n-dimensional
andfor simplicial version (Kreher and Metzler [9]). In dimension 3 it is a direct
consequence of our concluding theorem. The transient moves result from elemen-
tary RNTs.

3
THEOREM 5. Let K272 be a formal deformation between finite, connected
CW-complexes which involves only moves of dimension 3. Then presentations
P =Xy s %l Ryy o, Ry and P = {x, .y X,| R}, ..., RLY can be read off from K>
resp. L* in the usual way which are Q-equivalent, i.e, p transforms into P by a finite
sequence of Nielsen transformations and conjugations (R;, - wR;w™*, we F(x)),
for some j,) of the relators.

Proof. Consider a formal deformation K? = K} - K; - ... » K> =L?,
each step being an expansion or a collapse of a 3-cell. As the 1-skeleton is not
changed during the deformation, we may assume a spanning tree, and hence a basis x;
for G = F(x,, ..., x,), to be given throughout. From each 2-cell ¢} occurring in the
whole process we read off a relation R; and form the group F(y;) with projection
p: G* F(y;) ~ G as above. Bach 3-cell ¢ can be used to read off from its boundary
an identity z; such that

(i) in 2 only G- conjugates of those y L occur for which ej < e, holds, and
(ii) for the free faces ef, and e}, (possibly coinciding), by which e is mtroduced
resp. collapsed, there is exactly ome occurrence of a G-conjugate of y,1 s

+1
Yiz in Zy.

(This algebraic freeness property follows either from homotopy considerations
of characteristic maps or from the existence of a simultaneous characteristic map
which serves for the expansion and the collapse of er; see Brown [1])

For each K7 we now form the group F [N,,, where F, is the subgroup of G F(y;)
which is G-generated by those y; with ej e KZ, and N, is the G-invariant normal
subgroup of F, which is generated by the z with ¢ e K2. Thus F,|N, is the group
given by a relative presentation (in the sense of [11]) with operator group G, gene-
rators given by 2-cells and relators given by 3-cells. p induces projections

FN, - G. :

Because of (i) and (ii), each 3-expansion resp. 3-collapse yields a generalzzed
prolongation or the inverse process, i.e. the corresponding relative presentations
of F,|N, and F,,4N,, differ by one y-symbol, and one relator in which this
y-symbol is contained algebraically free. Hence we get a chain of G-isomorphisms:
> Yn)

F(yh "':yu) = Fi]Nj - FZINQ."”V"' i Fsl-’N.\rﬂ‘= F(y'l: one

3%
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which commute with the g,. They constitute a G-isomorphism ¢: F(y;) - F(»)),
which commutes with ¢, g;. The ¢(p;) and the ¥} thus are two G'-bases of F(y)),
and Theorem 1 yields elementary transformations which imply p and £ to be
Q-equivalent. B

§ IV. Some open questions. In addition to the topics of this paper it would
seem worth while to treat the following questions of Combinatorial Group Theory
with Operators:

(1) Derive a Relative Kurosh Subgroup Theorem for G-invariant subgroups
of Gy *..* G, (as in §IIIDb)). (A covering treatment may contribute to further
understanding of critical elements.)

(2) For F(ay, ..., a,) one has a natural homomorphism of the G-isomorphisms
Auty(F) to GL(n, Z(G)). We conjecture that its kernel is generated by the auto-
morphisms a; —~ x(a) a;-x(a) ™%, i # j, x€ G, and a; - a; [x(a), y(@)l, i # j, k;
x,y€ G, (all variables except a; are fixed) in analogy to Magnus [10].

(3) If p: F— F' is a homomorphism between two free groups of finite rank,
then one can ask for those automorphisms of F which commute with p. By using
Nielsen transformations we may restrict ourselves to a standard situation
p: F(X1, vees Xy Vs vees yn) - F(xls s xm) given by Xy = Xy, Yy — 1. We con-
jecture that the automorphisms in question are genmerated by (i) RNT’s of
F(py, s y) With G = F(x;) and (ii) multiplications of a y; to an x,; from left or
right. (So far we have verified the case m = 1.)

The question is a “dual” one to the determination of stabilizers in Aut(F).
Its solution will be helpful for the treatment of stabilizers of presentations in the
sense of [12].
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