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Nonexistence of local expansions on certain continua
by

D.W. Curtis and 8. Miklos (Wroclaw)

Abstract. Tt is shown that no path-connected continuum without any simple closed curve or
closed connected manifold with finite fundamental group admits a local expansion, and that no
path-connected continuum with finite fundamental group or tree-like continuum admits an open
local expansion. It is also shown that no compact connected manifold with boundary admits a local
expansion into itself with respect to any connected metric, and that every open local expansion
on a Peano continuum is a local expansion with respect to some connected metric. Hence compact
connected manifolds with boundary admit no open local expansions, i.e., no local expansions which
are boundary-preserving,

All considered spaces are assumed to be metric. A continuous function
Si (X, d) = (X, d) is said to be a Jocal expansion provided that for each x e X,
there is an open set U containing x and a real number M > 1 so that if y, ze U,
then d(f (), F() = Md(y, z). We say that a metric space X admits a local ex-
Dpansion if there exist a metric d that is equivalent to the original one given on X,
and a mapping f* X — X satisfying the conditions of the above definition.

THEOREM 1. No local expunsion of a continuum onto itself can be a homeomor-
phism.

Proof, Let f3 (X, d) - (X, d) be a surjective local expansion, and suppose f'is
a homeomorphism, Consider the surjective mapping g =571 (X,d) - (X, d).
By the compactness of X, there are positive numbers & and M, with M < 1, so that
if d(x, y) < & then d(g (%), g(3)) < Md(x, y). Let % = {Uy, Uy, ..., U,} be a finite
cover of X with mesh®% < &, and let x and y be any points of X. Then, by the con-
nectedness of X, there is a chain of open scts from x to y, chosen from Uy, U, v, Uye
Bvidently d(x, y) <nd. Considering the images of links of this chain under g we
have d(g(x), g(»)) < Mnd and, more gencrally, d(g"(x), ()< M*né for each
positive integer k. Now choosing % so large that M*m<1, we see that
diam g*(X) < § < diam X. So g is not surjective, a contradiction.

COROLLARY 1. No local expansion of a continuum into itself can be an imbedding.
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Proof. Let f: X » X be a local expansion, and suppose f is an imbedding,
Then with ¥ = lim f*(X), Y is a subcontinuum such that f|¥: ¥ — ¥is a homeo-

n=ro0

morphism, and f|Y is a local expansion, contradicting Theorem 1. (¥ must be
nondegenerate, since otherwise f|f"(X): f(X) » f"**(X) is a global expansion
for- all large n, which is clearly impossible.)

The following corollary implies an affirmative answer to Problem 5.1 in
[1, p. 201].

COROLLARY 2. No path-connected continuum containing no simple closed curve
admits a local expansion.

Proof. Since every local expansion from a path-connected continvum onto
a continuum which contains no simple closed curve is a homeomorphism (see Co-
rollary 4.2 of [1, p. 195]), the assertion holds by Corollary 1.

COROLLARY 3. No tree-like continuum admits an open local expansion.

Proof. Since every open local expansion from a continuum onto a tree-like
continuum is a homeomorphism (see Proposition 3.8 of [1, p. 193]), the assertion
holds by Theorem 1.

LeMMA. If X is a path-connected comtinuum with finite fundamental group, then
every covering projection f: X — X is a homeomorphism.

Proof. Choose p € X, and consider the homomozphism ¢: n(X, p) - n(X (D)
induced by f. Note that ¢ is injective. Then since n(X) is finite, ¢ must be an iso~
morphism, which in twrn implies that £ is a homeomorphism.

THEOREM 2. No path-connected continyum with finite fundamental group admits
an_open local expansion.

Proof. Any open local expansion would be a covering projection, and therefore
a homeomorphism by the above lemma. But this is impossible by Theorem 1.

COROLLARY 4. No closed connected manifold with finite fundamental group
admits a local expansion. ‘

Proof. By invariance of domain, each local expansion on a closed
manifold must be open.

Thus, for example, no n-sphere S" or n-dimensional projective space P,
n 22, admits a local expansion. However, for any integer k> 1, a mapping f defined
on the unit sphere S* by f(z) = 2* is a local expansion. So we have

COROLLARY 5. The n-sphere S" (projective space P") admits a local expansion
if and only if n= 1.

Thus, a torus T'=S'x8*x ... x§* admits’ a local expansion, because the
mapping  fiXfoX s Xfil XXX o X X = Yy YaX oo X Y, is a local
expansion if and only if f;: X, — Y; is for every i = 1,2, .., k.

PrOBLEM. Characterize all closed connected manifolds which admit local
expansions,
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A metric on a Peano continuum is said to be a connected metric if each metric
ball N(x,e) is connected.

THEOREM 3. Let X be a Peano continuum with a connected metric d, and
S (X, d) = (X,d) a local expansion. Then Jor every nonempty proper open sub-
set U of X such that f|U: U~ X is an open map, JONU # @.

Proof. Suppose f has expansion factor E> 1. For each n, the iterate f" is
a local expansion, with expansion factor E”. If £( U) = U, then each " is open over U
and f*(U) = U. Thus it suffices to verify the theorem for any iterate ", In other
words, we may assume that E> 2.

Choose &> 0 such that for each x ¢ X, f|N(x, g) is a 2-expansion, and such
that for some ueU, N(u, e)cU. We claim that for each xe U/ such that
Nx,9)=U, f(N(x,8)>N(f(x),2). Since f|U is open, Bdf(N(x, &)
< f(BdN(x, &), and since f|N(x,e) is a 2-expansion, f(BdN(x, ) is disjoint
from N(f(x),26). Then since the ball N(f(x),2¢) is connected, we must have
N(f(x), 2¢) = int £ (N(x, ¢)). For each x € U, let n(x) denote the least integer » such
that there exists an ¢-chain x, = ¥, x,, ..., x, in X between x and some X, € XINU
(we require d(x;_,, x;) <e for each i). Choose pe U such that

n(p) = max{n(x): xeU}.

Then by the choice of & we have n = n(p)> 1.

Consider ¢ =f(p). If geU, then there exists an e-chain y, =g,
V15 Yy @ XNU. Since N(p,e)c U, we have f(N(p, )= N(g,2¢), and hence
there exists x;eN(p,&) with f(x) = y,. If 2<n, then N(x;,8)<U and
F(N@xy, )2 N(y,, 2), thus there exists X, € N(xq,8) with f(x,) = y, (or y3).
Continuing in this fashion we obtain an e-chain Xg = D, X1, eer Xy, Where 2m is
either » or n+1, with £ (x,) = y,. Since n > 1, we have m < n; hence x,, € U, while
f(x,) =y, e X\U.

COROLLARY 6. Let M be a compact connected manifold with boundary, and d
a connected metric on M. Then (M, d) admits no local expansion into itself.

Proof. Apply Theorem 3 with U = M\3M.

Note. For any metric d on a Peano continuum, the topologically equivalent
metric d*, defined by

d*(x, y) = inf{diam;K: K a subcontinuum containing x and y},
is a connected metric.

PROPOSITION. Every open local expansion on a Peano continuum is a local
expansion with respect to a connected metric,

Proof. Suppose /1 X — X is an open local expansion, with respect to a metric d
and with expansion factor E> 1. We assume for convenience that E < 2. Let d* be
the connected metric constructed from d as above, and consider p € X. By hypothesis,
there exists a neighborhood U of p ‘such that d{f(x),f(»))> Ed(x,y) for all
x,yeU. Since fis open, f(U) is a neighborhood of g = f(p), and there exists
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&> 0 such that N*(g, 56) = {x e X: d*(x, q) < 5e} = f (U). Choose 0<8 <& such

that, for ¥ = N*(p,d), we have V< U and (V)= N*(q, ¢). We claim that for
all x,yeV, d*(f(x),/(») = Ed*(x, y). For, suppose d*(f(x), ()< Ed*(x,)
for some x, y e V. Then there exists a continuum K containing f'(x) and f() such
that diam K < Ed*(x, y). Since d*(x, y) < 2¢, diam K < 4g, and since d*(f(x), ¢) <,
this implies that K< N*(g, 5¢) = f(U). Thus, for L = f~Y(K)n U, the restriction
fIL: L — K is a homeomorphism. It follows that L is a continuum containing x
“and y, with diamL < E™1-diamK < d*(x, y), a coniradiction.

COROLLARY 7. No compact connected manifold with boundary admits an open
local expansion.

QuesTiON. Does there exist a local expansion for any compact connccu,d
manifold with boundary?

" A final observation: if the definition of local expansion is relaxed by requiring
only that, for some open cover % of X, d(f(x), () > d(x, y) forall x,ye Ue%,
X # ¥, then Theorems 1 and 2, and their corollaries, remain valid (but we do not
see how to prove Theorem 3 in this setting).
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On infinite words and dimension raising homomorphisms
by

R.P. Hunter (University Park)

Abstract, There exists a 2-generator compact zero dimensional semigroup which admits a con-
tinuous homomorphism onto a one dimensional semigroup. An abelian finitely generated compact
zero dimensional semigroup admits no dimension raising homomorphisms.

It is well known that a compact topological group cannot admit dimen-
sion raising homomorphisms. Indeed, if G is such a group of dimension », then any
continuous homomorphism must decrease the dimension by that of the kernel.

It is also well known that a compact semigroup may admit dimension raising
homomorphisms. See, for example, [1], [7], and [8]. The first example of a dimension
raising homomorphism of a compact semigroup was observed by R.J. Koch.

From the nature of the various examples there is an understandable viewpoint
that such homomorphisms are part of a theory that somehow is essentially abelian
in nature. This is consistent, of course, with the fact that any pathology in the topo-
logical structure of a compact connected group is due to the abelian part. Similar
considerations hold for compact connected monoids.

Playing a central role in such constructions are compact semigroups which are
zero dimensional. Cone constructions will then easily yield appropriate higher
dimensional examples. The earliest examples were of this sort.

Now among the compact zero dimensional semigroups, those which are (topo—
logically) finitely generated would appear, as is the case for groups, to be more
predictable. Indeed, it is the case that a compact finitely generated zero dimen-
sional abelian semigroup admits no dimension raising homomorphisms.

It is, therefore, mildly surprising that a finitely generated compact semigroup
may well admit such homomorphisms. -

The semigroup in’ question is due to Boasson and Nivat and is of interest in
the theory of languages [5]. It is studied there for entirely different reasons from
those considered here.

The purpose of this note is to present the following two contrasting results.

THEOREM A. There exists a two generator compact zero dimensional semigroup
which admits a (continuous) dimension raising homomorphism. The semigroup may
‘*
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