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Destroying precaliber ,: an application of a A-system lemma
for closed sets

by
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Abstract. We construct a precaliber §; partial order P which has an uncountable antichain
in a forcing extension which preserves w;. Unless there are many measurables in an inner model, we
construct a precaliber ¥, partial order Q which has an uncountable antichain in a forcing extension
which preserves stationary subsets of w;. We use a A-system lemma for closed sets disjoint from
a fixed everywhere stationary set.

§ L. Introduction, The countable chain condition in partial orders has been
studied extensively, in part, because of its usefulness in forcing arguments. It is
well known, for example, that countable chain condition partial orders preserve
cardinals and that the property is preserved in iterations. Products of countable chain
condition partial orders, however, may fail to have the countable chain condition
and a countable chain condition partial order may lose this property in an extension
of the set-theoretic universe (a Suslin tree provides an example in both cases). These
pathologies disappear, though, if the countable chain condition is strengthened
to o-centred (a subset of a partial order is centred if every finite subset of it has a lower
bound; a partial order is o-centred if it is the union of countably many centred
subsets).

In this paper we will examine what happens to partial orders which have an
intermediate property known as precalibre &,. A partial order has precaliber %, if
any uncountable set has an uncountable centred subset.

Since o-centred partial orders have precalibre %, and remain o-centred in any
extension of the set-theoretic universe, the question arises as to whether or not the
countable chain condition can be destroyed in partial orders with precalibre ;.
The first theorem answers the question. '

THEOREM 1. There is a precaliber %, partial order which has an uncountable
antichain in a forcing extension of the universe which preserves ;.

This forcing extension does not, however, preserve stationary subsets of w,
and also does not preserve cardinals (unless CH is true) so we are led to the next
two theorems:
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THEOREM 2. There is a precaliber 8y partial order which has an uncountable anti-
chain in a forcing extension of the universe which preserves stationary subsets of w,
unless there are many measurables in an inner model. )

Furthermore, the provisional nature of this result is necessary because if it ig
consistent that there is a supercompact cardinal then it is consistent that there is
no such partial order.

THEOREM 3 (MA,, + covering lemma). Any precaliber 8y partial order remains
of precaliber 8y in forcing extensions of the universe which preserve cardinals,

The set-theoretic hypothesis cannot be removed by Theorem 1, Tt is even, con-
sistent that proper partial orders destroy precalibre #,. ‘

THEOREM 4. It is consistent that there is a precalibre 8, partiul order which hag
an uncountable antichain in a proper extension of the universe.

This forcing extension collapses w, so we have:
-~ QUESTION 1. Is it consistent that there is a precaliber 8, partial order which has
the countable chain condition in a forcing extension which preserves cardinals but is
-not precaliber 8,7

In this paper, we also investigate a 4-system lemma for closed sets disjoint
from a fixed stationary set. In [3], we showed that if S is a stationary subset of N
and {4,: a e w,} are closed sets disjoint from S, then there is an uncountable 4 = y
and ff € o, such that {d,~B: a & A} is a disjoint family. We need a version of this
lemma for higher cardinals x. If § is a subset of » which, is stationary in each ordinal
in % of uncountable cofinality and {4,: a € w,} are closed sets disjoint from S,
then there is an uncountable 4 = @, and B & x such that {4,—f: a e A} are disjoint.
‘We show that § cannot be replaced by a countable subset of x: there are {d, 06 0}
‘closed sets in @, *w+1 of order-type w+1 such that for each uncountable 4 wy
and countable Bew, w+1, {4,~B: aed} is not a disjoint family.

§ 2. Partial orders from trees. The partial orders of this paper are constructed
from trees. This is an idea of Baumgartner [2]: if T'is a tree, then let P(T) be the
partial order of finite antichains ordered by inclusion. The equivalences between
properties of T and the chain conditions of P(T) are:

Lema 1 [2]. T has no ,-branches if and only if P(T) has the countable chain
condition. :

LEMMA 2. The following are equivalent,
() T has neither w,-branches nor Suslin subtrecs.
(ii) Any uncountable subset of T contains an uncountable antichain.
(iily P(T) has precaliber ,.
(v) P(T) is productively countable chain condition (i.e. any product of P(T)
and a countable chain condition partial order has the countable chain condition).

Ifroof of Lemma 2. (i) = (ii) Let X be an uncountable subset of T which
contains no uncountable antichain. Either X contains an @y~branch, in which case,

icm

Destroying precaliber ¥, 225

T does too or X is an uncountable tree with neither uncountable branches nor un-
countable antichains: that is, a Suslin subtree of 7' ,

(iv) = (i) If T has an w;-branch B, then {{5}: b e B} is an uncountable anti-
chain in P(T). If T has a Suslin subtree X then {(x, {x}): xe X} is an uncountable
antichain in X% P(T) where X has the tree order. )

(if) = (iii) It suffices to show that if any uncountable subset of T contains an
uncountable antichain, then P(T) has precaliber 8. Let 4 be an uncountable sub-
set of P(T). Without loss of generality, we assume that for some 7 &  and every
a€ A, |la] = n. We prove by induction on n that there is an uncountable X <= 4
such that X is centred.

(n = 1) In this case {¢« e T: {a} € A} is an uncountable subset of 7. By hypo-
thesis it contains an uncountable antichain B, and then {{a}: ae B} is an uncoun-
table centred subset of A.

(n = 2) We enumerate 4 as {{a2, af}: o€ »;} and assume that {{ad}: xew}
and {{a;}: a € w,} are both centred families in P(T). Set

X(@ = {few: o <aj or a) <ap}.

Then there are two cases:

@: | X(@)] = o, for some ¢ € ;.

Let X = {aed: al <a'} for this «; X is uncountable and we claim X is
centred. Suppose a # b e X, and suppose @ U b is not an antichain in T. Then without
loss of generality either a° < b or «* < 4°. In the second case, we have a5 < a* <b°,
contradicting our assumption that {{a0}: « w,} is pairwise compatible in P(T).
In the first case, a0 and a° are both below b, and hence are comparable in T’ again,
this is a contradiction.

(ii): For each o€ wy, [X(0)] <w. .

Define aRf} «> fiie X(a) or a'e X(f) and let ~ be the transitive closure of R.
Then the equivalence classes are countable; hence there are uncountably many of
them. Let X be an uncountable set of pairwise inequivalent elements. If o, 8 ¢ X(B)
then o ¢ X and B¢ X(x), so a,Ua, is an antichain in 7.

In either case, we have shown that X is linked. But P(T) has the property that
linked families are centred; thus X is an uncountable centred family.

(n>2) Let 4 = {{ad,a},...,d"*}: @< w,}. By the induction hypothesis we
may suppose that each of {{ay, ..., %}: a<awy}, {{aa, ., & }: u<w,} and
{{al, @"}: w<w,} is centred. From these it follows that for any a, B<dy,
{a3,...,a"}u{ay, ..., a3} is an antichain, (since to check this we only
need to look at two elements at a time), so that {{al,..,ay '}: o<} is
centred.

Lemma 3. () If P(T) is o-centred then T is the union of countably many
antichains.

(i) If T'is union of countably many antichains and |T| < 2° then P(T) is o-centred.

(iii) If T is the (2°)*-ary tree of height 2 then P(T) is not o-centred.
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Proof of Lemma 3 (ii). Let T' = ) {4,: n e o} where cach 4, is an antichain,
‘We construct an antichain C(4, U) « T for each 4 = T'which is the union of finitely
many 4, and for U e SEQ where SEQ is the set of finite sequences of clopen sets
in 2%, We need some definitions: If 4 is a subset of T’ then let

UP(4) = {teT: Qae Aa<t}

and let DOWN(4) = 4 be the antichain of minimal elements of 4. If Uis a clopen
subset of 2% and 4 is a subset of T then let U(4) = {aed: n(@)e U} where = is
a fixed one-to-one mapping from T into 2°.

Let C, be DOWN(4).

Let C; be DOWN(UP((Z“’—-U(:‘—— 1))(Ci_1))) for each ie domU when >0,

Let C(4,U)= U {UG(C): iedomU}, P = {[C4, U)“: 4 is the
union of finitely many 4, and UeSEQ}. [C(4, U)]"® is centred because cach
C(4, U) is an antichain: each element of C; is above some element of C, when
i <J, in fact, some element of (2 — U@))C;. Thusif z 6 Cyand s € U@)(C)), tis above
some 5" € (2 —U(i))(C) since s’ and s are incompatible so are 7 and .

To see that any finite antichain F is in P, find 4> F which is the union of
many A4;. )

To define U(0): whenever fe F and fe DOWN(4), let fe U(0)(A4) whenever
feF and f¢DOWN(4), let ee DOWN(A) be such that e<jf and let
e ¢ U(DOWN((4). These finitely-many requirements on U(0) can be accomplished.

To define U(i) when i<n, whenever feF and fe Cy, let fe UGE)(C) and
whenever fe Fand F¢C,, let ce C; be such that e<f and let e ¢ U()(C)). This
construction ensures F < C(4, U) since even when each U(i) = @, C, # & implies
that 4 contains a chain of size n-+1.

(ii): Suppose P(T) = () {4;: iew} where each 4, is centred. Let L be the
functions from 1 into (2°)* (ie. the middle level of T). For each iewm, let
L; =Ln(J 4). Find o, g €(2")* such that, for each i e w,

H{O, 9}, {©, A} L # 1.

This is possible since each L, is a subset of I, and so the L;’s can only distinguish at

most 2% subsets of L. The antichain {{(0, @}, {0, B, (1, 0)}} is not an clement
of any 4. ’

§ 3. The 4 -s‘y.stclem lemma. A 4-system lemma for uncountable families of closed
subsets of ; disjoint from a fixed stationary set was proved in [3].

THE.OREM 5. Let § be a stationary subset of w,. Let {4, wew;} beanuncount-
able family of closed sets disjoint from S. There is an uncountable 4 = oy and Y€ W,
such that {d,—y: ae d} is a disjoint family.

- '.I’hls theorem is a special case of a 4-system lemma for closed subsets of x
disjoint from a fixed everywhere stationary set.

- TI:IEORE}\{I 6. Let % be a cardinal of uncountable cofinality and S be a subset of
which is stationary in each ordinal of uncountable cofinality. Let {ds: we ;) be an
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uncountable family of closed sets disjoint from S. There is an uncountable A < W,
and y € % such that either

(i) maxd, =y (€ 4), or

(i) {A,—y: «we 4} is a disjoint family of nonempty sets.

Proof. Let 6 < » be the least ordinal such that {« € wy: A4, < 8} is uncountable.
If cf(§) = w, then (i) holds. Thus we can assume cf(6) = w,. We construct
{ia: a€ @} and {#,: aew,} by induction. If {;: f <o} and {F;: f<a} are
defined, then let u, be minimal such that for f <o and 4 € #5 we have u,> max 4
and let 4, be such that {4 —p,: A e} is (in {4dp—~p,: B e w,}) a maximal pairwise
disjoint family of nonempty sets. If any %, is uncountable, then (ii) holds. By mini-
mality of & each p, is defined and {y,: o€ w,} is a closed unbounded set in §. Find
a limit ordinal « such that u,eS. Find 4€4,. Since ANS #0, u, ¢ 4 and 4 is
closed, there is f <a such that 4npu, = 0. Bach element of 4, is contained in p,
and so 4 is disjoint from each element of %, outside u; which contradicts the maxi-
mality of 4. :

Theorem 6 cannot be improved to get disjointness outside a countable set as
in Theorem 5. i

THEOREM 7. There is an uncountable family {A,: o € cw,} of subsets of wy-0+1
such that, for each A e [w;]** and Be [0, w+1]%, {4,—B: a € A} is not a disjoint
Samily and such that each A, consists of a cofinal w-sequence of successor ordinals
in wy'w and the limit point v w.

Proof. Let {C,: x e w,;} be a family of countable sets of successor ordinals
in wy such that, for each 4 € [w,]* and D € [w,]?, {C,— D: a € A} is not a disjoint
family. This is possible by letting {C,: o€ w,} be an increasing family whose union
is the set of successor ordinals in w,. The C,s do not work: they are not closed, so let

A, = {0, n+C: i<n,new}u{o; o}

where {C:: i€ w} lists C,. Bach 4, has order-type w-+1. Suppose 4 € [w;]™ and
Belw;ro+1]° Let D = {n € wy: @ne w)w, -n+ae B}. Dis countable so there are
«, f e 4 such that C,— D and C;— D intersect, say at y € w;. Find n€ o such that
ye{Ci: i<n}n{C}: i<n}. Then w, n+yeA,ndp but @y n+y¢ B since y ¢ D.

§ 4. The proofs.

DErINITION. If % is a regular uncountable cardinal and Eis a stationary set
of w-limits in %, then Q(E) is the tree of closed (in ») subsets of E ordered by end-
extension.,

Lemma 4. (1) Q(E) is w-distributive (and thus preserves oy).

(2) (Shelah) % > w; implies Q(E) preserves stationary subsets of @y.

Proof. Let {4,: » € w} be maximal antichains in Q(E). Let Sbea stationary
subset of ¢, and let D be a Q(E)-name for a closed unbounded subset of w,. Let
{N, & x} be an elementary chain of elementary submodels, of cardinality less than »;
of the universe containing @, S, D, {4,: n € o} (and each countable ordinal when
5+


Artur


228 J. Steprans and S. Watson

%> y). Let C be a closed unbounded set in % such that & & C implics %A N, = o,
Find a e CNE (greater than o, when % > w,). Let {o,: ne w} be an increasing
sequence cofinal in o. ¥f x> oy, let {N*: few,} be an increasing sequence of ele-
mentary submodels of N, such that N°>{e,: new}. Let T'be a closed unbounded
set in o, such that feT implies w, " N? = f. Find feTnS. Construct an in-
creasing, in Q(E), sequence of conditions {@,: #n € ®} < N, such that cach 4, extends
some clement of 4, and maxa, > «,, and if x> w;, a sequence {y,: n € @} cofinal
in f8 such that a,l-y,e D. Now U {a,: ne w}u{a} is a closed subset of £ which
extends some clement of each 4, and forces fe DnS.
The basic lemma we need is:

LemMmaA 5. If x is a cardinal of uncountable cofinality and E is a subset of % which
does not contain a closed unbounded subset of any ordinal of uncountable cofinality,
then Q(E) is a tree in which any uncountable set comtains an uncountable chain,

Proof. Apply Theorem 6.

We can prove Lemma 4 also by noting that if Q(E) contains an @;-branch,
then E contains a closed unbounded subset of an ordinal of uncountable cofinality
and that if Q(E) contains a Suslin tree, then there is a notion of forcing having the
countable chain condition which adds an w,-branch and is a closed unbounded
subset of an ordinal of uncountable cofinality. Any closed unbounded set in N
in a forcing extension by a countable chain condition partial order contains a closed
unbounded set in the ground model.

We can now prove the basic theorems:

Proofof Theorem 1. Let E be a stationary costationary subset of w,. Forcing
with Q(E) adds an w,-branch to Q(E), and hence, by Lemma 1, an uncountable
antichain to P(Q(E)). By Lemma 4, o, is preserved in this extension, and it follows
from Lemma 2 and 5 that P(Q(E)) has precaliber 8.

Proof of Theorem 2. Apply tlie proof of Theorem 1 except that E must be
a stationary subset of % which does not contain a closed unbounded set of any ordinal
of uncountable cofinality, This is possible at the successor of a singular cardinal
unless there are many measurables in an inner model ([31 pp. 123-124). The necessity
of this provision is proved by noting that if a supercompact cardinal is consistent
then so is Martin’s Maximum [5] which states that any &, dense sets in a partial
order P which preserves stationary subsets of @y can be intersected with a filter.
Construct dense sets in P which decide cach of the elements of the uncountable
antichain in a forcing extension, The filter decides an uncountable antichain in the
ground model.

Proofof Theorem 3. Let P be a precaliber Ny partial order and Q be a partial
order which preserves ¥, in a model ¥ of MAy, and the covering lemma over an
inner model K. We show that P is precaliber 8 in V2, Let 4 be an uncountable subset
of Pin V2 The covering lemma implies that there is a set of ordinals of cardinality 8,
(in ¥%) in K which enumerates some BcP (in ¥ where the enumeration is) which
contains 4 in V2. Of course the covering lemma applies to any forcing extension
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of the universe [4]. Since cardinals are preserved, this set of ordinals has cardinality 8,
in ¥ and so, by MAy,, B is o-centred (see [6]) and remains so in V2 Thus, in 72,
A is subset of a o-centred set. )

Proof of Theorem 4. Let G be an unfilled (w,, o}) gap in 2 (w)/FIN. Let P be
the partial order which fills G (see p. 931 of [1]). By the proof of Theorem 4.2 of [1],
P has precaliber 8. Let Q be the partial order which collapses o, to w, with count-
able conditions. In V2, G is still an unfilled gap (Q does not add any new subsets
of o) and so, by Theorem 4.2 of [1], there is a partial order R with the countable chain
condition which adds an uncountable antichain to P. Thus in ¥, P has precaliber 8,
but in ¥#%, P has an uncountable antichain. But Q%R is an iteration of
countably a closed partial order and a partial order with the countable chain
condition and is, therefore, proper.

We close with another question:

QUESTION 2, Jf'P is a partial order in which every set of cardinality 2° is o - centred
then is P absolutely C.C.C.?
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