38 R. Frankiewicz, K. Kunen and P. Zbierski

References

[1] W. Comfort and S. Negrepontis, The theory of ultrafilters, Berlin 1974.
[21 K. Kunen, Another point in AN, in Colloguium in Topology, ed. Czdsar, Amsterdam 1979,

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
Sniadeckich 8

00-950 Warszawa

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF WISCONSIN
Madison WI 53706

DEPARTMENT OF MATHEMATICS
WARSAW UNIVERSITY

PKIiN

00-901 Warszawa

Received 20 Januwary 1986

The structure of orbits in dynamical systems
by

J. M. Aarts (Delft)

Abstract. Spaces which are both locally homeomorphic to O x R, the topological product of
the rationals @ and the reals R, and arcwise connected are studied. It is shown that such spaces are
the image of R under a one-to-one and continuous map having the arc lifting property,

A necessary and sufficient condition for a separable and metrizable space X to be the orbit in
some flow is presented. The following structure theorem is obtajned.

A spuce X is the orbit of a Poisson-stable and aperiodic motion if and only if X is homeomorphic
to the suspension of a universally transitive homeomorphism of Q.

Unless explicitely stated otherwise all spaces under consideration are separable
and metrizable.

1. Introduction.

1.1. The following problem will be discussed. What are necessary and sufficient
conditions for a separable and metrizable space X to be the orbit in some continuous
dynamical system (or flow)? In this paper a topological characterization of orbits
of flows is presented. A structure theorem for orbits of flows is discussed as well.
The classification problem is only lightly touched upon. -

For locally compact orbits the situation is rather simple. There are only three
homeomorphism types of locally compact orbits. In a flow each locally compact
orbit is either a singleton, or a simple closed curve or a topological copy of the real
line. And obviously each of these spaces can be endowed with the dynamical structure
of an orbit. The reader is refetred to Subscctions 1.3 and 1.4 for more details about
these remarks.

The topological structure of orbits which are not locally compact is much. more
complicated and has not yet been studied in great detail thus far. The orbits which
are not locally compact are precisely the orbits of the motions which are (positively
or negatively) Poisson-stable, but not periodic. The structure theorem is presented
in Section 5. Tt will be shown that an aperiodic and Poisson-stable motion can be
viewed as the suspension of a discrete dynamical system on the space of the ratio-
nals Q. Such a discrete system is generated by a so-called universally transitive homeo-
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morphism. See Section 4. Some information about discrete systems, including a very
simple orbit classification, is presented in 1.3

The most striking geometric feature of orbits of motions which are aperiodic
as well as Poisson-stable is that these orbits are locally homeomorpnic to @ x R, the
topological product of the rationals and the reals. Some basic lemmas about such
spaces are presented in Section 2. Because the spaces under discussion are not locally
compact, we could not fall back on the results and methods of [9] and [16].
The methods employed in this paper are totally different. In Section 3 we discuss
the pasting together of topological copies of @xR. This is the cornerstone for
the topological characterization of orbits of flows. A space which is both locally
homeomorphic to @ x R and arcwise connected is called a P-manifold in. this paper.
The main result is as follows, A separable and metrizable space X is an oricntable
P-manifold if and only it X can be endowed with the structure of an orbit in some
flow which is both aperiodic and Poisson-stable. This result is proved in Scction 4 by
endowing such a P-manifold with the structure of the suspension of a suitable
homeomorphism of @ onto itself.

In view of the preceding results the classification of orbits of flows can be reduced
to another classification problem, namely that of homeomorphisms of @ onto itself,
Here, however, the picture is far from complete. See Section 5 for more details.

L.2. The background material for this paper can be found in [3], [12], [22]
or [23]. To fix the notations and for the convenience of the reader a listing is given
of the most frequently occurring notions.

Let G be the topological group of either the reals R or the integers Z, A dynamical
system on a space X is a continuous mapping 7: X x G - X such that for all xe X
and for all 5,1 G

@) n(x,0) = x, and

(i) n(n(x, ), 1) = n(x, s+1).

For cach x e X the mapping n,: G — X, defined by 7 (1) = w(x, t), is called the
motion through x. The motion 7, is a continuous mapping of Ginto X and its image
{fx(’)l t€ G} is called the orbit of x in the system 7. For each fe ¢ the mapping
o' X — X, defined by a'(x) = n(x, 1), is called a rransition. The transition ' is
a homeomorphism with inverse ™"

If G = R, then usually the dynumical system is said to be continuous or it is
called a flow. If G = Z, then the dynamical system is culled discrefe. In this case
the system is completely determined by the transition 7', Thus a discrete dynamical
system can be viewed as a pair (X, f) of a topological spaces X together with a homeo~
morphism f1 X — X,

) Letm: X'x G — X be a dynamical system and let x ¢ X. The orbit of the point x
is denoted by I'(x). As for each e @ the transition 7' maps I'(x) onto itself, the
sot. I'(x) is invariant and the restriction of 7 to I'(x) x G defines & dynamical sy;wm
of 1k’(x).’ The positive limit set Q(x) of x is defined as follows: ye Q(x)if and only if,
for:some sequence (1) from G, #, - oo and n(x, ) = p. If x € Q(x), then the point x
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and also the motion =, are called positively Poisson-stable. In a similar way the negative
limit set A(x) of x and negative Poisson stability are defined. Poisson-stable means
positively or negatively Poisson-stable. A motion which is both positively and nega-
tively Poisson-stable is said to be two-sided Poisson-stable. Equivalence of dynamical
systems is defined as follows.

The discrete dynamical systems (X, f) and (Y, g) are called equivalent or con-
Jjugated whenever there exists a homeomorphism A: X — ¥ such that e f'= goh.
The flows m: X xR X and ¢: YxR — Y are said to be topologically equivalent
if there is a homeomorphism /i X — Y which maps each orbit of n onto an orbit
in the system ¢ and preserves the orientation of orbits. In the special case that X
and Y consist of a single orbit, the topological equivalence of 7 and p amounts to
the existence of a homeomorphism of X onto Y. This follows from the results of
Ura [25]. Sec also [12], sections (1.26) and (2.50) in particular.

In the proof of the characterization theorem, to be presented in Section 4, the
notion of the suspension of a discrete system is used. Let (X, /) be a discrete dyna-
mical system, On X'x R an equivalence relation ~ is defined by (x, r) ~ (p, s) if
and only if, for some me Z, ¥ = s+m and y = f™(x). For each (x, 1) X'x R the
equivalence class of (x,7) is denoted by [x, ¢]. Let Y denote the quotient space
Xx R|~. The flow g: Y xR - Y, defined by o([x, t], 5) = [x, t+s], is called the
suspension of (X,f). The subspace {[x, 0] x e X} is identified with X. It is to be
observed that the restriction of ¢! to X coincides with f. Also, if two discrete systems
are conjugated, then their suspensions are topologically equivalent.

1.3. Tn this subsection some of the statements of 1.1. are elaborated. First
discrete systems are discussed. The following theorem must be part of the folklore.
As we have not found it in the literature, we have included a proof.

THEOREM. Let (X, f) be a discrete system. Then each orbit of the system is homeo-
morphic to one of the following: (i) a finite set, (i) the integers Z, or (iii) the ratio-
nals Q.

Proof. Let I'(x) == { f"(x)| n e Z} be an orbit. As any point of I'(x) is mapped
into any other point of I'(x) by a transition, the orbit I'(x) is homogencous. Also,
clearly I'(x) is countable. Now x is either isolated in I'(x) or not. It follows that
if (i) and (ii) do not hold, I'(x) is a countably infinite and dense in itself space. Then
according to- a theorem of Sierpifski ([6] 1.3H, [24]) it is homeomorphic to Q.

The followins observations are to be made. According to the convention miade

atthe beginning of the paper in the formulation of the theorem it was tacitly assumed

that {he space X is metrizable. The following example shows that this condition cannot
be omitted. ‘

ExampLE 1. In [11] 4.22, Id, an example is presented exhibiting the following
phenomenon. The additive group of the integers Z can be endowed with a topelogy
under which it is a nonmetrizable topological group. Addition of 1 defines a dyna-
rical system in which each orbit coincides with Z (endowed with a nonmetrizable

topology).
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Although there are only countably many homeomorphism types of orbits, there
are uncountable many distinet (i.e. nonconjugated) discrete systems. This is illustra-
ted by the following example which is also relevant to the discussion in Section 5.

ExAMPLE 2. Let o and § be unimodular complex numbers with the property
that the argument is an irrational multiple of 2z between O and 2z, The set
A ={o"| neZ} is dense in the unit-circle S, whence homeomorphic to Q. The
shift o, is defined by o,(0") = «"**; the system (4, 0,) may be seen as a dynamical
system on Q. In a similar way on the set B = {f"| ne Z} the shift o, is defined.
Now, if & # f, then the systems (4, o) and (B, o) cannot be conjugated. If this is
false, then there is an equivalence /1: 4 — B. By replacing A by the composition of 4
and a suitable transition of (B, o) if necessary, we may assume that 4(1) == 1. Then
h(e) = B, as h is an equivalence. It follows that 4 is an isomorphism of topological
groups, which is continuous at the identity. Hence, 4 is uniformly continuous and
extendable to S*. This results is an equivalence of rotations with different rotation
numbers (e.g. [12]), a contradiction.

1.4. The main purpose of this paper is to prove the following theorem for flows.

THEOREM. Let 1 X x R — X be a flow. Then each orbit of the system w is homeo-
morphic to one of the following: (i) a singleton, (ii) the unit circle S*, (iii) the reals R,
or (iv) an orientable P-manifold.

The definition of an orientable P-manifold and a part of the proof are post-
poned till Sections 3 and 4.

Proof. Let x € X. The orbit I'(x) is either compact or not. If I'(x) is compact,
then (i) or (ii) holds ([12] 2.35). If I'(x) is not compact, then the motion x, is aperiodic.
We distinguish between the following, mutually exclusive cases: (a) x, is not Poisson-
stable, and (b) x, is Poisson-stable.

Case (2) occurs if and only if (iii) holds ([8], Theorem 1).

The discussion of case (b) is postponed.

Remark. Although the results in this paper are formulated for flows, with
some minor modifications all results also hold for partial flows or local dynamical
system.

This can be quite casily verified and also follows from more general obser-
vations in [5], in particular Theorem 2.

2. Embedding matchboxes.
2.1. The orbits of motions which are both aperiodic and Poisson-stable are
locally homeomorphic to @ x R. That is the contents of the theorem below.

DEFINITION. A space X is said to be locully homeomorphic to Q x R if each
point x of X has an open neighborhood which is homeomorphic to @ x R,

THEOREM. Lez t: X xR — X be any flow. Let x € X, Suppose that the motion =, is
aperiodic and Poisson-stable. Then the orbit I'(x) of x is locally homeomorphic to Q x R.

Proof. Without loss of generality we may assume that X = I'(x). Let y e I'(x).
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By [10], Chapter IV, Theorem 2.17, and Chapter VI, Theorem 2.12, there exist
a closed subset S of X and a real number >0 such that

yes,

g: Sx{~n.n] - n(S$x[—n,n]) is a homeomorphism, and

n(Sx[—n,n)) is a neighborhood of y.

Such a set S is called an n-section. In passing we note that the existence of sec-
tions has first been established by Whitney [26].

We shall show y to have an open neighborhood which is homeomorphic to @ X R.
Let W be an open neighborhood of y which is contained in (S % [—1n, 5]). Let N be
an open neighborhood of ¥ in S such that n(Nx(—e, &)= W for some ¢ such
that O<e<n. Then =n: Nx(—e¢,8 — n(Nx(—¢,¢) is a homeomorphism.
Because N x(—¢, &) is open in Sx[—#,n], the set a(Nx(—e¢, ) is open in W.
It remains to be shown N homeomorphic to @. First it is to be observed that for
each z € N there is exactly one (z) € R such that z= n(x, #(2)), because , is aperiodic,
We have )

n({x} x (¢ ¢, 1@)+2) = n({z} x (—¢, ¢) .

Because © restricted to Nx(--¢, €) is a topological embedding, the collection of
intervals {(1(z)~ ¢, 1(2)+¢)| ze N} is pairwise disjoint, whence countable. It fol!ows
that N is countable. Without loss of generality we may assume that x is positively
Poisson-stable. Let ze N. Then z is positively Poisson-stable as well and there
exists a scquence (#) in R such that #, — oo and 7(z,#) - z. It follows that
n(z, 1) € Tr(Nx (—e,8) for k sufficiently large. Because N’f (—e, f:) and
n(Nx(—e, &) are homeomorphic and z is not a periodic point, z is not isolated
in N. Thus N is countable and dense in itself. By a theorem of Sierpifiski ([6] 1.3H,
[24]) N is homeomorphic to Q.

2.2. NoTaTIoN. Throughout the paper the following notation will be used.

F={(x,y)eR} xeQ —-1<r<1}.
E={(x,nek xeQ, ~l<y<l}.

The set F is called the standard matchbox. For each x € Q, then set {x} x[—1,1]
is called a match in F.

The natural projections of F onto Q and [~1, 1] arc denoted by pry and pry
respectively. It is to be observed that both pry and pr; are open mappings. Because
[—1, 1] is compact, the mapping pry is closed as well.

Let X be a space. Suppose that h: F— X is a topological embedding such
that 1(F) is closed and A(E) is open in X. Then the set ¥ = A(F) is called a n1atcl1l?ox
in X. In this situation the induced map A: F — V is called a parametrization of V.
The sets A({x}x[—1,1]), xe Q, are called matches of V. In the terminology of
manifold theory, the map 4~ is a chart of V. As also the embedding of Eis involved,
a formulation using charts is somewhat cumbersome.
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2.3. We now discuss the existence of matchboxes in spaces.

PRrOPOSITION AND DEFINITION. Let X be a space which is locally homeomor-
phic to @x R. Suppose that x e X and W is a neighborhood of x. Then there is
a matchbox ¥ in X and a parametrization h: F— ¥ such that 4(0, 0 =x, Vis
a neighborhood of x and V'« W. The set V is called a matchbox neighborhood of x.

Proof. Let /i1 @xR — W, be a homeomorphism onto an open neighbor-
hood W, of x. As @ xR is homogeneous we may assume A0, 0) = x. Choose an
open neighborhood U, of x such that

xeUyccyUycWon W.

Because 7 is a homeomorphism, for some irrational number o and for some &> 0
the set E' = {(x,))] xe @, xe(~a,0), ve (e, &)} is mapped by /i into U,.
As E' is open in Qx R, the set #(E") is open in W,, whence open in X. Let

Fr={(x,») xe Q,xe(~u,9), ye[—s, ¢}

Then F' = clyxzE’ and consequently hE)Yeclxh(E) c ey Uy Also h(F) is
a closed subset of W,. It follows that 4(F’) is a closed subset of cly U, As ¢y U,
is closed in X, h(F’) is closed in X as well. Now the proposition casily follows.

The corollary below is now obvious.

DEFINITION. A space X is called atriodic if X does not contain three ares each
having a point p as a common endpoint and not intersecting otherwise.

COROLLARY. If a space X is locally homeomorphic to Q% R. then it is atriodic,

24. The following is a key lemma. Roughly speaking one may say that the
intersection of a matchbox and an arc consists of finitely many arcs only,

LEmMA. Let X be a space which is locally homeomarphic to Qx R. Lot h: F - V
be a parametrization of a matchbox Vin X. Let the topological embedding g : [0, 17— X
be a parametrization of the arc J.

Then there is a partition 0 < ay <by <a, <b, < ... <a,< b, <1 of [0, 1] such
that

D Vnds= Wit tela, b)), i=1, vy ’7};

(i) g(la;, bY) is a mateh of V, 2< isn—1;

iy if ay >0, then g ([ag, b}]) is a mateh of v if ey = 0, then g(fay, b, is
a possibly degenerated are, which is contained in a mateh of Vysuch that g (b)) e V- Ji(£)s

(iv) if b,< 1, then g(la,, b)) is a match of v, if by = 1, then g(la,, b)) is
a possibly degenerated arc, which is contained in a match of V. sueh that g (a,) & VNH(E).

Proof. Suppose that g(r) = A(x, 5) for some # O, ), xeQand sa(~1, 1)
Then g(t—e, t+&) < h(E) for some £>0, as 7(E) is an open neighborhood of
(x, 5). Because g(t—e, t+¢) is connccted and #(E) i homeomorphic to. @ x R,
we have g(1—e, t+a)ch({x} x (-1, 1)). Now let

C={xeQ] Jovh({x}x(=1,1) # @} .
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It follows that for each x & Cthe set y™'(h{x} x(~1, 1))) is an open interval in [0, 1].
This interval is denoted by (ay, by). Observe that g(lay, b,]) = h({x}x [—1, 1])
with the possible exeeption of the cases ¢, = 0 and b, = 1. Also for all x,ye C,
if x # y then [« bl m 1@y, byl = @, Now assume that C is infinite. Because of the
compactness of [0, 1] we may assume that some sequence § (a,,+b,,) converges to
some z € [0, I]. As the length of (a,,, b,,) must tend to zero, the sequences (a,,)
and (by,) converge 1o z also, It follows that g(z) belongs to the disjoint closed sets
@ x {1} and (@ x {1}), a contradiction. Finally it should be observed that it
cannot oceur that for some 7€ (0, 1), 6> 0 and xe Q the intersection

q(@=e, t40) n h({x}x[~1, 1]

is equal 1o {A(x, — 1} or {A(x, D} Indeed X is atriodic by Corollary 2.3.

2.5. Now we investigate the following situation. A matchbox V is contained in
another matchbox, which without loss of generality may be assumed to be the stan-
dard one. -

DEFINITION. Lot Fbe the standard matchbox. Let K be a closed and open subset
of Q. Suppose that ¢, b: K~ [—1,1] are continuous functions such that b <t
The set W = {(x, »)| xe& K, b(x) <y <t(x)} is called a simple matchbox in F with
base K.

As @ is homeomorphic to K, W is a matchbox in F.

LeMMA. Suppose that V is a matchbox in F and h: F — V is a parametrization
of V. Suppose x& Q. Let y = h(x,0) and z = pr,(y). Suppose that

RxYx[~1,1]) = Vapri (@) .

Then there are a clopen neighborhood K of z in Q and a simple matchbox W with
base K such that W = V r\ pry '(K). '
Proof. The subset s({x} x[—1, L]} of F is denoted by {z} x[s, #]. Without
loss of generality we may assume that (z,s) = h(x, —1) and (z,t) = h{x, 1).
Choose gsuch that 0 < ¢ < t:y It is to be observed that 4| @x {1} and Al @x{—1}
are continuous. There exists a clopen neighborhood B of x in @ such that for each
W& B we have s— g < pryh(w, —1) <s-+e and t—g<pryh(w, 1) <t+e Now e has

sS4t
been chosen in such a way that, for each w e B, pra(h(w, 0,)) = =5 for some 6,,.

Tt follows that pr(h({w.}x[—1,1]) A pry(A({w}x[—=1,1])) =@ for distinct
Wy ,f;:swﬁ. Let ui \:#(l,li.(ﬁ;{ Cl'}m J[Bx [~1 ,)]] and D = FI\NC. Both’h(C) and h(D) are
matchboxes in F and, #(C n E) as well as #(D n E) are open in F. It follow: tI];at
both pry(h(C)) and pr,(h(D)) ate clopen in Q. Define K = prl(h(C_))\xlorl(d( )21.
Clearly ze K and V n pry %K) = h(C) n pri (k). Now h(Bx {1}) is close ! an.t
80 is A(Bx {1}) N pr{ {(K). From the observation above a:bout the choice of & i
follows that for each v e K the set pry }(v) N A(Bx {1}) consists of exactly one point.
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The set A(B x {1}) n pry 1(X) can be considered the graph of a continuous function
t: K- [—1,1]. See [27]. 7.1, Problem 108. d}n a similar way, by considering
h(Bx{—1}), a continuous function b: K~ [—1,1] is defined. Finally let
W= {(x xeK b(x<y<t(M}

3. P-manifolds.

3.1. DEFINITION. A space X is called a P-manifold if it is arcwise connected
and locally homeomorphic to O x R.

The orbits of aperiodic and Poisson-stable motions clearly are P-manifolds.
Actually the letter P in “P-manifolds” refers to Poisson. Now we shall show that
a P-manifold is 2 one-to-one continuous image of the real line. This provides a para-
metrization of the P-manifold.

THEOREM. Suppose that X is a P-manifold. Then there exists a bijective and con-
tinuous mapping f+ R — X.

Proof. First it is to be observed that X is uniquely arcwise com}ggted. That is,
for any two points p and ¢ of X there is a unique arc, denoted by pg, which starts
at p and ends up in g. This follows from the fact that X cannot contain a topological
copy of S*, since X is atriodic and arcwise connected. Now we are going to define
an order on X (cf. [20]). We pick a point p € X. Let ¥ be a matchbox neighborhood
of p (Proposition 2.3). Let I'be the match of ¥ such that p e I. Write IN{p} = I u I~
such that I and 7~ are connected. For each point x € X\{p} there is a unique arc xp
and either xp N I'* # @ or ¥p N1~ # B. For each x & X we shall write

xeR,ifx=porxpnI*#@, and

xeLifx=poripnl #0.

Both R, and L, are arcwise connected and R, n L, = {p}. For all x and y with
x # y we define x to be less than y, x <y, in the following cases:
(@) xeL, and yeR,;

(i) x,yeL, and y€px;

(i) x, ye R, and xe py.

It is easily checked that < is a linear order on X. We shall show that (X, <) has
the order type 4 of the real numbers with the usual order (e.g. [14], [18]).

First a countable family of parametrizations h,: F— V,, n = 0, 1,2,.. 18
selected in such a way that {#,(E)| n = 0,1, ...} is an open base of X. As each 4,(E)
is homeomorphic to Q x R, there is a countable subset D of X such that for each n
and each match J of ¥, the set J n D is dense in J. It is to be observed that every
match J of every ¥, endowed with the order induced by < is order-isomorphic to
a closed interval. From Proposition 2.3 and Lemma 2.4 it follows that the set D
is dense in the order <. From these observations it is clear that (X, <) has the
order type A of R. Now let 2 R — X be any order isomorphism. Every match J
of every V,, being order-isomorphic to a closed iaterval, is by £~ topologically
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mapped onto a closed interval. Tt follows that for each n = 0,1,2,.., the set
S~ (h(E)) is a countable union of open intervals and that [ is continuous.

3.2. In the preceding subsection it was shown that for any P-manifold X there
exists bijective and continuous f: R — X. Spaces of this type have been the object
of several studies e.g. [2], [19], [20] and [21]. We now discuss a property of P-mani-
folds which is not shared by all real curves.

DEFINITION, Let f: R ~ X be a mapping. We shall say that f has the arc lifting
property if for each arc j: [0, 1] - X there is a unique arc j: [0, 1] - R such that
Soi=J

Remark. We indiscriminately use the term “arc” for the embedding of the unit
interval as well as for the image of the embedding, as has been done in the preceding
subsection.

THEOREM. Suppose that the space X is atriodic. Then each bijective and continuous
mapping f: R — X has the arc lifting property.

Proof. The proof is very similar to the proof of Theorem 1.25 in [1] stating
a somewhat stronger result for aperiodic motions. Let Jj: [0,1] » X be an arc.
Write C = j([0,1]) and I = {teR| f(t) e cl

To prove the theorem it is sufficient to show that I is compact, because then
clearly the restriction of f to I is a topological embedding.

First we shall show that there exists a strictly increasing sequence f, — oo
such that #,¢L It this is false, then [f, )] for some teR. As
[t,0) = U{lt,n]l n=1,2, ...} and the restriction of f to [z, n] is a topological
embedding for each n, f([t, 0)) is a halfiopen interval in C. Let p be the unique
limit point of f([¢, «0)) in C which is not contained in f([t, ©)). Let p = f(g).
Then g ¢ [t, c0) and [g—&,g+&] N [t, 00) = @ for some &> 0. As the restriction of fto
[g— &, g+¢] is a topological embedding, it follows that the three arcs Fg—e, qD,
f(lg, g+e]) and cl £([z, ) have only the point p is common. This contradicts the
fact that X is atriodic. Similarly there is a strictly decreasing sequence s, — — o0
such that s, ¢ 1. Write 4y = {f ()] so<u<1} 0 C and for nx1,

An = {f(u)l 5n+1<u<5‘" or tn<“<"n+1} nC.

Then {d,| n = 0,1, ...} is a pairwise disjoint family of closed subsets of C. It follows
by Sierpiniski’s theorem ([1], [17]) that C equals A, for some n. It has been proved
now that I is bounded. As I is closed as well, J is compact.

Exampres. The dumbbell and the figure eight are curves ([2]) which lack the
arc lifting property.

3.3. Let X be a P-manifold. The bijective and continuous mappings R — X~
in a natural way fall into two classes, the directions of X. This enables us to define:
orientation. It is shown that orbits are orientable. The following lemma is relevant
to the definitions below.
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LEMMA. Suppose that X is a P-manifold. For i = 1,2 let f;: R — X be bijective
and continuous mappings. Then f5 * ofy is a homeomorphism.

Proof. The map f; ! o f; is a bijection which, restricted to any closed interval,
is a topological embedding, since f, has the arc lifting property.

DEeFINITION. Suppose that X is a P-manifold. Let f;: R — X be. bijective
and continuous mappings, i = 1, 2. We say that f is equivalent to f5 if f5 * o f, is
increasing. An equivalence class of continuous and bijective mappings R — X is

- called a direction for X.

PROPOSITION. Suppose that X is a P-manifold. Then there are precisely fwo’

directions for X.

Proof. The easy proof is left to the reader.

DEFINITION. Suppose that X is a P-manifold with direction {f}, the equiva-
lence class of f* R — X. Let ¥ be a matchbox in X and h: F — ¥ a parametrization.
We shall say that V is coherently directed by h if for each xe @ the map
fleh: [—1,11 > R, defined by f~'oh(t) = f~'(h(x, 1)), is increasing. The
‘P-manifold X is called orientable if there is a matchbox V in X and a parametriza-
tion i: F — V such that V is coherently directed by A.

Orbits of aperiodic and Poisson-stable motions are orientable P-manifolds.
That is the contents of the following theorem.

THEOREM. Let n: Xx R — X be a flow. Let x € X. Suppose that the motion n, is
aperiodic and Poisson-stable. Then the orbit I'(x) of x is an orientable P-manifold
with direction {n.}.

Proof. The notation of the proof of Theorum 2.1 is used. As in that proof
yeI'(x)= Xandm: Nx(—¢,8) - n(Nx(—s, €)) is a homeomorphism. Here N is
homeomorphic to O, thus showing y to have an open neighborhood which is homeo-
morphic to O xR.

Now we shall show that the matchbox n(Nx[—e¢, €]) is coherently directed
by m,. For cach ze N and s€ [—e¢, ¢, n(z, 5) = n(n(x, 1(2)), 8) = n(x, t(z)+5). It
follows that n; " o m.(s) = #(2)+s and =g 'om,: [—s¢, 8] = R is increasing.

Remark. From the proof above it follows that each point of an orbit has
a matchbox neighborhood which can be coherently directed. From the results in
Section 4 it will be clear that the same holds in any orientable P-manifold.

ExampLE. A well-known example by Knaster of an indecomposable continuum
in the plane provides an example of a nonorientable P-manifold X ([17]). Let E
denote the set of endpoints of the Cantor set C, i.e., E is the set of points in the unit
interval [0, 1] the tryadic expansion of which has no 1’s and eventually either 0's
or 2’s. The space X™* consists of all semicircles in the upper half of the plane with
<centre (3, 0) through the points of £ and of all semicirles in lower half of the plane

i 5 ) 2 1
with centre (5—3—7, s 0) through the points x of E such that -3—;<x$3~"~:-1-, nzl.

Now let X = X*\{(0, 0)}.
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1t is casily seen that X is a P-manifold. That X is not orientable can be proved
directly by inspection of any bijective and continuous mapping R - X. The easiest
way to reach the conclusion that X is not orientable is as follows. If X is orientable,
then, by the results of Section 4, X is the orbit of an aperiodic and Poisson-stable
motion. It can be shown however that planar Poisson-stable motions must be
periodic (cf. [1], [23]).

3.4. Now we are going to examine the pasting together of matchboxes.

DerNeTIoN. Let X be a P-manifold. Suppose that J is an arc in X with para-
metrization g: [0, 1] — X. Suppose that ¥ is a matchbox in X and h: F— V is
a parametrization of V. We shall say that V is a matchbox along J if for some x& Q

i) J o V=nh{x}x[-1,1]), and

(ii) the map #— g~ " (h(x, £)) is increasing.

PRrOPOSITION, Let X be a P~manifold. Suppose that J is an arc in X and that x € J
and x is not an endpoint of J. Let W be a neighborhood of x. Then there is a matchbox
neighborhood V of x such that V is a box along J and V< W.

Proof. Let g: [0, 1] = X be a parametrization of J. Let p and g be the end-
points of J. Let i: F— V' be a parametrization of ¥’ such that x = (0, 0) and
V' e (XN\{p,q}) n W. Let 0<a; <b; < ... <4,<b,< 1 be the partition of [0, 1]
as is mentioned in Lemma 2.4. As the cases @, = 0and b, = 1 do not occur, for some
i€{0,..,n} and for a unique z€ @ we have xeg([a;, b)) = r({z}x[~1, 1.

Because the intersection of J and V' consists of finitely many matches only, there
is a clopen neighborhood K of zin @ such that A(Kx [~1, 1) nJ = h({z} x [—-1, 1]).
We write ¥V = h(Kx[—1, 1]). Let k be any homeomorphism of F onto Kx [-1, 1].
As a parametrization for ¥ we take either / o k or the composition of the reflection
(x, 1) = (x, —t) of F and ko k. This depends on condition (ii).

THE PASTING THEOREM. Let X be a P-manifold and L an arc in X. Fori=1,2,
let V, be @ matchbox along L and let h; be a parametrization of V;. Let q; be the point
in Q such that L V= h({g}x[—1,1D), i=1,2. Suppose that for some
s1,852€(=1,1), LAV, Vo= h({g:}x[s1, 1D = hy({ga} x [~1, s3]). Then there
are clopen neighborhoods A; of g,in Q,1 = 1,2, and a matchbox V along L and a para-
metrization h: F — V such that

Vo= h(d; x[~1, 1D U hy(dy x[—1, 1], and
B(@x{~1}) = Agx {~1}, b3 'h(@x {1}) = 4, x {1} .

Moreover, if Vy (or V) is coherently directed by hy (or k), then V is coherently di-
rected by h. '

Proof. For i =1, 2 write #,(E) = U,. It is to be noticed that hi;(g;, —1) &V,
and h,(q,, 1) ¢ V;. Now b, and ¢, are chosen such that{g,} x [by, ;1= A7 *(U 0 UZ),'
Using the compactness of [b,, #;] and the continuity of /; a clopen neighborhood A3
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of g, is selected such that, for all ye 4y, A, (¥, —1)¢ ¥V, and
{3} x by, t]ehT U N Uy) .

The simple matchbox 4] x [by, #,] is denoted by B. The set &5 */1,(B) is a matchbox
in F. By Lemma 2.5 there is a clopen neighborhood A5 of ¢, and a simple matchbox
C = {(x.y)| xe Az, b,(x)<y<ty(x)} such that C = hy *h(B) N pr; }(4}). Now
it is to be observed that hy(g,, —1) = h(q4, §¢) € U; and

Pra(hs {(ha(g2, —1))) = pra(gs, s1) = 5y < b .

Hence a clopen neighborhood 4, of g, can be selected such that 4,< 45 and, for
all yedsy, hy(y, 1) Vs, hy(y, =1 e Uy and pra(hy {(ha(p, —1))) <by.

Define D, = C npry '(4,) and 4y = pryhy *hy(Dy). Let Dy = B Aprii(4,).
Then D, and D, are simple matchboxes and 43 *h,: D, — D, is a homeomorphism.
For any ye 4,, the set {y} x[b,(y), t2(3)] is a match of D,, whence also of C and
hy 1hy(B). It follows that for some x € Ay, {3} % [b(3), t,(0)] = bz Lhy({x} x [by, 1,])-
And, because prohylhy(y, —1)<by, we have 3 'hy(x,by) = (y, by(y)) and
By *hy(x, ) = (¥, 12(3)). Because 4, is homeomorphic to the graph {(s, t(s)| s € 4},
i=1,2,it follows that the map g,»: 4, — 4,, defined by g,,(x) = pry h3 *h,(x, £,(x))
is a homeomorphism. Moreover, for all xe 4,

(*) ‘ ]72—1/11(?5: t1(x)) = (g1z(x): 12(912(3‘))) .

The box ¥ is now obtained by pasting D, onto D, via h3'oh,. The precise
definition of the parametrization /7 of ¥ is as follows. Let g;: Q@ —4; be any
homeomorphism and let g, = gy, °¢g4. For xe Q define

h(x,8) = hyg:(x), 3[E+D)+5,(¢+1)])
= hy(9:09, 31=b, =D+ 1,(¢+ D))
= Dy(g,(x), %[—tz(gz(x))(’_n"'(t—%‘)]) for 321,

The map % is a topological embedding on each of the closed sets O x[—1, —3],
Ox[—%.%] and @ x[§,1]. The definitions of /4 agree on the sets Qx {— 4} and
0O x {1}, as can be verified by application of (%). As

for ~1<1<—%;

for -i<1<y;

R(E) = hy(dy x (=1, D) U By(dy x(—1,1)),

the union of two open sets, it is clear now, that & and V = }(F) satisfy the required
conditions. The statement about the coherent directedness follows from the following
observation. Let f: R — X be bijective and continuous. Then, for any x e Q, the
map ¢ — (A, ¢)) of [~1, 1] into R is increasing if and only if the map

t—= f7Hhy(g,(x), [t +3)+b,(t+ 13}))

of [-1, —4] into R is increasing.
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COROLLARY. Let X be a P-manifold and L an arc in X. For i =1, vy 1 (m223),
let Vi be « matchbox along L and hy: F— V; a parametrization. Let q; be the point
in Q such that Lo Vy=h{{g}x[~1,1) i=1,..,n

Suppose that LA V,_in Vi, =@ fori=2,..,n—1.

Suppose that there exist s;, t, with —1<s,<t;<1, i=1, .., n, such that

LaVin Vi =g}y <[t 1) = b (g0 3 x [=1, 554D
Jori=1,..,n—1.

Then there are clopen neighborhoods 4; of g, in Q, i = 1,...,n, and a maich-
box V along L with parametrization h such that

V=U{hdx[-1,1]) i=1,.,n}, and
hith(@x{=1}) = Ay x{—1}, B, ' (@ x {1}) = 4,%x {1} .

Moreover, if one of the ¥; is coherently directed by &;, then ¥ is coherently directed
by A.

4. Characterization theorem.

4.1. In this section we shall fill in the gap in the proof of Theorem 1.4 by pre-
senting a proof of the following theorem.

THEOREM. A space X is homeomorphic to the orbit of an aperiodic and Poisson-
stable motion in some dynamical system if and only if X is an orientable P-manifold.

The “only if” part of the proof can be found in Subsection 3.3, A proof of the
“if” part is given in the following subsections. Here an outline of the proof is pre-
sented. The notation, which we are going to introduce now, will be used throughout
the section.

Suppose that X is an orientable P-manifold. We shall define a dynamical system
which contains one orbit only. This orbit is homeomorphic to X. Let g: R — X
be a bijective and continuous mapping by which the direction {g} for X is determined.
Let V be a coherently directed matchbox and A: F — ¥ a parametrization. The
zero-section of V is the set Z = {i(x,0)| xe Q}. It is a topological copy of Q.
In 4.2 the so-called Poincaré map p: Z — Z will be defined. It is to be observed
that in the dynamical system which will be constructed the set Z is locally a section
(i.e., each point of Z has neighborhood the intersection of which with Z is a section)
and the mapping p is the Poincaré map associated with Z. It is indicated that without
loss of generality there are only two cases to be considered:

(i) the Poincaré map p: Z -» Z is a homeomorphism,

(i) there is a point g € Z such that p: Z — Z\{q} is a homeomorphism.

In both cases the mapping p is universally transitive, i.e., there is a point y € Z such
that Z is the set of all p"(y), which are defined, n e Z. Case (i) will be discussed in 4.3
and case (ii) in 4.4.
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4.2. The notation of 4.1 is used. From Theorem 3.2 it follows that g~ (V) is
a countable infinite collection of pairwise disjoint arcs. In view of Lemma 2.4 the
collection is also discrete. Let Z be the zero-section of V. It follows that g ~%(Z)
is a countably infinite and discrete set. By this discussion the following definition is
justified. For each yeZ we let D(y») = {teR| t>g %) and g(@®)ez}
=g"Z) n (g7 (), ). Now whenever D(y) # &, we define

2(y) = g(minD(3)).

The mapping y — p(y) is called the Poincaré map.

LemMMA. For all y e Z with the exception of at most one p(¥) is well defined.
Furthermore {Z\p(Z)| < 1.

Proof. It was observed above that g~*(Z) is countably infinite and discrete.
So inf(g~*(Z)) = —oo or sup(g~Y(Z)) = oo and one of the following cases ocours:

(i) inf(g=*(Z)) = —oo0 and sup(g~(Z)) = oo,

(i) min{g~"(Z)) = ge ¢~ "(Z) and sup(¢~1(2)) = oo,

(ifi) inf(g™(2Z)) = —oo and max(g~(Z)) = ge g~ H2).
Cleatly, in cases (i) and (ii) the mapping p: Z — Z is well defined. In case (iii) p is
well defined on Z\{g}. In case (i) p: Z — Z is bijective, in case (ii) p: Z — Z\{q}
is bijective and in case (ii1) p: Z\{q} — Z is bijective. It is not difficult to see that
apart from the directional properties the cases (ii) and (iii) may be considered the
same (cf. 3.3, proposition).

Remark. From the observations in the proof of the preceding 1. mma it is clear
that only two cases are to be considered, namely

(i) the Poincaré map p: Z — Z is bijective, and

(ii) there exists geZ such that p: Z — Z\{q} is bijective.

In both cases the mapping p clearly is universally transitive and therefore fixed-
point-free.

THEOREM. The Poincaré map p: Z — Z is a topological embedding.

Proof. We only discuss the case that p is bijective, as the other case is very
similar. Let x € Z. We shall show that p is continuous at x. Write y = p(x) and
observe that y # x. Let W, and W, be disjoint clopen neighborhoods of x and ¥
respectively in Z.

The points 2~ *(x) and A7(3) are denoted by (x',0) and ()", 0) respectively.
The points g~ *(x) and g ~*(y) are denoted by x'’ and "' respectively. Now in X the
arc J = g([x", ) is considered which begins in x and ends up in y. Because V is
coherently directed, it can be seen that the arc J consists of the following three
consecutive parts. The first part conmects x with h(x',1). It is the arc
{h(x', 1)) 0<r<1}. The second arc begins in A(x', 1) and ends up in h(y', =1).
It is denoted by J'. The third part connects A(j’, —1) and y. It is the arc
(1) —1<1< 0}. Now we are going to define a sequence of matchboxes along
the arc J. The first box is the image under % of the box Fy = ™Y (W) %[0, 1] and
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the last box in the sequence is the image under /1 of the box Fy ="' (W) x[-1,0].
Observe that these two boxes cover the first and third part of the arc J. For each
point z of the arc J' a matchbox neighborhood V, along J is selected such that
V.= XNZ (2.3). The collection {int¥,| zeJ ’} is an open collection whose union
contains J'. By compactness of J/ there is a finite subcollection {int¥,,, ..., int v.),
the union of which contains J'. We may assume that the collection is minimal,
i.e., no subcollection of it covers J'. Because of the minimality, after rearrangement
of the z; if necessary, the sequence i(F,), ¥,,, ..., Ve h(F2) satisfies the hypotheses
of Corollary 3.4. In this way one gets a matchbox W along J with parametrization
ki B W and clopen sets W{ and W, in Z such that

Weh(f) oV UV, Uh(F), xeWcW,ye Wi W, and

k@x{—1})=Ww| and k(@x{1}) = w3.

That is, the “bottom” of the matchbox W = k(F) is the subset Wi of W, and the

“top” is the subset W, of W,. As W is coherently directed as well, it is clear that the

Poincaré map sends the “bottom™ to the “top”. It follows that the sets W{ and W,

are homeomorphic. The theorem follows. i
From the proof of the theorem we also get the following corollary.

COROLLARY. T cach point x of Z there exist a closed and open neighborhood W and
a parametrization k: F— k(F)c X such that k(F) is a matchbox in X,
k(@x{~1}) = W, k(@x{1}) = p(W) and k(F) nZ = W L p(W).

4.3. We now discuss the case (i), namely p: Z - Z is bijective. Throughout
the notation of (4.1) is vsed. Using the last corollary and the fact that Z is separable
and metrizable, we get a countable cover {W;, W;, ...} of Z and a sequence of para-
metrizations {ky, k,, ..} such that for each i=1,2, ...

(i) W; is a closed subset of X and an open subset of Z;

(ii) k;: F— k(F) is a parametrization of the matchbox %,(F); and

(i) k(@x{=1}) = W, k(@x{1}) = p(W) and k(F) A Z = W, U p(W).
After having replaced W, by W \(W; U ... U W;_,) we may assume that the collec-
tion {W,, W, ...} is disjoint. As each W, is clopen in Z, the collection {W;, W,, o}
is locally finite.

Now it is to be observed that the collection {k,(F)| i =1,2,..} is a locally
finite closed cover of the space X. This can be seen as follows. That each k,(F) is
closed, is obyious, i = 1,2, ... Because {W,} is disjoint, the collection {k(F)N\Z}
is disjoint as well in view of (iif) and Lemma 2.4. As k,(F\NZ = ky(E), i =1,2,..,
it follows that {k,(F)NZ| i = 1,2, ..} is a disjoint open cover of ¥\Z. Both {w}
and {p/ W)} are locally finite and closed collections in Z. As ¥is a neighborhood of Z
in X which is homeomorphic to F, and so has a product structure, it can be concluded
that {k,(F)} is a locally finite collection in X.

Now we let Zx [0, 1]= ¥. The collection {W;x [0, 1]] i = 1, 2, ...,} is a disjoint
and clopen cover of Y. The map n: ¥ — X is defined as follows. Let i = 1,2, ...
The map k;: F— X is a topological embedding such that k,(Q x {~1}) = W, and
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k(O x{1}) = p(W)). The embedding k; is used to glue W;x [0, 1] into X in such
a way that n(x, 0) = x and n(x, 1) = p(x), x € W;. In this way a topological em-
bedding n of W, %[0, 1] into X is defined. As = is defined on each member of
{W,x [0, 11}, it is defined on Y. Because {W,x [0, 1]} is locally finite and closed,
the mapping 7 is continuous, The mapping = is closed, because {k(F)} is a locally
finite and closed collection in X. It follows that = is a quotient map and that X is
homeomorphicto ¥/~, where y ~ ¥"iff n(y) = = (3'). As is easily seen this amounts
to (z, 1) ~ (p(2), 0) for all ze Z. It follows that X is homeomniorphic to the phase
space of the suspension of (Z, p).

4.4. In this subsectio.1 we discuss the case (ii) of Remark 4.2, namely there exists
g€ Z such that p: Z — Z\{q} is bijective. Let g: R — X be the map by which X is
directed. We may assume that g(0) = ¢. Observe that 0 is the smallest real number ¢
such that g () e Z.

‘We shall show first that there is no sequence #, —» — oo such that the sequence
g(#,) converges to some point x € X, thus showing that the negative limit set of the
mapping g must be empty (cf. [2], [21]).

Suppose this is false. Then for some x € X and some sequence f, - —oo we
have g () — x. As g is bijective, x = g(s) for a unique s € R. We now consider two
cases, namely s > 0 and s < 0. In the case s > 0 let k: F — W be the parametrization
of a matchbox W such that g ([0, s])< k(E) and each match of W hits Z as many
times as ¢ ([0, s]) does.

Such a matchbox W is easily obtained by applying the techniques of (4.2).
We consider the arc g([—1, s+1]) = J. First for each z € g ([0, s]) we take a match-
box neighborhood V, along J. Care is taken that for z¢Z the intersection
V. N Z = @. Then a minimal subcover of {int ¥,| z & g([0, s])} is selected and finally
the pasting theorem is applied.

We may assume that W is coherently directed.

Now let W, be a matchbox neighborhood of x such that Wyc W.

As g(t) — x, g(ty) e W, for some #,<0. By “traveling” along the matches
of g (1) we see that g(w) e Z for some w < Q. This contradicts the fact that O is the
smallest real number ¢ such that g(¢) e Z.

The cases s < 0 is treated in a similar fashion. Let k: F — W be the parametri-
zation of a matchbox W such that g([s, 0]) = k(E) and each match of W hits Z
exactly once. Because g ((— co, 5]) is connected, it cannot occur that g((— co, s])< W.
Because g(f) — x and t, - — oo, it follows that there exist u;, u, € R such that
uy <up <s and g(u,) ¢ W, whilst g(uy) e W.

We may assume that W is coherently directed.

Now by “travelling” along the fiber of g(u,) we get g(w) € Z for some w with
w<u,. But 0 is the smallest number ¢ such that g(¢) e Z. A contradiction.

Having established that the negative limit set of g is empty, we see that the
set {g@m)| n =0, —1, —2,..} is discrete. Then we can find a discrete collection
AV n=0,—1,=2,..} such that, for each n, ¥, is a matchbox neighborhood
of g (m) which is coherently directed. Let V* = (J {V,] n =0, —1, —2, —}. Then V'*
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is a matchbox and the Poincaré map of its zero-section is bijective. So the result of 4.3
applies.

The proof of the following is now obvious.

COROLLARY. Suppose that X is an orientable P-manifold. Then there exists a co-
herently directed matchbox V in X such that the Poincaré map of the zero-section of V'
is a homeomorphism.

5. Structure theorem.

5.1. Putting together the results of the preceding sections we obtain the following

THroREM. Let n: XX R — X be a flow. Let xe X. The motion m, is aperiodic
and Poisson-stable if and only if n, is topologically equivalent to the suspension of a dis-
crete system (Q, h), where h is a universally transitive homeomorphism.

Proof. Let h: Q@ - Q be a homeomorphism. If / is universally transitive,
then / is aperiodic and Poisson-stable. It follows that the suspension of (Q, %) is
an aperiodic and Poisson-stable motion. Thus the “if* part is proved. To obtain
a proof of the “only if” part we may assume that X = I'(x). The orbit I'(x) is
a P-manifold which is directed by the motion =, (3.3).

Using Corollary 4.4 we find a coherently directed matchbox ¥ such that the
Poincaré map p: Z — Z-of the zero-section of ¥ is a homeomorphism. By the proof
presented in 4.3 we see that I'(x) is homeomorphic to the phase space of the suspen-
sion of (Z, p). From the general observations about equivalences (1.2), it follows
that =, is topological equivalent to the suspension of (Z, p).

5.2. In the light of Theorem 5.1 it is of interest to know when two discrete
systems on @ have equivalent suspensions.

DErFINITION 1, Let 2: Q — Q be a homeomorphism which is two-sided Poisson-
stable. Let C be a closed and open subset of Q. For each xe C the number
n(h, C,x) is the least integer m >1 such that A"(x) e C; for this least integer rm,
the point A™(x) is denoted by r(k, C)(x). The map r(%, C) is called the first return
homeomorphism.

Observe that r(h, C) is well-defined because # is positively Poisson-stable. The
map r(h, C) is onto C becuuse % is negatively Poisson-stable.

PROPOSITION. Let h: Q — Q be a homeomorphism which is two-sided Poisson-
stable. Let C be a closed and open subset of Q. Then the map r(h, C) is a homeomor-
phism C — C which is two-sided Poisson-stable.

Proof. Write C = {J {C,| n=1,2,...} where

C,={x] Hx)¢C, i=1,2,..,n-1, and A'(x)eC}.

Each C, is closed and open, and {C,} is a partition of C..On C, the map r(h, C)

equals 2, n=1,2,.. ’
DEFINITION 2. Leg g,h: Q — Q be homéomorphisms which are two-sided

Poisson-stable. The homeomorphisms g and 4 are called first return equivalent if
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there are closed and open subsets C and D of Q such that r(g, C) are r(h, D) are
conjugated.

Remarks, Obviously, equivalent homeomorphisms are first return equivalent.
The converse of this statement is false. See Example 1 of the next subsection.

The notions of first return homeomorphism and first return equivalence have
their counterparts in ergodic theory, namely induced system and Kakutani equi-
valence (4], [13]).

THEOREM. Suppose that g and h are homeomorphisms of Q onto itself which are
two-sided Poisson-stable and universally transitive. Then the suspensions of (@, g)
and (Q, ) are topologically equivalent if and only if g and h are first return equivalent.

Proof. Suppose that C is a clopen subset of Q. The suspension of (@, g) is
an aperiodic and Poisson-stable motion (5.1). Iis phase space is an orientable
P-manifold. Now C and r(g, C) can be considered to be the zero-level of a coherently
oriented matchbox and the Poincaré map. It follows that (@, g) and (C,r(g,C))
have topologically equivalent suspensions. The “if” part easily follows. To prove the
“only if” part suppose that the suspensions X and Y of (@2, g) and (Q, h) are
topologically equivalent. Let f: X — ¥ be any homeomorphism, sending orbits
to orbits and preserving orientation. As each of the systems consists of one orbit
only, we may assume that f([0,0]) = [0,0]. We also may assume that the
P-manifolds X and Y are directed by the motions. In ¥ we consider the
matchbox

V= {ly.tll -J2<y<y2, —k<t<d}.

Then, because f is a homeomorphism, for some irrational number § and for some
real number # the subset W = {[x, s]| —f<x<f, —r<s< r} of X is topologically
embedded in ¥. Both ¥ and W may be regarded as standard matchboxes. Thus /(W)
is a matchbox in ¥ with parametrization . By Lemma 2.4 the intersection of f (W)
and {(0, )] —1<1<}} = J consists of finitely many arcs. By using the argnment
which has been employed in the proof of Proposition 3.4, it can be seen that ff can
be chosen in such a way that £ (W) n J consists of one arc only. Then, in view of
Lemma 2.5, B can also be chosen in such a way that f (W) is a simple matchbox
with base K. Let V' = {[y, ]| ye K, =4 <t<}} and let the mapping [y, #] -
= [y, 0] be denoted by pr. Now, the zero-section {[x, 01 x| < B} of W is inspected.
The Poincaré map of this section is precisely the first return map r(g, (—f. £)).
Similarly, the Poincaré map of {[y, 0]| y& K} is the first return homeomorphism
r{h, K). Now pr o f induces a homeomorphism. of the zero-section of W onto the
zero-section of V. This homeomorphism is a conjugation between the Poincaré maps
of the sections.

5.3. Now an example is presented exhibiting two homeomorphisms of Q,
which are first return equivalent, but yet not equivalent. The author would like to
acknowledge his indebtedness to M. Keane for suggesting the example.

ExaMpLe 1 (cf. [15]). As usual, {a} denotes the fractional part of a, ae R.
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We shall define two systems (@, o) and (@, op) which ai‘e first return equivalent,
but yet not equivalent,

Leta, fel0 ) 1) be irrational algebraic numbers such thatf <o and o = ;ii
Note that o 5 f. Let y [0, 1) be an irrational transcendental number.

A= {{yp+nad] neZ} and o is the shift o,({y+na}) = {y+@+1)a}.

B = {{Z ~|”ll/f}‘| neZ} and oy is the shift op(x) = {x+p}, xe B.

As o matter of fact 4 and B are equivalent to the systems 4 and B discussed in 1.3
Example 2. Thus A and B are homeomorphic to @. It has been indicated that the
systems A and B are not equivalent. Now write U = (0, ) N 4. Then U is closed
and open in A and we shall show that r(o4, U)is conjugated to ¢ thus showing that
(4, a,) and (B, o) are first return equivalent. We write » instead of r(o4, U). We
have

Cfor 0<x<l—a

for l—a<x<a.

r(x) = x+200—1 = x+of,
= xtoa—1 =x+a(f-1),

X .
The map h: U — (0, 1) is defined by h(x) = - xe U. Now, easy computation

shows fior = opoh.
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Residuality of the set of embeddings into Nagata’s n-dimensional
universal spaces
by

Elzbieta Pol (Warszawa)

Abstract, We prove that the set of homeomorphic embeddings of an n-dimensiorfal metriza-bIe
space X of weight 77+ into the universal n-dimensional Nagata's space K,.(r)'C S(T)““,. S@) bel:og
the standard 7-star-space, is residual in the function space of all continuous mappings of Xinto $(z) °.
This answers in a strong form a question posed by K. Kuratowski (see [N2], p. 260). The proof is

based on a classical Baire-category method.

1. Introduction. The aim of this paper is to extend some classical embedding
results for n-dimensional separable metrizable spaces to nonseparable spaces. More
specifically, we show that, given an n-dimensional metrizable space X of .wexght
7 28, the embeddings of X into Nagata’s universal space K,(t) (a generahzgnon
of the clussical Nobeling’s universal space; see [E], Theorem 1.1.1.5) form a resxdu:(t)l
set in the space of all mappings of X into the universal metrizable space S(z),

; ‘(1) is the star-space of weight <.
thl';h?s( r)csult answors](in a strong form) a guestion in [N2], which J. Nagata
attributes to K. Kuratowski; an answer to the original question follow§ also tjrqm [P1],
where some refinements of Nagata’s embedding theorems for n-dimensional and
countable-dimensional metrizable spaces ([N3], Theorems VI. 5 and [N1], Theo-
o 1911) 1?1:: 521‘/;;1' embedding theorems are obtain-ed by the classical Bajre-ca.tegory
method, while the cmbedding problems dealt with in the paper [P1]do not gdmlt.suck;
an approach. In particular, the set of all embeddings of a countable-dimensiona

o
metric space of weight 7 =¥, into K (1) = U] K,(7), which is dense in (X, S@™)
n=1i
by [P], Corollary 2.2, may not be residual in C(X, S(x)*) (see Remark 3.7).

2. Notation and definitions. Our terminology follows [E] and .[N3]' By dimension
we understand the covering dimension dim. The term function and a ‘symbol
[+ X — Y always denotes a continuous function. By 7 we.denote the unit :onterval
[0, 1], by Q — the set of rationals in I, by N —~th§ set of integers gnd by-I — th‘ef
Hilbert cube. A family & of subsets of a metric space (X, @) is d-discrete, i
0(4, B)x & for every distinct A, Be s, where

o(4, B) = min{o(a, b): ae 4, beB}.
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