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On a class of topological spaces with a_Scott sentence
by

Juan Carlos Martinez (Madrid)

Abstract. By means of a topological game with two players we study the expressive power
of the topological language (L)t for Ty spaces. The main result of this paper is a partial charac-
terization of homeomorphism type of the space by means of certain topological properties which are
expressible in this language. In this way, we find a class of topological spaces with a Scott sentence
which includes every countable ordinal with order_ topology.

§ 0. Introduction. The infinitary language L, is obtained from the first order
language L,,, (in the classical sense) by adding the following formation rule: If @ is
a countable set of formulas, \/@ and /\@ are formulas.

(Loyw): is the topological analog of the language L,,,,,. It is a formal language
in the study of topological structures. (L,,,); is obtained from L,,,, by adding the
symbol € and set variables X, ¥, ... The atomic formulas of (L,,,), are of the form
x = y and x e X, The formation rules of (L,,,), are those of L,,, and the following
two rules:

(i) if a formula ¢ is positive in X, then VX(xe X — ¢) is a formula.

(if) If a formula ¢ is negative in X, then 3X(xe X A ¢) is a formula.

A formula ¢ is positive (negative) in X if each free occurrence of X in ¢ is within
the scope of an even (odd) number of negation symbols. The set variables range
over the class of open sets of the space and, intuitively, quantifications over sets
in (Ly,,), are quantifications over small enough neighborhoods of a point.

It is shown in [1] that in many cases it is possible to give a parallel treatment
of classical and topological model theory.

Every space considered here is assumed to be 73 (i.e. Hausdorff and regul‘a_r).
We denote T spaces by 4, B, ... It is an immediate consequence of the LBWenh.exm—
Skolem theorem for (L,,,), that, for every sentence ¢ of (L,q,):, if ¢ is satisfied
in a T space then ¢ is satisfied in a countable metrizable space. This says that the
class of countable metrizable spaces is, from the point of view of (L,,s),, dense
in the class of all T; spaces. Let 4 be a countable metrizable space. A sentence? o of
(Layw): is said to be a Scott sentence of 4 if A F ¢ and every countable metrizable
space which satisfies ¢ is homeomorphic to 4. In the present paper we find a class
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of countable metrizable spaces with a Scott sentence. It is not known whether there
exists a countable metrizable space without such a sentence.

We study the set of accumulation points of a space by means of a certain topo-
logical game with two players. In this way, we partition the space into classes of
points of the same type. The main result of this paper is a characterization of homeo-
morphism types, for a certain class of T3 spaces which includes every countable
ordinal with order topology, by means of certain topological properties which are
expressible in (L), Intuitively, a T3 space 4 belongs to our class if for every
ae A and every neighborhood U of ¢ we can find a neighborhood U, of a with
U, = U in such a way that U, is sufficiently small and we can determine which types
of points are in U,. The main theorem permits us to characterize the (L, ,),~theory
of any space of our class. Then as a corollary we deduce that every countable ordinal
with order topology has a Scott sentence. .

The results of the present paper are an improvement of the results of [2]. A classi-
fication of the (L,,),-theories of T spaces is given in [1].

§ 1. Accessible sets and types of convergence. If 4* is a subset of a space 4
and a is an accumulation point of 4*, we say that A* converges to a and write
A* - a. If AY, A% are subsets of A such that AF — g for every ae A%, we write
Af - A3. In order to study that convergence, we introduce the notion of accessible
set. .

We are given a T, space 4, a subset A* of 4 and two players I and II. In the
game G(A4*, 4) each player makes infinitely many moves. In his ith move player I first
chooses an arbitrary finite sequence a4, ..., @, of points in 4 and then in his ith move
player II chooses a sequence of » neighborhoods Uy of 4, ..., U, of a, in A. Let
U{, ..., Ul be all the neighborhoods chosen by II in the moves 1, ..., i. A* is covered
in move iif A* « Uy U ... U Uj. Then I wins in the game G(A4*, 4) if 4* is covered
in move i for some 7. We say that the set A* is accessible if I has a winning strategy
in G(4*, 4). Otherwise, we say that A* is an inaccessible set.

For each ordinal ¢ we introduce the notion of &-accessible set as follows. A* is
0O-accessible if 4* = @, If ¢ = u+1 we say that 4* is ¢-accessible if, for some ne o,
there exist ay, ..., @, € 4 such that for all neighborhoods U, of «, ..., U, of a,,
A*—(Uy U ... u U,) is p-accessible. If ¢ is a limit ordinal, then 4* is &-accessible
if 4* is p-accessible for some u < €. The notion of w-accessible set is the crucial
notion we use in [2].

Remark. After the publication of [2], R. Telgdrsky has pointed out that the
game we use to define the notion of accessible set is a refinement of the point-open
game, which was introduced by F. Galvin and R. Telgérsky and which has also been
studied by other authors. This game is presented in [3].

Let 4 be a T space. Let 4* be a subset of 4. In the sequel, the following basic ‘

properties (i)—(vii) will be used without explicit mention.

() If B* is-a subset of A*, then A* accessible (&-accessible) implies B* accessible
(&-accessible).- -
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(i) For every two ordinals &, n with E<n, A* £-accessible implies A* n- accessible.

Note that if % is a regular cardinal and the topology of 4 has a basis of cardi-
nal < x, then A* (x+1)-accessible implies A* x-accessible. Hence we infer that if 4*
is not x-accessible, player II has a winning strategy in the game G(4*, A). There-
fore A* accessible implies A* x-accessible. Thus we obtain:

(iii) A* is accessible if and only if A* is E-accessible for some ordinal E.

The following are easy generalizations of the basic properties of w-accessibility
given in [2].

@iv) A* = AT U ... U AY is accessible (¢-accessible) if and only if A%, ..., A¥
are accessible (&-accessible).

(V) If A* is accessible (&-accessible), then the set of accumulation points of A* is
accessible (¢-accessible).

(Vi) If A* is an infinite subset of A and no point of A is an accumulation point
of A*, then A* is inaccessible.

Note also:
(vil) If 4* % & and A* — A*, then A* is inaccessible.
Suppose that 4 is a T space and 4* is a subset of 4. For every ordinal &, we

define by transfinite induction the &-derivative of A*, (4*)%, as follows:
(4%)° = 4%,
(4% = {ae 4: (4% - a},
(A% = [} (4%"if & is a limit ordinal.

O<pu<e

]

I

We shall need the following result.

LemMma 1.1. Suppose that A* is an accessible subset of A. Then, for every ordinal &,
A* is E-accessible if and only if (4%)° = @. ’

Proof. We show that if U, , ..., U, are open sets, then (4%)*— (U; U ... U U)=@
implies A*~ (U, U ... U U,) &-accessible, for each &, The case & = 0 is immediate.
If ¢ = p+1 and (A*)°—(U; U ... v U,)) = @, it is easy to infer that

(A —~(Uy U ... U T})

is finite (otherwise, (4*)* would not be accessible). Now assume that & is a limit
ordinal and (4*)*~(U; u .. L U = () ((4*'—(U; v ... u U,)) = O. Consider
o<pu<g . g

A = (4% —~(U, U ... u U,). Since 4 is accessible and closed, 4 is compact. Therefore
AN~ (U, u...uU) =8 for some pu<¢, and by the induction hypothesis.
A*—(Uy v v U,) is p-accessible.

On the other hand, for closed sets Uj,..., U,, one can check that if
(A*° (U, u...0 U,) # O then A*—(U, U ... u U,) is not £-accessible. B
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Suppose that 4 is a Ty space, 4* is a subset of Aand ae 4. If A* — a we con-
sider the following two types of comvergence:

(a) 4% —1> a if there is a neighborhood U of a such that 4* n U is accessible,

(b) 4* > a otherwise.

Assume that A is a T space and ¢ is a nonempty set of subsets of 4. The game
of infinitely many moves G(%, 4) is defined in the same way as G(4%, A) for a sub-
set A* of A. We say that player I wins in G(%, A) if, for some natural number J,
there exists an A* e & such that 4* is covered in move 7. We say that % is accessible
if T has a winning strategy in G(%, 4); otherwise, ¥ is inaccessible. If U is an open
set (or a closed set) in 4, we write € } U = {4* n U: d*e %}. We say that € con-
verges to a € A, € — a, if for every A* & € we have 4™ — a. If € — a we consider
the followmg two types of convergence;

(2) ‘6 —> « if there is a neighborhood U of a such that & } U is accessible,

(b) % — a otherwise.

We define by transfinite induction when a nonempty set @ of subsets of 4 is
&-accessible. € is 0-accessible if Je . If & = u+1, we say that % is &-accessible
if, for some n & o, there exist aj, ..., @, € 4 such that for all neighborhoods U; of
ag, i, Uy of @y, €PA—(U 0. 0T, is p-accessible. If £ is a limit ordinal,
then % is &E-accessible if @ is u-accessible for some p<¢.

Let us say that a subset 4* of 4 is (L,,,)~definable (or, simply, definable) if
there is a (L,,,)-formula ¢(x) such that, for all ae 4, Ak ¢ [4] iff ae A*. Note
that if 4* is a (L,,q),-definable subset of 4 and ¢ is a countable ordinal, then the
condition “4* is &-accessible” is (L, q)-definable. If 4 is a limit ordinal and, for
n<t, A is a definable subset of A, let us say that {A n<n} is a sequence if
Ay - A : for py < pip < 1. Then, if £ and # are countable, the condition “{A Tu<n}
is f access1b1e” is definable. Note that if # is not a limit ordinal and Ay, — A%, for
py<iy <7, then {4¥: p<n} is accessible (£-accessible) iff Ay 1s accessﬂ)le
(é-accessible). In this paper we introduce a class of T3 spaces in whlch the notion
of accessibility can be treated as a (L,,,)~definable notion. For any space 4 of this
class there will exist a countable ordinal £ such that the terms “accessible” and
“¢.accessible” will be equivalent for definable subsets and sequences of A. For
example, in any space of a-finite type (in the sense of [2]), “accessible” and
“w-accessible” will be equivalent.

Bxampres. To characterize the (L, ,q)~theory of a countable ordinal £ with
order topology we consider, for every ordinal &, the definable set Q% = (2)°— (@)%,
We have Q@ = the set of isolated points of @ and, for &> 0, Q® = the set of
accumulation points. exactly of points of Q% for every p<¢ (for example, if Q
is ©° then © e P, w e, ...,0"c Q... and Q¥ = @ if &> w). Then we
have to check whether the sets 2 and the sequences {Q®: p<n} are accessible
or not. If ¢> 0 and a € Q¥ we have to look how the sets Q) with y < ¢ and the
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sequences {Q": u<n} with 5 < & converge to a. In this case, these convergences
are of type 1.

Now let us consider the spaces we presented in [2, Example 2.5]. We consider
the ordinals w1 and w®, each with order topology, and for every n € w a homeo-
morphic copy (©?), of . In w+1, replace each n € @ by ©®. Let us denote by 2, the
resulting space and by e, the only point of w-+1 not replaced. If 4 € ®” we denote
the corresponding point in (w®), by (1),. We add a new point e, to the topological
sum Y (0®), and take as a neighborhood basis of e, the sets of the form

nee

feqd u U {€e(@),: €> ().}, where nem”. Let us denote by Q; the resulting

new
space. For i = 0,1 we consider the sets Q% (¢ ordinal) defined as before. Then
Q) = {e} and QP = Fif é>w (i = 0, 1). We find that O™ is inaccessible and

4]
QM s ¢, for every new (i = 0, 1). However:
4]
(2) {@§: n>0} is inaccessible and {Q§: n>0} — e,
1
() {2%: n>0} is 1-accessible and therefore {Q%”: 1> 0} — e;.

We can then infer that Q, and Q; are not (L,,,)-equivalent. Now let us consider
the topological sum w®+, and let us denote this space by Q,. In this case,

1
{Q4: n=0} is inaccessible and {QF: n> 0} — e,

§ 2. The notion of spectram. Suppose that E is a nonempty set and < is a binary
transitive relation on E (possibly <+ = @). If the set {oe E: a<-a} is finite, we
say that (E, <-) is normal.

Let (E, <) be a normal relation. Suppose that o € E. We say that « is com-
parable in Eif thereis a § € Ewith a <-B or f <-a. Let y be a nonempty subset of E. .
We say that y is a chain in E if, for some ordinal 4 3> 1, we can write y = {0, 4 <1}
with e, <-a,, and o, # &, for py <, <#; then we say that 5 is the length of y.
Since {xe E: o <-a} is finite, it is easy to see that “y is the length of y” is unambi-
guously defined. Note that even if o <o, the length of {o} is always one. Let y be
a chain in E. We say that y is a maximal chain in E if, for every chain y’ in E, y <y’
implies y = y’. Note that if « is a noncomparable element of E then {x} is a maximal
chain. We say that a chain y = {&,: u<#} is open if 5 is a limit ordinal; otherwise,
‘we say that y is closed.

Let (E, <-) be a normal relation. We write £ = P( {J {(z, 2): « € E}) (where P

4=0,1

denotes the power set operation). Let y be a chain in E and & e E. We say that y is
a chain in & if, for every Bey, (B, ) el for A=0 or 4 = 1. )

We say that {(S¢, <;): € ordinal) is a complex of types if, for every ordinal £,
(S;, <¢) is normal and S; satisfies the following:

(@) So = {*}.

(@) If &= p+1, then «S; is a countable nonempty subset of the set
{<4,8): &€ 8, and § is a set of pairs (y, ) such that [(y, YedforA=00rd =1
iff y is an open chain in &]}.
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(iii) If £ is a limit ordinal, then S is a countable nonempty subset of the set
{loeTu<et 0 € Sy}

Thus if we want to construct a complex of types we define S, = {*} and take <,
then we define S; and take <,, and so on.

If {(Ss; <g): ¢ ordinal) is a complex of types, the members of S, will be called
&-types. Note that, for every natural number n, Sy does not depend on <,.

Note that we denote chains by 7,y ..., and types by a, f3, ...

Let S = {Sy, <g): & ordinaly be a complex of types. For every ordinal &, we
define the &-type of a in A with respect to S, sg{a, A), for every T; space A and a € 4.
I aeS;, we wrile d, = {ae d: 5a, 4) = o} and if y is a chain in Sy, we write

= {4,: aey}. We define sa, 4) by transfinite induction on & as follows:

(1) soa, A) = =. 2
() If &= p+1, we consider & = U {(6,4): feS, and 4; — a} and

A=0,1
8o = U {(y,4): y is an open chain in & and 4, — a}. Then s(a, A) = {8, &;).
4=0,1

(i) If & is a limit ordinal, then s¢(a, 4) = [s,a, A].<e-
To see an example, let Q be a countable ordinal with order topology. Let &,
be the least ordinal ¢ such that (2)° = @. We will construct a complex of types

SE) = ((S(‘§°) <g): € ordinal) in such a way that S“m and <, have the following
form:

o _ J{ed <& v {By
® 5 {{ : e<&o}

iff<fo;
if&=&.

) a< B iff « =0¥, =0 and ¢; <@, <&, & Furthermore, the types
o, e will satisfy Q,, = (Q)?—(Q)?*! for every g < ¢, &, and 2;, = (@)°. We define
3 By

the types af, B by transfinite induction on ¢ as follows. We put f, = *. Suppose
that ¢ = p+1. Let g be an ordinal such that ¢ <&, &,. To define of we consider

= {(ef, ): 8 <g} and put of = (8%, (y,1): y is an open chain in &} ). If & <&,
we set By = (& U {(B,, D}, {(v, D)1 v is an open chain in 83} ). Now suppose thatéls
a limit ordinal. If o < ¢, & we put of = [0,], <, Where o, = B, if p< ¢ and o, = o}
if p>0. I <&y we set fy = [ﬁu]uﬂ'

If S = {(Sy, <¢): & ordinal) is a complex of types, 4 is a Ts space and aed,
then it is possible that s,(a, 4) ¢ Sy. To see this, consider, for any ordinal &, =1,
the complex of types § = S = ((S¥, <,): ¢ ordinal) defined before. Let R be
the space of real numbers with the usual topology Then, for every x€ R,
51(x, R) = ({(+, 0)}, @) ¢ S,

Let S = {(Sy, <y): & ordinal) be a complex of types. Let 4 be a T space.
Atype o € Sy is satisfiable in 4 if s,(a, A) = o for soms g € 4. We say that 4 satisfies S
if for every ordinal ¢ the following conditions hold:

() si(a, Aye Sy for all ae A,
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(ii) For all comparable types o,  in S, which are satisfiable in 4, o <,f iff
A, — Ay,

Tn what follows we assume that every complex of types § = {(S;, <,): & ordinal)
has an associate function which assigns to each comparable type « in S, and to each
1> & a comparable type a(x) in S, in such a way that if «, § are comparable types
in S; and 7> & then a <. iff a(y) <,B(n). If y is an open chain in S; and n>¢,
we write y() = {a(n): ze7}.

Let S = {(S;, <g): & ordinal) be a complex of types. We say that a T space 4
is associated with S if A satisfies S and for every ordinal ¢ the following conditions
hold: -

(i) For every ae Sy there is an ae A such that si(a, 4) = a.
(if) For every ¢-type o comparable in S; and every ordinal #> ¢ we have
A,z = Au(vl] .
Now we define the central notion of this section. Let S = {(Sg, <,): & ordinal)
be a complex of types. We say that S is a spectrum if the following four conditions
hold:

(i) For every ordinal ¢, every chain in Sy is contained in a maximal chain
in S

(ii) For every ordinal ¢, the set of maximal chains in Sy is finite.

(iii) There exists a countable ordinal » such that every member of S, is com-~
parable in S,.

(iv) There exists a countable metrizable space associated with S.

The least ordinal # satisfying (iii) will be denoted by u(S).
Let Q be a countable ordinal greater than @ with order topology, and &, the
least ordinal ¢ cuch that (€)° = @. Consider the complex of types

S({o) - <(S(§u) <§)° [4 ordinal)

defined before. Note that if « is comparable in §§9, we have o = o for some
0 <&, &; then, for every # > £, we put a(y) = af. Now it is easy to check that .§ el
is a spectrum, & is associated with S¢ and &, = u(S(“’)) Furthermore, every ordinal
less than @ with order topology satisfies S¢. We see that in S$ there is just one
maximal chain. If we consider the spaces £, and , presented in § 1, we infer that
the topological sum Q,+Q, is associated with a spectrum S in such a way that
1(S) = w+1andin 8, ; there are just two maximal chains. We leave it to the reader
to find for each n a spectrum S such that in Sy, there are n maximal chains.
Now suppose that S = {(S;, <¢): & ordinal} is a spectrum, & €Sy and v is
a chain in & We say that y is a A-chain in & if (B, A)e& for all fey (A =0, 1).
And y is a A-maximal chain in & if moreover for every A-chain y’ in &, y <y’ implies
y = 9/ (4 = 0, 1). The following lemma follows easily from the definition of spectrum.

LemMA 2.1. Let 8 = {(Sy, <,); & ordinaly be a spectrum. For any {&, &) € Seyq
we have:
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(2) Every A-chain in 8 is contained in a A-maximal chain in & (A =0, 1).
(b) The set of A-maximal chains in & is finite (A = 0, 1). H
Let § =.((SE, <g): ¢ ordinal) be a spectrum. Suppose that 4 satisfies S, U is
an open set in 4 and o, f§ are comparable types in S, which are satisfiable in A,
It should be noted that if 4, N U'is accessible and « <P, then 4y n U is accessible.
Lemva 2.2, Let 8 = {(S¢, <p): & ordinal) be a spectrum, Suppose that A
X i
satisfies S, ae A, & = p+1 and & = Lgl{(/}’, 2): Be S, and Ay - a}. Then sya, A)
is determined by & and the convergence.s: of the open 0~maximal chains in 8.
Proof. We have to keep in mind that if y is an open chain in &, we have:

» . . . l
(@) If y is not a 0-chain in &, then 4, — a.
I . . « . . . . 0
(ii) Ig'y is a 0-chainin & and there is a f e S, with « <,Bforallaeyand 4, — a,
then 4, — a.
The desired conclusion now follows from (i) and (ii).
In the next lemma, whose proof is immediate, we give a basic property of spectra.

Lemma 2.3. Let = {(S;, <¢): ¢ ordinaly be a spectrum. For every Pc S,
there exists a Py <P with P, finite such that for each € P—Py there is a f§ eP$
with f <. ‘ ’

Let S = {(Sy, <p): ¢& ordinal) be a spectrum. Suppose that A satisfies
acd, P S, and Py is a finite subset of P given by Lemma 2.3. In the sequel wc;
shall make use of the following properties without explicit mention:

. . - ]
(1)11f 4, is accessible (4, — a) for every aeP,, then U 4, is accessible
(U4, > a.

e P

(i) If () 4, - a, then 4, — a for some oe Py,

aeP

(iii) For every ac A there is a neighborhood U of a such that, for each
®€ Sz, A, a implies 4, N (U~{a}) = @,

‘From (iii) we infer that if 4 satisfies a spectrum S, ae 4 and & = p+1, then ais
an isolated point in 4 iff s(a, 4) = (@, &.

§ 3. The main theorem. Let § = {(Sg, <y: € ordinal) be a spectrum, For

4 <_11 'e}nd o € Sy, we define the £-type (zx)? in such a way that, proceeding by trans-
finite induction on &, one can prove

Lemma 3.1. If 4 is a Ty space which satisfies S and ae A, then
sga, 4) = (s,(a, ).

; —V_Ve desaﬁne (®)F by transfinite induction. We put ()3 = * If ¢ is limit, theﬁ
(?ﬂ)_g =[@p)u<s. If 6s= u+1 we consider two cases. If # is a limit ordinal and
o= [.“a]o<n’ then (0); = «;. Suppose that # = g'+1, If o= <9, d), we put
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@ =D, 0). If a={8,8) with &= {(;,2): ie I} and I# @ we consider

a* = {(B, Ap): (a) the set J of all ie such that (o), = B is nonempty,

and (b) Ay = 0 if there is an ieJ with 2; =0, g =1 otherwise} ,
§*% = {(y,2): v is an open chain in &* and (y(), ) ed}.
Then ()3 = (&%, §*).

To show Lemma 3.1 it suffices to prove, for each &, the following two conditions:
(a) se(a, A) = (s,(a, A))§ for all ae 4 and 5> &; and then (b) if « is comparable
in Sy, then sga, 4) = o implies s,(a, 4) = u(y) for all a4 and n> & Use
Lemma 2.3 in the nontrivial case.

Now assume that A satisfies a spectrum S = {(S;, <): £ ordinal) and a € 4.
Note that if ay = s¢(a, 4) is comparable in S; then, for every z € ¢, 4, i « implies
A, -i Ay (2= 0,1). Thus if & = p(S) and oy = s(a, A) then, for every o € Sy,
A, i a implies 4, —;; Ay (A =0, 1). In what follows, we shall make use of this fact
without explicit mention. :

Proceeding by transfinite induction on ¢ it is easy to show the following lemma.

LemMA 3.2. Suppose that S is a spectrum, A is a Ty space satisfying S, ae A
and U is an open neighborhood of a with the relative topology of A.-Then sda, A)
= sda, U) for every ordinal &, and U satigfies S.

Lemma 3.3, Let S = {(S¢, <g): & ordinaly be a spectrum, S, = u(S) and
& = max{n: n is the length of some maximal chain in Sg}. Suppose that A is a Ts
space which satisfies S, a € Sy, and A, accessible. Then A, is E*-accessible.

Proof. By using Lemma 2.3 and the hypothesis that &, = u(S) itiseasy to prove
by transfinite induction that for each ¢>1 there is a subset P of Sy, with
(4)° = U 4y. Now, for every ¢ > 1, we can obtain:

peP

(+) If (4,)° # @ then for every ae(d,)* there exists a chain {o,: p<¢} in
Ss, with oo = o and A4, — a for each p<¢.
We can prove (+) by transfinite induction on ¢ > 1. The condition is trivial
if £=1. If l<&=u+1, consider Pc Sy, such that (4, = U 44, and then
BeP

make use of Lemma 2.3, If ¢ is a limit ordinal and ae (Aa)':, use Lemma 2.1 for
A=1 and <&, 6) = sg41(a, 4).

Let us set & = the least ordinal & such that 4, is ¢-accessible. Assume &> 1.
From Lemma 1.1 we obtain (4,)5™* # @. By (+) there exists a chain of length &
in Sy,, whence &< &%, Therefore 4, is ¢*-accessible. M

Suppose that § = {(Ss. <p): ¢ ordinal) is a spectrum. If 4 satisfies S we
define, for every ordinal &, the function Eg‘: S —wu {0} by Eg‘(oc) = the number
of ae 4 with s{a, 4) = a. Assume that 4 and B satisfy S. We say that 4 and B
are S-equivalent, A =g B, if for any ¢ the following two conditions hold:

(a) If a € S, then Ef(a) = EJ(®), and 4, is accessible if and only if B, is acces-
sible,
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(b) If'y is an open chain in Sy, then A, is accessible if and only if B, is accessible
From now on we work with countable metrizable spaces. We shall tacitly use
the well-known fact that the topology of any countable Ty space has a clopen basis,
Let § = {(Ss, <¢): ¢ ordinal) be a spectrum, &, = u(S) and & = max{n: nis
the Iengt}.l of some 1nax1ma1 chain. in Sy, }. Suppose that A is a countable metrizable
space satisfying § and £ is an ordinal. From Lemmas 2.3, 3.1 and 3.3 we can verify
the following:
(*) (@) If xeS;, then 4, accessible implies 4, &*-accessible.
(b) If y is an open chain in Sy, then A, accessible implies 4, é*-accessible.

Now suppose that we modify the definitions of “4* i a” and “¢ —i a” (sce § 1)
by setting “*-accessible™ instead of “accessible” and denote by s¢7(«, 4) the
cgrresponding &-type of ¢ in 4 which respect to these new definitions. In the same
way as we have worked with the notion of sy(@, 4), we can also work with the notion
of s§”(a, A). Proceeding by transfinite induction on &, it is casy to check by
Lemma 3.2 and (#) (2), (b) (and by using the fact that the topology of 4 has a clopen
basis) that for every «e Sy and ae 4 we have '

(x4) sfla, ) = it s§a, ) = «.

Then it is not difficult to prove the following result. Consider Lemma 2.2 in order
to construct the sentence ¢,

Lemma 3.4. Suppose that A is a countuble metrizable space which satisfies a spec-
trum S. Then we can find a sentence @4 in (Ly, ), such that, for every countable metri-
zable space B, B ¢, if and only if (B satisfies S and A =g B).

It is also possible to prove (), (*+) and Lemma 3.4 for uncountable T spaces.

Our main result is

THEQREM 1. Let S be a spectrum. Suppose that A, B are countable metrizable
spaces with A =5 B. Then A and B are homeomorphic.

We can show Theorem 1 by using a back and forth argument. Put &, = u(S).

We deﬁn'e jche symmetric relation R between T spaces with a finite (possibly empty)
set of distinguished points by

gA’, ay .. @) R(B', by ... b,) iff (a) 4’ and B’ are (possibly empty) countable
metrizable spaces satisfying S and a, apy by # by (i 5 )); (b) A’ =gB'; and
© Seolan, A) = 5oy B (= 1,00, m). SR
Note that if 4, B satisfy the assumptions of Theorem 1, then 4 R B holds, We need
to show that R satisfies the two back and forth properties, that is, the properties (1)
and (2) of {2, T‘hcorem 2.2]. To carry out the proof of the nontrivial back and forth
property, we give a c.riterion for choosing small neighborhoods of a point.
< =As;me tl.1at 4 is a cou'ntable metrizable space which satisfies a spectrum

- L(Sg, <) & ordinal), a is an accumulation point of 4 and &; = u(S). Then

consider (B, §) = Sepr1(a, Ay and I' = . Lg 1{y; y is a' A-maximal chain in f}. Note
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that, for aey e I, if 4, is inaccessible (4, is inaccessible), then there is a neigh-
borhood U of a such that 4, } (4— U)is inaccessible (4, N (4 —U) is inaccessible).
For each y = {¢,: ft<n} € I' we take a neighborhood U, of @ by distinguishing the
following five cases:

Case (1). y is a closed 1-chain in B. Put U, such that 4,, n U, is accessible.
If there is a neighborhood U of a with A4, _, n (4—U) infinite, then U,<U.

Case (2). y is a closed 0-chain in fi. Consider U, such that A, _, n(4-U,)
is inaccessible.

Case (3). 7 is an open 1-chain in j. Take U, with 4,, n U, accessible. If there
js a neighborhood U of a with 4, N (A—U) s @ for all p<n, then U,c U.

. 1
Case (4). y is an open 0-chain in f with 4, - a. Consider U, suchthat 4, } U,
is accessible. If there is a neighborhood U of a such that 4, N (4~ U) is inaccessible
for all u<n (respectively 4, N (4—U) # @ for all u<w), then U,= U.
0

Case(5). yisan open 0-chain in B with 4, — a. Take U, suchthat 4, } (4—U,)
i3 inaccessible.

Then if U is an open set such that ae U< () U, and, for every f& Sg,, 45+ a
yel

implics Ay N (U—{a}) = @, we say that U is a good neighborhood of u. Note
that, by Lemmas 2.1 and 2.3, we can always find a good neighborhood of a point,
and if U is a good neighborhood of a we have:

1
(2) If we Sy, and 4, — a, then 4, 0 U is accessible.
. 1
(b) If y is an open chain in S, and 4, — 4, then 4, } U is accessible.
Now assume that § = {(S;, <g): ¢ ordinal is a spectrum, & = u(S), 4 and B

are countable metrizable spaces with 4 =5 B, ae 4, be B and (8, ) = 55+1(a, 4)
= Sg,+1(b, B). Under these assumptions we show the following two lemmas.

LEMMA 3.5. Suppose that y is an open chain in 8. Then:

(a) If there is a neighborhood U of a such that 4, N (A-U) # O for every €7,
then there is a neighborhood V of b such that B, ~ (B—V) # & for every o€ Y.

(b) If there is a neighborhood U of a such that 4, 0 (A—U ) is inaccessible for
every a € v, then there is a neighborhood V of b such that B, n (B— V) is inaccessible
Jor every a€vy. ‘

Proof. The lemma is trivial if 4, is inaccessible. Assume then that 4, is acces-
sible. To show (a), note that if A, A (4—U) # @ fer each x € y and U is open then
there is an @' € A— U with 4, = a'. To show (b), suppose that U is an open neigh-
borhood of a with 4, N (4— U) inaccessible for each a €. Since 4, is accessible,
one can check that there is an @’ € A — U such that if {8, ;) = sg+1(a’s A) then y
is a O-chain in &, ®

Note that, by using Lemma 3.1 and the fact that & = p(S), we can infer that,

i i
for a, B € Sy, Ay - Ay iff B, > By (A=0,1).
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Lemma 3.6. Consider X = {y: y is an open 0-maximal chain in & such that for
every neighborhood U of a there is an a € y with A, 0 (A — U) accessible}. Let U°, V0 be
clopen good neighborhoods of a, b respectively. Then we can find clopen sets U, V with
acUcU% be VeV in such a way that for each yeX we have:

(a) For every oey, A, " (A—U) is accessible iff B, (B~V) is accessible.

(b) For every open chain y' <y, Ay | (A—U) is accessible iff By } (B—¥)is
accessible.

Proof. Put S* = {f&Sy,: 4; - a} = {B€Sy: B; — b}. Suppose

T = {ps e Yu)

and {yy, .., 7} = {p; € X: there is an o] € y; such that, for every fe S*, 4,; - 4,

1
implies 4,; - Ay}, By Lemma 2.1 we can find, for i =1,..,n, an a, ey, with
a; <g0; such that, for every feS*—y,, 4, — A, implies 4, — 4, for all ¢y,

Since «; <y a; we deduce that, for every fie S*, A4, — A4, implies 4,, — ;. We
may assume that 4,, n(4—U° and B, n (B—V?°) are aceessible (i = 1, ..., n).
o .

Note that if A,, — 4,, we would infer that 4,, — A4,,, which is impossible because
we have o) <gu;. Thus 4,, + 4,,. From the fact that y; is a 0-maxima)l chain in &
and by the way in which o; is chosen we infer that, for i # J, if A, — A,, then
a;€y;. Thus we may assume that 4, -+ 4,, for 7 # j. ' {

Let U* be a clopen neighborhood of a such that U < U° and 4,, n (U°—UY)
is inaccessible (i =1,..,n). Let {a,: rew} be an enumeration of all ¢ with
ceU°—U" and 4,, — c for some i€ {l, ...,n}. Let {a.: re w} be an enumeration
of all ¢ with ce U~ U* and A4, + ¢ (i = 1, ..., n). For cach k e w we take clopen
sets Uy, Uy, Uy as follows. At step k, we consider @ = the first element ¢ in the
enumeration {a,: re w} with ¢¢ |J (U, u U] u U’} (if such an element does not

. i:lc
exist, vsole pu;: U, = I{é = ). Let U be a clopen good neighborhood of & such that
UcU-U' and U n (iU (U, Ui uU"N) = 0. Since A4, nT is accessible

<k
(1 <i<n) and Ay > 4, (L # 7), we can take a clopen set U, with U, < U such
that, for | <i<n, if 4, — @ then (4,)! " U < U, and 4, n (T~U,) is finite and
nonempty Put Ug = U~U,. Now consider o’ = the first element ¢ in {a.: r & w}
with ¢ ¢ iyk(Ui w Ui v U{") u T (if such an element does not exist, we put Uy’ = @),

We take a clopen good neighborhood U;’ of o such that Uy < U°—U! and
Uoy iy Uy - Ugs ooy U, UG, ..o, Uy are pairwise. disjoint. Consider 0 = Ut

9] (,‘LE)m Up. Proceeding in the same way we construct the corresponding neigh-

borhood IZ of b. Then, for 1<i<n and aey;, 4,0 (d~0) is accessible iff
B, n(B-V) is accessible iff oy < gl

Now let us consider, for i = n+1,...,m, an a;ey; such that Ay 0 (A=T)
and B,, n (B—V) are accessible, a ;& S* with 4, 5 A and a,e U, b, e ¥ with
Sglas, A) = s54,(b;, B) = B,. Take clopen good neighborhoods U,, ¥V, of «;, b,

icm

On a class of topological spaces 81

m
respectively in such a way that a¢ UcOand b¢ V,cV. Pt U=0-~ | U,
m : i=nt+1
and V=V- | V. &
i=nt1 .

We can now refine the argument employed in [2. Theorem 2.2] and obtain in
this way Theorem 1. The following result is an immediate consequence of Theorem 1
and Lemma 3.4. Corresponding results for uncountable T3 spaces (concerning
(Lyyo)-equivalence) can also be obtained.

THEOREM 2. If 4 is a countable metrizable space which satisfies a spectrum, then
A has a Scoit sentence in (Ly,e):-

As a consequence of Theorem 2 we obtain

THEOREM 3. Every countable ordinal with order topology has a Saff sentence
in (Lw;w)t- '

Finally, we construct an aw-topological tree 4 with just one minimal element 4 in
such a way that if S'is a complex of types satisfied by 4 then for every neighborhood U
of @ we can find an w-type « in S such that 4, + & and, nevertheless, there is an
a # a of w-type « with ae U (for any complex § = {(S;, <;): & ordinal}, S q

_ depends only on S; if £ <w). Clearly such a space can not satisfy any spectrum.

If a e A we denote by N(a) the set of immediate successors of a. First, we define
the n-type o, by induction onz > 1:ay = (@, &, 41 = {{(1, 1), ..., (@, D}, D).
For each 7> 1 we consider an w-topological tree 4™ with just one minimal ele-
ment a,. Fix n>1. To define 4™ we consider countable infinite sets (pairwise
disjoint) of the form A%, 4% (k> 1). We suppose that if b belongs to a set of the
form A% then the n-type of b is «,. We put N(a,) = Ag; v AL and, for k> 1 and
ae A, N(@) = A U A5*1. Now consider the topological sum Y A® and a new
point @, and put N(@) = {a,: n=1]}. =1
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