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Marczewski sets, measure and the Baire property
by

John Thomas Walsh (Auburn, Ala.)

Abstract. This paper is a study of Marczewski sets. This study will examine how Marczewski
sets are related to other types of sets, such as universally measurable sets, and sets with Baire property
in the restricted sense. It will also look at theorems about Marczewski sets that parallel theorems
about these other types of sets. The paper is divided into three sections. The first is an introduction.
The second deals with the construction of sets which are hereditarily Marczewski. The third section
deals with Marczewski sets and Borel measurable functions. A necessary and sufficient condition
for Marczewski sets to be preserved by Borel measurable functions is given here.

1. Introduction. In this paper all spaces considered are Polish spaces (i.e. com-
plete, separable and metric), and will usually be referred to as X or ¥. This paper
is concerned with classes of sets, in particular Marczewski sets. Many funda-
mental theorems, relationships and examples associated with the classes of sets
studied here can be found in [Ku66], [Sz35] and [BrCo82]. All arguments will only
rely on ZFC unless otherwise noted and C will be used to denote the cardinaﬁty
of the continuum.

In [Si35] Sierpifiski defined, using a continuity condition, a class of functions
that is closed under pointwise convergence and composition. A function f'is in this
class of Sierpinski if every perfect set P contains a perfect set Q such that f| Q is
continuous. In [Sz35], a study of Sierpifiski’s class of functions, Marczewski labeled
Sierpifiski’s class of functions, as functions having property (s). Marczewski defined
a set M to have property (s) if every perfect set P contains a perfect subset O such
that either Q €M or @ N M = @. Sets possessing property (s) are referred to as
Marczewski sets. In this same paper Marczewski showed that a function f has pro-
perty (s) if and only if for each open set @, f7'(0) has property (s).

This theorem of Marczewski is similar to other theorems that link contlnulty
properties of functions to set properties of inverse images of open sets. A theorem
of Baire states that a function is B measurable of class 1 if and only if it is pointwise
discontinuous when restricted to any perfect set, [Ku66 p. 419]. Another theorem
states that a function f has the Baire property in the wide sense (i.e, inverse images
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of open sets have the Baire property in the wide sense, defined below), if and only
if there exists a set F of first category such that f| (X~ F) is continuous, [Ku66 p. 400].
Finally, a function fhas the Baire property in the restricted sense (i.c. inverse images
of open sets have the Baire property in the restricted sense, defined below) if and
only if every peirfect set P contains a set F of first category relative to P such that
S|(P—F) is continuous, [Ku66 p. 403].

A set is totally imperfect if it contains no homeomorphic copy of the Cantor
set. A set M is Bernstein relative to a perfect set P if both P 7 M and P~ M are
totally imperfect, in other words both M and P—M iniersect every perfect subset
of P. In [BrCo82] a through study of totally imperfect sets is made.

A set has property B, (i.e. the Baire property in the wide sense) if it is the
symmetric difference of an open set and a set of first category. A set M has property B,
(i.e. the Baire property in the restricted sense) if for each perfect set P, M has pro-
perty B, relative to P. A set is AFC (i.e. always of first category) if it is of first cate-
gory relative to every perfect set.

A set has property U (i.e. universally measurable) if it is measurable in the com-
pletion of every Borel measure on the space. In other terms a set M has property U
if for each Borel measure u there exist Borel sets By and B, such that B, = M < B,
and u(By) = u(B,). A set has property Uy (i.e. universal null) if it has measure zero
in the completion of each continuous Borel measure, .

One way to describe a set M that has property (s) (i.e. Marczewski) is that the
set M is not Bernstein relative to any perfect set. A set M has property (s°) if every
perfect set P contains a perfect subset Q such that Q N M = @, A set will have
property (s%) if and only if it has property (s) and is totally imperfect. The scts
with property (s) form a g-algebra and the sets with property (s%) form a ¢-ideal
- (i.e. hereditary and closed under countable unions) in the sets with property (s).

Other details about sets with property (s) can be found in [Sz35].

IL. Examples. This section develops methods of constructing sets with pro-
perty (s*). Theorem 2.2 will be useful in section three when dealing with B measurable

functions. Theorem 2.6 can be applied to other types of sets in constructing examples
with positive dimension.

THEOREM 2.1. All sets of cardinality less than the continuum have property (s°).

Proof. This directly follows from the fact that all perfect sets can be divided
into a collection of continuum many disjoint uncountable closed sets.

TaeoreM 2.2. If 9 = {D,: a <c} is a collection of disjoint uncountable Borel
sets then. there exists a set M with property (s°) that intersects each member of 2.

Proof. Let & denote the collection of all perfect subsets of X. Let
&= {Pe?: for ecach D,eD,|PnD,J<C}= {E: a<c}. Now choose
X, € D,,—(ﬁU Ey). This can be done since the intersection of any member of &

<a

with any member of & is at most a countable set and all uncountable Borel sets
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contain a perfect subset [Ku66, p. 479]. Let M = {x,: a<c}. Certainly
M n D, = {x,} is nonempty for each «<c. Now suppose P is a perfect set. If
P=E, then MAPc{x;: f<a} so [MnP|<C and therefore must contain
a perfect subset which misses M. If P ¢ & then |P n D,| = C for some o <c. Now
(P~ D)—M = (P~ D)—{x,} is an uncountable Borel set, which must contain
a perfect subset that misses M, so P contains a perfect subset that misses M. There-
fore M has property (s°).

Note that if | 2| < C Theorem 2.2 would be a trivial consequence of Theorem 2.1
This also gives a useful method of constructing sets with property (s°) having cardi-
nality C. An example of such a set is given in [Mi84].

I McXxY, let projyM = {x: (x,»)eM for some ye ¥}, projyM
={y: (x,y)eM for some xeX}, G(x,M)=Mn {x}xY), and G(M,y)
= M (X% {}). In [Sz35] Marczewski showed that property (s) and property )
are preserved under Cartesian products. Property U, is also preserved under Car-
tesian products but it is not known whether or not AFC sets are preserved. If
M X is first category (Lebesgue measure zero) then M x ¥ will be first category
(Lebesgue measure zero). Theorem 2.3 is a strengthening of Marczewski’s result
dealing with property (s°) and Cartesian products. A similar result does hold for
property U, but not for property (s). The proof of Theorem 2.3 is straightforward
and omitted here.

TrrOREM 2.3. If M < X'x ¥, projy M has property (s*) and G(x, M) has prop-
erty (s°) for each xe X then M has property (s°).

Two sets with property (s) (property U, property B,) can be considered equi-
valent if their symmetric difference has property (s°) (property. Up, AFC). ¥n [Si34]
Sierpiniski showed (using CH) that there exists a collection with cardinallt‘y 2° of
nonequivalent sets with property B,. Sierpifiski also noted that without using CH
this collection has cardinality at least 2%, In [Sz55] Marczewski showed (using CH)
that there exists a collection with cardinality 2° of monequivalent sets with pro-
perty U. In [GrRy80] Grzegorek and Ryll-Nardzewski showed (,withou't CH? t}]at
this collection can have cardinality at least 2%. The following theorem is a similar
result dealing with property (s). :

THEOREM 2.4. Jn Rx R there exists a collection with cardinality 2° of nonequi-
valent sets with property (s). .

Proof. Let S < R have property (s°) and cardinality C. Now for each S’ and S
subsets of S, the sets S’ xR and S’ xR have property (s) and the set (S'xR)
N (S x R) does not have property (s°) whenever S’ s 5" Therefore

[{s'xR: S8} =2°.

The final theorem of this section allows the construction of a “worst” example
of a set with property (s°). It will also apply (assuming CH) to several other smallness
properties. A set M has property A (i.e. is rarified) if every countable subset of M
is Gj relative to M. A set M has property X' if for each countable set 4 < X the set

2 — Fundamenta Mathematicae 129, 2


Artur


86 1. T. Walsh

A/i U A has property A. A set M has property o if every F, subset of M is also a G,
subset of M. A set has property S if it intersects every Lebesgue measure zero sct
in a countable set. A set M has property C(reld) (6 is a metric) if for every sequence
{a,} of positive numbers, there exists a sequence {x,} of elements of M such that

o
Mc U Ns(x;, a;) where Ny(x, @) = {ye X: 6(x,y)<a}. More on these sets can
i=1

be found in [BrCo82].

In [MaSz37] Mazurkiewicz and Marczewski showed that if a set has either
property o or C(reld) it has dimension zero. Note that since property S implies
property o, property S also implies dimension zero. They also gave a theorem, based
on a theorem of Hilgers [Hi37], that showed (assuming CH) the existence of scts
with property U, or property 2 that have positive dimension.

TuEOREM 2.5 (Mazurkiewicz and Marczewski). If property (7) satisfies the con-
ditions that

(1) there exists a linear set with property (?) and cardinality C, and

(2) property (?) is preserved under one-to-one functions with continuous inverses,
then there exists a set of dimension n in R**1 which also has property (7).

Note here that this theorem cannot be applied to property &’ or AFC sets since
they do not satisfy Condition (2), see [Si45] and [Lu33] respectively. However
Theorem 2.5 is easily applied to property (s°). By using methods developed in showing
Theorem 2.6 it can be seen that condition (2) of Theorem 2.5 could be weakened
to (27); property (7) is preserved under inverses of one-to-one projections.

A set M is C-dense in the set B if every open subset of B contains continuum
many points of M. The following theorem is a variation of the one by Mazurkiewicz
and Marczewski.

" THEOREM 2.6. If property (?) satisfies the conditions that
(1) there exists a linear set with property (?) and cardinality C,
() property () is preserved under inverses of one-to-one projections and
(3) property (7) is preserved under countable unions, .
then there exists a set with property () that is C-dense in every nondegenerate closed
connected subset of RxR.

Remarks. If a set is C-dense in every nondegenerate closed connected subset
of Rx R, it will have dimension 3> 1, Also note that Theorem 2.6 can be applied to
property (s°) and assuming CH it can be applied to property A’ [Si37], [Si45] and
property U,. However it cannot be applied to property A since property A is not
preserved under countable unions [Ro39]. This is a “worst” case for sets with pro-
perty (s°) since a set with property (s°) cannot intersect every uncountable closed
subset of Rx R. Since both property U, and property A’ imply property (s°) this
will also be a “worst” case for them,

The proof of theorem 2.6 will use the following two lemmas which are stated
without proofs.
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 Lemma 2.7. If H is a nondegenerate closed connected subset of RXR, (x,y)e H
and O is an open set containing (x, y) then either projy(H n @) or projy(H n 0) will
contain an interval.

LEMMA 2.8. If M is C-dense in R then M = |) M where M,n My = @ for
o # B and M, is C-dense in R for each w<c. ¢

Proof of Theorem 2.6. Since there exists a linear set with property (?) and
cardinality C, and property (?) is preserved under countable unions there exists
a set M with property (?) that is C-dense in R. Let M = {J M, as in Lemma 2.8.

a<c
Let # = {H,: «<c} be the collection of all nondegenerated closed connected
subsets of Rx R. For cach a<c and each xe M, let 4,, be a countable dense
subset of ({x}xR) H, unioned with {(x,0)}. For each a<c¢ and each
yeM, let B, be a countable dense subset of (Rx{y})n H, unioned
with {(0,)}. Let 8= U U 4, and Sy = U U B, and §= S, U §,. Since

a<cxeMg z<c yeMy

projxS; = M and G(x, Sy) is countable for each x & M it is easy to see that Sy is
the countable union of scts with property ( ?) so S, will have property (?). Similarly S,
will have property (?) and therefore S will have property (7). Now suppose that
H, n 0, p e H,and 0is an open set containing p. By Lemma 2.7 either projy(H, n 0)
or projy(H, n @) will contain an interval. Without loss of generality assume
projx(H, n @) contains the interval (a, b). Now since M, is C-dense in R, (a, b)
will contain continuum many elements of M,. Now 4,, will intersect H, n 0 at
least once for each x € M, n (a, b), since 4, is dense in ({x} xR) n H, So 0nH,
will contain contimuum many points of Sy. Therefore S is C-dense in every non-
degenerate closed connected subset of Rx R and has property (M.

COROLLARY 2.9. There exists (assuming CH) a set with property 2 that does not
have property o.

Proof. By theorem 2.6 there will exist a set in RXR with property A’ and
positive dimension, but all sets with property ¢ have dimension zero.

IIL. B measurable functions. A fanction f: X — Y is B measurable if f ~1(0)
is a Borel set for each open set @ < Y. A B measurable function f: X — Y'is bimea-
surable if £ (B) is a Borel set for each Borel set B < X. A one-to-one functionf: X — Y
is a generalized homeomorphism if both fand ™~ ! are Bmeasurable. If £is a function
let U(f) = {y: f£7(3) is uncountable}.

By using 4 result of Lusin [Ku66 p. 498 Corollary 5] it can be shown that if
f: X - Yis B measurable and U(f) is countable then there exist a sequence of

Borel sets By, By, By, ... such that X = U B;, f "4 (U(f)) = B, and for each po-
=1

sitive integer i, f|B; is a one-to-one B measurable function. Since a ome-to-one B
measurable function defined on a Borel set is a generalized homeomorphism [Ku66
2%
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p. 489], it can easily be shown that 2 sufficient condition for a B measurable function
o be bimeasurable is that U(f) be countable.

In [Pu66] Purvis showed this sufficient condition for a B measurable function
to be bimeasurable is also a necessary condition. In [Da70] and [Da71] Darst showed
(using CH) that a B measurable function fis bimeasurable if and only if £ (M) has
property U (property Up) for each M = X with property U (property Uy). In [Gr81]
Grzegorek removed the use of CH from Darst’s argument.

Theorem 3.1 can be found in [Sz35] but is stated here, without proof, for com-
pleteness.

TuroreMm 3.1, If f: X — Y is a one-to-one B measurable function and M < X
has property (s) then f(M) has property (s).

TueoreM 3.2. If f: X — Y is a one-to-one B measurable function and M < X
has property (s°) then f(M) has property (s°).

Proof. This follows directly from Theorem 3.1 and the fact that a set has pro-
perty (s°) if and only if has property (s) and is totally imperfect.

THEOREM 3.3. 4 B measurable function f: X — Y is bimeasurable if and only if
for each M < X with property (s), f(M) has property (s).

Theorem 3.4 will be stated now, and then both Theorem 3.3 and Theorem 3.4
will be proven simultaneously. '

TueorREM 3.4. A B measurable function f: X — Y is bimeasurable if and only if
for each M < X with property (s°) f(M) has property (s°).

Proof of Theorems 3.3 and 3.4. If £+ X — ¥ is bumeasurable then, U(f)
is countable. Now if M = X has property (s) (property (s°)) then, by Theorem 3.1
(Theorem 3.2) and the previously cited theorem of Lusin f(M) has property (s)
(property s°). So f preserves both property (s) and property (s°). If f is not
bimeasurable then, U(f) is uncountable. Now U(f) is an uncountable analytic
set [Ku66 p. 496] so it will contain a perfect set P and a set P’ such that both P’
and P—P’ are totally imperfect. Now P’ does not have property (s). But
9 = {Dy: f~*(y) = Dy for some ye P’} is a collection of disjoint uncountable
‘Borel sets so there exists a set .S with property (s°) that intersects cach member
of 9, by Theorem 2.2. Now f(S) = P’ does not have property (s) so f does not
preserve either property (s) or property (s°).

The final theorem presented here came from examinmng {E< R: £~Y(E) has
property (s) for each B measurable function f: R — R}. Which is somewhat similar
to Darst’s examination of {E < R: f~*(E) is Lebesgue measurable for each Lebesgue
measurable function f: R — R}, although the result was quite different. '

THEOREM 3.5. If f+ X = Y is B measurable and M < Y has property (s) then
S M) has property (s).

Proof. Suppose P is a perfect subset of X and note that f'(P) is an analytic set.
The theorem can now be reduced to iwo cases. For the first case suppose f(P) is
countable and y € U (f|P). Now f~(») n P is an uncountable Borel set which will
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either be a subset of f~1(M) or miss f~(M). For the second case assume f(P)
is uncountable and D is a perfect subset of /' (P) such that either D = Mor D n M=,
Note that f~*(D) n P is an uncountable Borel set and the remainder of the theorem
easily follows.

References

[BrCo82] J.B.Brownand G.V. Cox, Classical theery of totally imperfect spaces, Real Analysis

Exchange 7 (1981-82), 185-232.

[Da69] R.B. Darst, A characterization of universally measurable sets, Proc. Camb. Phil. Soc. 65
(1969), 617-618.
[Da70] — On bimeaswrable images of universally measurcble sets, Fund. Math. 66 (1970),

T 381-382.

[Da71] — A characterization of bimeasurable functions in terms of universally measurable sets,
Proc. Amer. Soc. 27 (1971), 566-571.

[Gr81] E. Grzegorek, On some results of Darst and Sierpinski concerning universal null and
universally measurable sets, Bull. Ac. Pol. Math. 29 (1981), 1-4.

[GrRy80] E. Grzegorek and C. Ryll-Nardzewski, A remark on absolutely measurable sets,
Bull. Ac. Pol. Math. 28 (1980), 229-232.

[Hi37] A. Hilgers, Bemurking zur Dimensionstheorie, Fund. Math. 28 (1937), 303-304.

[Ku66] C. Kuratowski, Topology Vol. I, New York-London-Warszawa: Academic Press,
1966.

[Lu33] N. Lusin, Sur les ensembles toujous de premier categorie, Fund. Math, 21 (1933),
114-126. .

[MaSz37] S.Mazurkiewiczand E. Szpilrajn-Marczewski, Sur la dimension de certains ensems»
bles singuliers, Fund. Math. 28 (1937), 305-308.

[Mi84] A. W. Miller, Special subsets of the real line, in Handbook of Set Theoretic Topology,
Ed. K. Kunen, J. Vaughn, North Holland, 1984.

[Pu66] R. Purvis, Bimeasurable funictions, Fund. Math, 58 (1966), 149-157.

[Ro39] B. Rothberger, Sur un ensemble tonjours de premier categorie qui est deprouvi de la
propriete 2, Fund. Math. 32 (1939), 294.

[Si34] W. Sierpinski, £ smbles jouissant de la propriete de Baire, Fund. Math. 23
(1934), 121-124.

[8135] — Sur 1n problen yziewicz concernant les superpositions de fonctions jouissant
de la propriete de md. Math. 24 (1935), 12-16.

[S137] — Sur une propriete additive d’ensembles, C. R. Soc. Sc. Varsovie (1937), 257.

[8i45] — Sur la non-invarianee topologique de la propriete X, Fund. Math. 33 (1945), 264-268.

[Sz35] E. Szpilrajn-Marczewski, Sur un classe de fonctions de M. Sierpifiski et la class
correspondante d’ensembles, Fund. Math. 24 (1935), 17-34.

[Sz55] — A remark on absolutely measurable sets, Collog. Math. 3 (1955), 190-191.

John T. Walsh efo Juck B. Brown
DEPARTMENT OF MATHEMATICS
AUBURN UNIVERSITY

Auburn, AL 36849

USA

Received 2 May 1985;
in revised. form 27 July 1986



Artur




