Contents of Volume 130, Number 3

Pages
W. Jakobsche, Approximating homotopy equivalences of 3-manifolds by homeo-
morphisms .+ . . .. .. e e e e e e e e e e . 157-168
M. Dembifiski, P, Dowbor andA Skowroﬁskl On indecomposable representatlons
of quivers with zero-relations . . . . . . .. . . L. e e . 169-180
M. Kula, L.Szczepanik and K. Szymlczek Quadratic form schemes and quaternionic
BChEMES v v v v e e e e e e e e e e e e e e e e e e e e e . 181-190
Z. Ratajezyk, A combinatorial analysis of functions provably recursive in 1%, 191-213
A. Szlics, Multiple points of singular maps. Part TT . . . . . . v . . . .. .. 215-224

D. Marker, An analytic equivalence relation not arising from a Polish group action 225-228
P. Isaza, Representability of V[h] as intersection of A-bounded variation classes 229-236
Alphabetic index of Volumes 121130 (1984-1988) . . . . ¢ v v v o v v v\ . . 237-249

The FUNDAMENTA MATHEMATICAE publish papers devoted to Ser Theory,
Topology, Mathematical Logic and Foundations, Real Functions, Measure and
Integration, Abstract Algebra

Bach volume consists of three issues

Manuscripts and correspondence should be addressed to:
FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa, Poland

Papers for publication should be submitted in two typewritten (double spaced) copies and contain
a short abstract. Special types (Greek, script, boldface) should be marked in the manuscript and
a corresponding key should be enclosed. The authors will receive 75 reprints of their artioles.

Orders for library exchanges showd be sent to:

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange,
Sniadeckich 8, 00-950 Warszawa, Poland

The Fundamenta Mathematicae are available at your bookseller or at
ARS POLONA, Krakowskie Przedmieicie 7, 00-068 Warszawa, Poland
T

© Copyright by Padstwowe Wydawnictwo Naukowe, Warszawa 1988

ISBN 83-01-08198-8 ISSN 0016-2736

DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

icm

Approximating homotopy equivalences
of 3-manifolds by homeomorphisms

by

W. Jakobsche (Warszawa)

Abstract. We prove the 3-dimensional version of the a-approximation theorem of Chapman
and Ferry.

1. Introduction. Let X and Y be topological spaces, let f/: X — Y be proper
map, i.e. a map such that inverse images of compacta are compact, and let « be
an open cover of Y. We say that fis an a-equivalence provided that for some map
g: Y — X there are homotopies 8, from fg to the identity on ¥ and ¢, from gf to
the identity on X, such that

(1) for each xe X, there is a Ue«a containing

{fodx): 0<1<1}5
ye Y, there is a U e« containing

{6(): 0<2< 1},

The aim of this note is to prove the following theorem:

(2) for

TeEOREM 1.1 (3-dimensional «-approximation theorem). Let N3 be a manifold -
of dimension 3. For every open cover « of N, there is an open cover B of N such that
for any 3-manifold M® which contains no fake 3-cells, and for any f-equivalence
[ M — N which is already a homeomorphism from dM to ON, f is a.- close to a homeo-
morphism h: M — N (i.e. for eachm € M, there is a U € o containing f (m) and h(m)).

An «a-approximation theorem was first proved for Q-manifolds by S. Ferry [Fy],
and then for the manifolds of dimension > 5 by T. Chapman and S. Ferry. It fails
in dimension 3 if the Poincaré conjecture is false; our Theorem 1.1 is a 3-dimensional
version, with the additional assumption that the manifold M contains no fake 3-cells.
A large part of our proof is identical to the proof of S. Ferry and T. Chapman [C~F],
which is similar to Siebenmann’s CE- -approximation theorem. Qur proof should
be read together with the proof of Chapman and Ferry, because it uses the same
notation and omits many arguments which are equal to the ones given in [C-F]
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Actually, we have only to introduce some modifications in the proof of the “Handle
Lemma” of [C-F] (p. 589). The proofs of the Main Theorem, and «-Approximation
theorem of [C-F] work for dimension 3. We shall also use the “3-dimensional
Splitting Theorem” proved in [J] (the n-dimensional, n > 5, version of this theorem
was proved in [C-F] by different methods). As it is proved by S. Ferry [F,],
Theorem 1.1 implies the following theorem.

TuroreM 1.2, If M is a 3-manifold and o is an open cover of M, then there is an
open cover B of M such that if N is a 3-manifold containing no fuke 3-cells and
g: (M,dM) —~ (N, 0N) is a proper B-map, then g is homotopic through «-maps fo
a homeomorphism.

Theorem 1.2 gives another partial solution of the problems of [SB] (problem 97)
and [S].

Note, that Theorem 1.2 is false if there exists a fake 3-cell and if we omit the
assumption that N does not contain fake 3-cells. In the whole of this paper, we will
use the notation of [C~F]. In particular, if /1 X — Yisa proper map, 4 = ¥, and o is
an open cover of Y, then we say that fis an a-equivalence over A if there exist a map
g: A — X and the homotopies §,: 4 — Y from fg to id,, and ¢ f(4) -~ X
from gf|f~*(4) to id;_;(4) which satisfy conditions (1) and (2) with X replaced
by f~(4) and Y replaced by 4. We say that fis an ¢-equivalence over A if it is an
a-equivalence over A for a cover « of 4 by the balls of radius <.

By R" we will denote the Euclidean m-space, and by rB™ the ball in R™ of ra-
dius r. In particular, we write B™ = 1B™ We will say that the map f: X - ¥ is
at most 2 to 1 if, for every y € Y, £ ~*(») contains no more than two points.

2. The proof of the “Handle Lemma”. In this section we prove Theorem 2.1
which is a 3-dimensional analogue of the “Handle Lemma” of [C-F].

For notation, let V> be a 3-dimensional manifold, m+k = 3, and let
f: V= B*X R™ be a proper map such that 8V = f~(8B*x R™) and f is a homeo-
morphism over (B4 B*)x R™.

THEOREM 2.1 (Handle Lemma). Suppose that V> contains no fake 3-cells. Then,

Jor every &> 0, there exists a 8 >0 such that if f is a 8-equivalence over B x 3B"
then

(1) there exists an c-equivalence F: B*x R™ — B*x R™ such that F =
(BB % R U B* x (R™4B™),

(2) there exists a
Ep = f|f~(U), where U =

id over

(B3 B" x R™ U B*x 2B™,

Proof. We will build the same diagram (x) of maps and spaces as in the proof
of the “Handle Lemma” in [C~F]. In this diagram, S < R? is a unit circle of complex

numbers _of absolute value 1, e: R* - S' is a covering projection defined by
e(x) — emx[4. .

homeomorphism  @: f~XU) » F~Y(U) such that’
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T"=8'x8'x..x 8" is a torus, and " = exex..xe is a covering map
of R™ onto T™. We define T3’ to be T™\D,, where D, is a disk contained ‘in
T™\€"(2B™), (we put Tg' = T"\D, rather than 75 = T™\{x,}, x, € 7 as in [C-F],
for a technical reason — it is easier to formulate Lemma 2.2; it is easy to see that this
does not change the proof),

B R L gFup”

-y
lidx e’ idxe™

B %Mt Wy s gk
U p u
Wy——2—> g 7"
n n

f‘u k _ qm 2 mk
Wy Wy —— (8" T"I\( 5 8" xDy)

U U

fo

W,J-——~—>Bsz"' 1

llg idx1

v Bk : Rm

We start with the map f at the bottom of the diagram, and on the top we obtain
the required map F.

The only difference between our proof and [C-F] is that to construct 7 in () we
have to use the theorem of Waldhausen [W] (Lemma 2.6) rather than the surgery
argument of [C-F]. This can be done if W, contains no fake 3-cells. To prove
that W, contains no fake 3-cells we have only to prove that the same is true for W;.
Thus the problem reduces to showing that if i in () is appropriately chosen then W,
contains no fake 3-cells. We use the facts that ¥ contains no fake 3-cells and that
we can construct an appropriate immersion of W, into ¥ which extends i,. It would
be slightly easier to show that W, contains no fake 3-cells, but it does not help

much in proving that W, contains no fake 3-cells. The construction of (*) contains
some steps:

I. Constructionoftheimmersionsi’ andi. We will construct an immersion
s (B x T™N\(3B"x Dg) - B*x 2.5 B"

such that the following conditions are satisfied:

() i'|B*x T3 =idxi where i: 70 - 258" is an immersion such that
ie"|2B™: 2B™ — 2 B™ is the identity;

() I"((B*\%BY x T™) = (B"4B") x 2.5 B™;

(c) there exists a 3-manifold X and immersions i,: B"xT"‘\(%B"xDO) - X
and i X - 2.5B™ such that i’ = i, o i, and both i, and 7, are at most 2 to 1.

1%
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We will apply the immersions i and i’ to our diagram (*). We need the following
lemma:

LemmA 2.2. (a) For m<2, there exists an immersion f of [0, 1]xT™ into
[0, 11% 2.5 B™ such that £1[0, 11x T&" is a product map f = idpo, 13X & for some immer-
sion o and such that «e™|2B™: 2B™ — 2B™ is the identity. Moreover, f = f, <f;
where f,: [0, 11xT™ - Y< [0, 11x2.5B™ and f,: ¥ = [0, 11x 2.5 B™ are immersions
which are at most 2 to 1, {0} xTg' = {0} xTg = idg; %,

A0 < T) = id

and Y is an (m+1)-submanifold of [0, 1]%2.5 5™,

(b) There exists an immersion o of Ty in 2.5 B™ such that ae®[2B%: 2B° — 2B°
is the identity and such that o = a, o u, where o,: T3 - Y, and oy: ¥y — 2.5
are immersions which are at most 2 to 1 and Y, is a 3-manifold.

Proof. (a) For m = 1, immersion f can be described by Fig. 1. Here f; = f
and f, =idy, ¥ = Imf. -

1
faixr! : -
(=
1
[@ﬂx o ;"‘_‘Vc—'l

255
Fig. 1

Now let m = 2. We first find an immersion a: 75 — 2.5 B? as in Fig. 2. Then
we find the corresponding immersion
_ £l0,11xT2 —[0,%]1x2.582%, f.=Ixa
where I: [0,1] — [0, 1] is given by I(x) = x/2 (see Fig. 3).

Yo (TH

St

Fig. 2

lxu[ﬂﬂx};‘)
Y

Fig. 3
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We have to extend £, to all [0, 1]x T%. We have Ta = T\D? where D?is a 2-ball
in T°. So we have to extend f, to [0, 1]x D2 To do that, let us add to £,([0, 1]x T2)
an immersed disk D such that D = i(D?). Here i is an immersion which is 2 to 1,
and 0D is equal to a bold immersed closed curve in Fig. 3, and D f£([0, 1]x T?2)
= 0D = i(0D?, and D <[}, 1]x2.5B% To pictwe D, let us first divide D? into
three disks By, B, and B, as in Fig. 4. Then Fig. 5 shows that i| By, i| B, and i| B,

Fig. 5

respectively. It is easy to see that i| B, k = 1,2, 3 are embeddings, so i = i|B, u
Ui|B,Ui|B; is at most 2 to 1, and we can put D = i(D%). Thickening i(D?), we
can easily get the required immersion f,. We put ¥ = im(f,). Then it is easy to
find a 2 to 1 immersion f;: ¥ — [0, 1]x 2.5 B™, whichism X id,r2y on fo([0, 1] T3
= I([0, 1]) x «(T3), where m: [0,%] = [0, 1] is given by m(x) = 2x.

We can require that £, does not contain more points of Y outside of a small
neighbourhood of £,([0, 1] x T2), so that the resulting immersion is 2 to 1. Of course,

L0} x T2 = FI{0}x T3 =idxa and  fI(/({0}xT) = id.

The condition that ae™|2B™ is the identity can easily be achieved by the Schoenflies
theorem.
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(b) First, let us take the immersions

£ [0,1]%xT? » ¥ = im f,= [0, 11x2.5 B,
a: T2 - R?
obtained in the proof of (a). Then let us take the sum
' Y, = YU, [0, l1xa(T3))
with the identification homeomorphism p: Ay ~ Aj,
Ay = i({0, 1}xT3) = {0, xa(TO) =Y,
Ay = {0, 1} xa(T2) = [0, 1]x x(T3) .

1

In this way we get an immersion
w0t T8 = ([0, 11x T2 u([0, 1'x T5) = ¥;

where ([0, 1]xT*)u ([0, 1] x T3 is a sum with identifications such that the inter-
vals [0, 1] and [0, 1]’ add upso as to give an St factor in T2 > Ts. Then we can
decompose ¥y = Z; UZ,, 5o that Z; = &,(S; xT3) and Z, = f([0, 1]x D?) (here
St =[0,1]u[0, 1120, 1] and D? = T™N\T3). It is casy to find o: ¥; — 2.58°
such that o,|Z, and &,|Z, are embeddings, so that 15 2 to L. This ends the proof
of (2.2). )

Now, if m = 3, then Bx T>\Z B x D,) = T>\D, = T, and we can put i’ =
where 2 is an immersion guaranted by Lemma 2.2.

To describe #' for m < 3, we will use the following notation: We identify B&B*
with S*~1x [0, 1], so that S~ x {0} is-identified with 8(3B") and we define an
immersion i -

Jr SF k[0, 1% T™ - §*7 1 x [0, 1] % 2.5 B"

as idgu-1 X f, where £ is an immersion given by Lemma 2.2. Then j = jj ¢ j,, where

Fo=idge-1 X for SFTIx]0, 1IxT" = S¥ixY
and .
Fot idge-sx fo: S¥Tix ¥ SFTIx[0, 1]x 2.5 8™

are immersions which are at most 2 to 1. By our identification, j maps (BB xT™
into (B"\EB* x2.5B™ Now, we define i’ by

» PUBSNGBYY X T = jI(BN3B) x T
and
P13 B x T3 = idgpexa ;
it is easy to see that if fand « satisfy the requirements of 2.2, then our immersion i’ is
well defined and satisfies conditions (a)—(c). ‘
We only show how to comstruct i,, i, and X. If m<2 we put

i) = PAES) for x e (B*$B¥) xT™,
T (dgmex0)(x)  for xe3B*x Ty,
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and X = (S¥"!x Y)U2B*x £,({0} x Tg") (note that S*~! x Y= S¥"1x [0, 1] x 2.5 B"
and S*71x {0} = (3B"). Then we put

W) = Jo®)  for xej(BN3BYxT™,
BT x for xe 3B x(fu({0} < T3Y).

If m =3 we just put i, = &, i = o and X = ¥,

II. Construction of i}, iy, W, and W, and W{. We construct the spaces W,
and W, by taking the pullbacks:

Wo = {(x, ) € Vx(B* X T7): f(x) = (idxD)(3)},
Wi = {(x,5) € Vx(B*x T"™EFB*x Do): f(x) = '(3)}

by iy and i; we denote the restrictions of the projections of W, and Wy, respectively,
onto the first coordinate, and by f, and f{ the restrictions of the projections onto the
second coordinate. It is easy to see that i, and i, are immersions of the manifolds W,
and W, into V, and that Wy, W,, and i, is the restriction of i.

We write T8 = You(S™ 1x[0, ), and let ¥, = Y, u(S™ 1 x [0, ¢]). Then
T™\ 7Y, is an m-ball containing D,. As in [C-F] we can prove that f; is a §y-equiva-
lence over B*x Y, if 8, was chosen sufficiently small.

IIL. Construction of Wy, f; and i;. By adding a copy of (B"%B"x D,
to W, we can form manifold W, containing ¥, such that f, extends to a proper map
Fii Wy — (B*x T"N(EB*x {x,}) which is a homeomorphism over (B"\%B")x T".
As in [C-F], it is a 8;-equivalence over B*x T™[3 B*x (I™\Y,)] if &, is sufficiently
small.

Now, let us notice that W; is homeomorphic to Wi. Actually,

Flf YB“3BY x R* - (B2 B")x R"

is a homeomorphism, and we have the following comutative diagram:

W8 \ 2 8Yxr" -;;—n';"((a" \%8"+R")
il il
(16" \ 28 xR") —= 18"\ % 8)xR"
This implies that
for GO HB3BYx R™) - (i)~ ((B3BY) x R

is a homeomorphism. This, by the construction of Wy, implies that there is a homeo-
morphism f: W{ — W, such that f(W,) = W, (note that W, W, and W, < W}).
Now, we put i; = i; . We want to prove that Wy (and consequently W) contains
no fake 3-cells. ‘

First we prove some lemmas.
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Lewua 2.3. i, can be expressed as a composite function iy = iy i,, Wwhere
ils Wi — X' and i: X' — V are immersions which are at most 2 to 1, and X" is
a 3-manifold.

Proof. Let X' = {(%,)) & Vx X: f(x) = &,(y)} where X and i, are given by
the definition of i'(c). Wy can be expressed as

Wi = {(x,7) € X' x(B*x T")NG B*x Do): f (%) = ()}

where i1, i, and f are restrictions of projections of X’ on V, Wi on X' and X’ on X,
respectively. Of course, i, and i, are immersions. Moreover, they are at most 2 to 1.
We prove it for i, (for i the proof is identical).

Suppose that there are three points, ay, s, a3 € Wi, such that a, # a; for
k=1 and ifa,) = ifa;) = ifas). Let a, = (x, ), for k=1,2,3. Then
X, = %, = X3 € X' 50 y; # y for k # L But f(x) =F(x) = F(xs), and. so by
the definition of Wy i.(y;) = #(¥2) = i(ys). This contradicts the fact that i, is at
most 2 to 1.

In the next lemma we will use the following notation: Let f: X — Y be a map.
For i =2 we write

Sf) = {xeX: I (N =k, SO =kL>Jsz(f)',
8:(f) = S(f)\kyzsk(f) and  Z(f) = f(S(f)

LEMMA 2.4. Suppose that F is a fake 3-cell, and that V is a 3-manifold containing
no fake 3-cells. Then there in no PL-immersion j: F — V such that j is at most 2t01.

Proof. Let F be any fake 3-cell, and let Dy, Dy, ..., D, be disjoint discs in
F\GF. Then the manifold F\D\D,\ ... D, will be called a fake 3-cell with holes.
Let us observe that if F is a fake 3-cell with n-holes, then 8F consists of (n+1)
2-spheres, and for every simple closed curve « in 0F the manifold F* obtained from F
by attaching to F an index 2 handle H?, so that a is an attaching sphere of H?, is
a fake 3-cell with n+ 1 holes. We will prove 2.4 not only for fake 3-cells but more
generally for fake 3-cells with holes.

Suppose j: F— Vis an immersion of a fake 3-cell with holes F which is at
most 2 to 1. Changing j slightly in the collar of 8F in F, if necessary, we can assume
that j| = j|8F: 8F — V is in general position with respect to 8F (see [H], p. 10 for
definition). This together with the fact that j is at most 2 to 1 means that Sy(j| ) = @
for k> 2. j is an immersion, whence S,(j| ) = @. §,(j| ) is a sum of a collection
C(j) of simple closed curves in @F which are pairwise glued by j, and j| is transverse
at every point of Z,(j| ) (see [H], Def. 1.11(vi)). Thus we will consider only immer-
sions j: F — V of fake 3-cells with holes into ¥ with the above properties.

By Lemma 2.5 there are no such immersions j if the cardinality [|C(I] is zero,
i.e. C(j) ='0. Let us assume inductively that there are no such immersions j with
HHC()Il <n, and suppose that there is an immersion j: F - ¥ with [|C(/)|| = n for
some fake 3-cell with holes F.

icm
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First suppose that there exists in C(j) a eurve ¢ which satisfies the following
condition : o

(a) ¢ bounds in OF a disk D such that D contains no other element of o{§)]
and that j(D\0D)< j(F\JF).

Condition (a) implies that j7(j(D)) consists of two disks: one of them is .D
and the other is a disk D’ such that D'\0D' = F\dFand dD’ = ¢, where ¢'is a curve
in @F which is identified with ¢ by j (see schematic Fig. 6). Let D" be a disk bounded
by ¢’ in 0F such that Int D"’ nInt D’ = &. Then D' D’ is a sphere which bounds
some homotopy 3-cell with holes F; in F (we define a homotopy 3-cell with holes
as F\U D;, where Fis a cell or a fake 3-cell). Of course, F, = F\F, is also a homo-
topy 3 ;cill with holes.- LetB a small regular neighbourhood of F; in F, and let
F; = F\B. Of course, F, is homeomorphic to F,. Now, let j' = j|F’ where F’ is
that one of the manifolds F; and F, which is a fake 3-cell with holes (i.e., it is not
a normal 3-cell with holes). Then j': F— ¥ is an immersion with [|[C(F)||<n

e ‘ Jicy=jic') im

Fig. 6

(we have eliminated ¢, ¢’ and possibly some other elements of C(})). This contra-
dicts the inductive assumption. If there is no curve ¢ € C(j) satisfying condition (a),
then we can always find .a curve ce C(7) which satisfies the folowing condition:

(b) ¢ bounds in dF a disk D such that D contains no other element of C(jf)
and that j(DN\OD)nj(F\oF) = @.

Let ¢’ be a curve in C(f), ¢’ # ¢, which is identified with ¢ by j. Then, let F’ be
a fake 3-cell with holes obtained from F by attaching an index 2 handle H to F
(see Fig. 7), so that ¢’ is an attaching sphere of H and that HnF = dHNOF is a te-
gular neighbourhood of ¢’ in @F which intersects no other element of C(j). Let
ji: H— ¥V be a homeomorphic imbedding of H in V such that j;(H) is a regular
neighbourhood of j(D) in the manifold VNj(F) and that j;|0FN0H = j|0Fn0H
(we canm define such a j; because, by (b), j(D)nj(F\D) = j(@D)).
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Now we define F' = HUF and we define j/ by j'|F = j and j'|H = j;. One
can easily see that ||C(j")]| <n, because we have eliminated the curves ¢ and ¢'.
To complete the proof of 2.4 we now only have to prove the following lemma.

Fig. 7

LEMMA 2.5. Let F be a fake 3-cell with holes, let V be a 3-manifold, and let
j: M = V be an immersion such that jloM is a homeomorphic embedding. Then
there exists a fake 3-cell with holes F' and an embedding i: F' — V.

Proof. We consider the closure of the components of F\j 1(j(6F)). At least
one of them is a fake 3-cell with holes. Let us denote it by F'. j|F' is an embedding.
Now we can prove that Wj contains no fake 3-cells. The immersion i;: Wi =V
can be expressed, by Lemma 2.3, as if = i o i, where i;: X’ — Vand i;: Wi — X’
are at most 2 to 1. Let us consider the PL structures induced by iy on X’ and by i,
on Wi. By Lemma 2.4, X’, and consequently Wi, contain no fake 3-cells, because V'
contains no fake 3-cells. This implies that W, contains no 3-cells.

IV. Construction of W,. We consider the open set
G = LB x (T"\YONGB\Y>)

(see II for the definition of ¥;). We identify G with S2%x R.If §, is sufficiently small,
then we can find a 2-sphere S <f; (S x(~1, 1)) which is bicollared, whicl. sep-
arates f; 1(S?x {1}) from f; 1(S? x {—1}) and for which /1S S = G is a homotopy
equivalence. We find S by using the 3-dimensional “splitting theorem” of [J]. We
define a 3-ball D? = $B*x(I™\Y,), and we let W, be the closure of the com-
ponent of W,\S containing f; !(¥,). Our map fo: W, » B*xT™.D" is defined by
fo = filW,. 1t is well defined for §; sufficiently small. Of course, W, contains no
fake 3-cells, because W, contains no fake 3-cells.

V. Construction of W, Wj; is constructed from W, by attaching to W,
the cone over S. W, is a compact 3-manifold which is homotopy equivalent to

icm
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B*x T™ and contains no fake 3-cells. We show, as in [C-F], that for 8, sufficiently
small there is a J§j-equivalence f3: W, — B*xT™ which agrees with f; over
(B*x £B*)x T™ U B*x Y,.

VI. Construction of A. We want 4 to be a homeomorphism which agrees
with f; over (B*\Z B¥) x T™, and which is homotopic to f5. Such an & can be obtained
by using the following lemma:

LemMA 2.6 (Waldhausen [W)). Let M and N be connected, compact, orientable,
irreducible PL-3-manifolds such that N is sufficiently large, and let f+ M — N be
a PL-homotopy equivalence such that f ~*(ON) = 0M, and that f is a homeomorphisn
on the boundary. Then f is a homotopic relative boundary to a PL-homeomorphism.

Lemma 2.6 is not stated in [W] as a theorem but it is proved as part of the proof
of Theorem 6.1 of [W]. It was first used in the torus argument by Hamilton [H].

VII. Construction of F'. F': B*xR™ - B*x R™ is the covering of fyh™?
which is an identity on (B™\Z B¥)x T™. F’ is bounded, and it is an e-equivalence
if 85 is small (see [C-F]).

VIIL. Construction ofj. LetJ: R® — 4B*x4 B™ be a radial homeomorphism
which is fixed on 2B*x2B™ Then an open embedding j: B*x R" — B¥x R™ is
defined by restricting J.

IX. Construction of F. We define F: B¥*x R™ — B*x R" as follows:

_fiFiYx) for xej(B*xR™,
F@) = {x for x ¢ j(B*x<R™).

F=id on [B“EEYHxR"U[B*x(R™4B"],
F# Fj~' over B*x2B™,
and F is still an e-cquivalence.

X. Construction of ¢. We have a commutative diagram

F8* 28" —E— 8* 228"

hlid = o™)j” idxa™
£ x o™ (8% 28" —10m (id x 0 (8*x 28"
o idxi

£8* « 28" —Lu g x28"

The vertical arrows are homeomorphisms, and by composing the inverses of the
two on the left we get a homeomorphism

Wi fTYB*x2B™) —» F~Y(B*x2B™
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which satisfies Fy = f|f Y(B¥x2B"). ¥ extends to a homeomorphism
@: f~}(U)y > F~Y(U) defined by ¢ =f on FH(BNEBY x R™). This ends the
proof of Theorem 2.1.

3. Concluding remarks. To prove Theorem 1.1 we now repeat the argument
of [€~F]. First we prove a theorem corresponding to the “Main thecrem” of [C-F].

For notation, let ¥? be a 3-manifold, 3 = m+k, and let F: ¥V — B*x R" be
a proper map such that 9V =f '1(6kaRm) and f is a homeomorphism over
(B¥x1B¥y % R™. ' o , ‘

THEOREM 3.1 (main theorem). Suppose that V contains no fake 3-cells. Then
for every &> 0 there exists a 6> 0 such that if f is a 5-equivalence over B*% 3 B then
there exists a proper map f: V= B*x R™ such that:

(1) J is an e-equivalence over B*x2.5B",

() F= £ over [(B“ZBYx R"]U[B*x(R"™2B")],

(3) J is a homeomorphism over B*x B™.

The proof of 3.1 is precisely as in [C-F]. We have only to use the fact t}}atl vV
and subsets of BPx S™ contain no fake 3-cells, and the 3-dimensional “Splitting
theorem” of [J]. Having proved Theorem 3.1, we prove 1.1 as in [C-F].
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On indecomposable representations of
quivers with zero-relations

by

Mirostaw Dembiﬁski; Piotr Dowbor and Andrzej Skowronski (Torun)

.Abstract. Let 4 be a bound quiver algebra KQ/I with zero-relations and R = KQII its uni-
versal Galois covering. Applying new covering techniques [5], [6] we give a simple description of
indecomposable finite dimensional representations of A in case each indecomposable finite dimen-
sional representation -of R has a peak [4].

0. Introduction. It is well known that in many cases [4], [10], [12], [14%, [16], [18]
the representation theory of finife dimensional algebras over an algebraically closed
field can be reduced to that for parfially ordered sets, shortly posets. In particular,
if 4 is a tree algebra KQ/I of a finite tree Q with zero-relations I, then by [4] 4 is
representation-finite, that is admits only finitely many nonisomorphic finite dimen-
sional indecomposable representations, if and only if the partially ordered sets
associated to all vertices of Q are representation-finite, and in this case each indecom-
posable representation of 4 has a peak. Similarly, by coverings techniques, the
classification problem of indecomposables of a representation-finite quiver algebra
with zero-relations can be reduced [12], [14] to that for representation-finite tree
algebras (with zero-relations), and consequently to posets. :

The purpose of this paper is to give a rather simple description of indecompos-
able finite dimensional representations of an arbitrary quiver algebra with zero-
relations for which every indecomposable finite dimensional representation of its
universal Galois covering, being a locally bounded tree category with zero-relations,.
has a peak. Applying the covering techniques developed recently for representation-
infinite algebras by the second and third author [5], [6], we reduce the classification’
problem of indecomposable to that for the corresponding posets and to the classi-
fication of indecomposable finite dimensional representations over the .algebra
KI[T, T™*] of Laurent polynomials. In particular, we will show that any such algebra
is tame if and only if the corresponding posets are tame.

1. Notation and conventions. Throughout this paper, we denote by K an alge-
braically closed field. By an observation of Gabriel [3], [11] a basic connected finite
dimensional K-algebra 4 can be written as 4 = KQ|I, where Q is a finite connected
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