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Now make the following surgery on f(M).
Throw out from f (M) the 2(n-+1) balls of dimension » which form the inter-
section f(M)NU and add to (F(M)\U) the set

REUS) re[0, 11).

By thus the number of (n-+1)-tuple points has been decreased by 2.
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An analytic equivalence relation not arising from a
' Polish group action

by

David Marker * (Chicago, 1IL.)

Absh'act We show that the equivalence relation xEy iff @7 = ] cannot arise as the orbits
of 2 Polish group action, We also calculate the exact Borel rank of {x % = a} for a a countable
admxssxblc ordmal .

Th‘ere are two natural abstractions of Vaught’s conjecture to descriptive set
theory. The most natural would be the conjecture that any analytic equivalence
relation on a Borel set with uncountably many classes, each of which is Borel, admits
a perfect set of inequivalent elements. Unfortunately this is easily seen to be false.
Let xEy if and only if @i = w], where o} is the first ordinal not recursive in x.
Then Eis X} and all E equivalence classes are Borel, but E has exactly ¥; equivalence
classes, one for each countable admissible ordinal.

The second abstraction is known as the topological Vaught conjecture. Let G
be a Polish group acting continuously on a Polish space X. If G has uncountably
many orbits, then there is a perfect subset of X such that any two distinct elements
are in different orbits. Kechris asked if the equivalence relation E could arise as the
action of a Polish group on the Baire space. In § 1 we show that it cannot. In § 2 we
give an exact calculation of the Borel rank of {x € ©®: w} = a}, for « a countable
admissiblo ordinal.

§ 1. Our main lemma uses several ideas of Vaught’s [V].

DepniTioN. Let G be a Polish group acting continuously on a Polish space X.
Let B< X, The Vaught transform B* = {xeX: {ge G: gxe B} is comeager}.

The facts we need about the Vaught transform are summarized in the following
lemma.

Lemma 1.1 (Vaught [V]).
(1) For any B< X, B* is G-invariant.

* Partially ‘supported by NSF postdoctoral fellowship MC 583-11677.
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(2) If B is G-invariant, B* = B.

B3 IfBis II then so is B¥.

The next lemrma is the main step. Thxs lemma was proved independently and
earlier by Sami [S]. Sami’s proof is far more clementary (i.e. forcing free).

LemMa 1.2. Let G be a Polish group acting continuously on a Polish space X.
If 0 is a nonmeager orbit, then 0 is Gs.

Proof. We first note that every orbit is Borel [R-N], and hence has the Baire
property. Thus we can write @ = XU Y where X is G5 and ¥ is meager and Borel.
Consider the Vaught transform X* of X. Clearly X* € ¢* = 0. Since X™ is invariant
and 0 is an orbit, X* =0 or X* =@

Suppose for purposes of contradiction that X* = @. Then for all xe®
{g € G: gxe X} is not comeager. So for all xe @ {geG: gxe Y} is not meager.
Let C = {(x,4): x€ 0, geGandgxe ¥}. Thus Chas the property of Baire, Hence
by the Kuratowski-Ulam theorem [O] C is not meager.

Let P, be the conditions for Cohen forcing in X. Let P, be the conditions for
Cohen forcing in G. Using the topological properties of Cohen forcing (see [So]
or [Ku]) we can get £, §, P, x P, generic over the ground model s.t. in the generic
extension £, § e C (note: using Borel codes and Shoenfield absoluteness we can
extend X, Y, 0, C and all their important properties to the generic extension). Let
$ = §(&). Then f& Y. ‘

CLaM: 9 is Cohen generic over the ground model
Proof. Let D =P, be dense. We wish to show DNy # @. Let
D, = {p,q)ePyxP;: Are D q(p) < r}

(Note. Since elements of G are continuous functions on X we determine a neigh-~
borhood of the value of g(x).) We claim D, is dense. Let (p, q)ePyx P Let
r<rore D. We can extend (p, ) to (p', ¢) such that ¢'(p’) < r. Since D, is dense,
9 D # @. Thus 9 is Cohen generic over the ground model. But this is impossible
since §e ¥ and Y is a meager Borel set coded in the ground model.

Thus X* = ¢. By Lemma 1.1, X* is G;.

Condiser the E class ¥ = {x: o} = o{}. By Thomasaon [T] (see also [K])
this set is comeager. Thus we will be done if we can show it is not Gy.

Lemma 1.3. Y is not Gj.

Proof Let F= {xe”: dn ¥ m>n x(n)= 0}. We will show that F is Wadge
reducible to Y (i.¢. there is f: @ — @® continuous s.t. x ¢ Fif and only if £ (x) € ).
Consider the infinite game where I plays x, II plays y and II wins if and only if
xe€Feo ye Y. We will show that IT has a winning strategy. This strategy will be
the desired reduction.

Let z € »° such that o # ©f%. If I plays a 0, Il plays a 0. If I does not playa 0,
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let m be the number of times I has failed to play a 0. II plays z(m—1)+1. Consider
a run of the game where I plays x and II using this strategy plays >.

If x & F, then T eventually plays only zeroes So II will eventually play only zeroes,
in which case y is recursive so o} = 0%,

If x # Fthen infinitely often I makes a nonzero play. Thus IT will inﬁnifely 'cv>ftcn
play the next element of z plus one. Thus z is recursive in y. So o} 2 o} > o

Thus Fis Wadge reducible to Y. But Fis F, but not G,. Thus since the inverse
image of a G, set under a continuous function is Gy, ¥ is not Gs.

.CORVOLLARY' 1.4. The equivalence relation xEy < w7 = o) can not arise as the
orbits of a Polish group action.

§ 2. In 1.3 wo showed that {x: o = ®%} is not G,. In this section we will
calculate the exact Borel rank of {x: w} = &} for o countable admissible ordinal.
Let ¥ = {x: o} == a}.

LEMMA 2.1. Y is TI94 .

Proof. y& Y<>Ve({c}' ¢ {Te WF: |T| = a}), where {e}” is the e-th partial
recursive function with oracle y, WFis the set of well founded trees and for T'a tree |T|
is the height of T. Stern [Ste] has showed that {T'e WF: |T| = a} is II,H Thus ¥
is I'IM.Z (This also follows from a result of Sami [S].)

“The proof of the lower bound uses Steel forcing [St]. Let § > a. Let P, and P,
be conditions for Steel forcing, i.c. P,= {{t',h): ¢ a finite tree on o and
h: t - oryu{co} such that A(P) = o and if 6,7€1, 0 =7 and h(s) < o, then
h(z) < h(o)} ordered by extension. If peP, and p = {t, k), we can define 5 € P,
by § = {t, k') where

s _ B0 h(e)<a,
Wio) = {oo h(o)>a.
We call p the retagging of p.
We will use two basic facts about Steel forcing.
LemMMA 2.2. (1) (Steel [St]) If {T', H) =P, is generic over L[a] and o is g-admis-
sible, then wf = «
(2) (Stern [Ste]) If X is LIS , P € Py and T is a canonical name for the generic tree,
then ‘
php,Tex iff iy TeX.

THEOREM 2.3, Y is [I043, but not 3.,
Proof. Fix a€ w® such that o} = u. Suppose y is Zass.
Cramv 1. Lla] k Y is Egyz-

Proof, Let beL[d] s.t. oi>« and a<rbh Then Y is Z,+2¢>3x (x is
a E,,+ 2-code A Vy (y € Y is in the Borel set coded by x)) This is caslly seen to be
Z4(b). Thus by Shoenficld absoluteness Lla] k ¥ is Zpiz.
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- We work in L[a] Suppose ¥ = U ﬂ B,,, where cach B, is }33+ 2 For neg
let o

Du = {p EP«‘ .".lmp ""P.T¢ -Bnm}
.CLAIM 2 D, is densc

Let peP,. Fix §>ad <:4L[°‘] Smcc Pa gP,,, RE Pﬁ bupposc {r, H) eP,
is generlc over La] and pe (T* H). Clearly of" 9§, thus T* ¢ ¥. Thus P,
\/ A\ TeB,, Thus pip, \/ TeB,,. Thus there is mew and r<p such that

n m
¥ n-,,j‘géB,,,,, Let Fe P, be the retagging of . By Lemma 2.2 F "'p“?'é,[m", since
“1B,, is II Clearly r<p so D, is dense.

Let <T H ) be P,-generic over L[a]. Since then D, are dcnsc Vn edme mElp €
e {T,HYp Il-ml‘¢ B,,. Thus Te nu *‘|B,,,,, "1Y. So o] # oc, contradxclmg
Lemma 2.2, e t
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Representability of V[A4] as intersection of
A-bounded variation classes

by
Pedro Isaza* (Medellin)
* Abstract. Tt is proved that the generalized bounded variation class V[H] of Cantunja is the inter-

section of alf classes of A-bounded variation with A = {4} satisfying Zh() (%7 *—A57)< e, but
it is not the intersection of any countable subcollection of them. As a consequence of this result,

a version of Helly’s theorem for the classes V4] is proved.

1. Two important generalizations of the concept of bounded variation have
‘been given by D. Waterman [4] and Z. A, Canturija [2] by introducing, respectively,
the finctions of A-bounded variation (AB¥") and the classes ¥ [%]. These spaces hiave
been studied mainly because of their applicability to the theory of Fourier sefies.
An interesting connection between the class of functions of bounded variation (BV)
and the classes ABV has been. pointed out by Perlman [3], who has proved that the
space BV is the intersection of all ABV classes but not of any countable collection
of them. We shall prove an extension of Perlman’s result to study.the reépresentability
of the classes V[h] as intersections of ABV classes. This theorem will allow us to
prove a version for the classes ¥[h] of the well-known Helly’s theorem.

Let f be a function defined on an interval [a, ). If I= [x,y], we write
F) = F(¥)—F (). Let {I,} be a collection of nonoverlapping intervals /; < [a, b].

"I A = {A} is a nondecreasing sequence of positive real mumbers such that
Y 14, = co, we say that f is of A-bounded variation (ABY) on [a, by if
YA WIA, < oo for every {I;}. This is known to imply that the supremum . V,(f)
of the collection of the above sums is finite [4]. Also, if fe ABV, then fis regulaied
i.e., has only simple discontinuities..

Let

3t 8D = 20,) = s V1S

* This paper is a pnrt of the doctoral dlssmtatlon written by the author at Syracuse Umversnty
under the direction of D, Wafermian (presented May 11, 1986; Syracuse N. Y. - R
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