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Classification of weakly infinite-dimensional spaces
Part I: A transfinite extension of the covering dimension *

by

Piet Borst (Amsterdam)

Abstract. A classification of weakly infinite-dimensional spaces is given by introducing a trans-
finite extension of the covering dimension, dim. The classification provided by dim is the same as
the one given by R. Pol’s [P2] index for weakly infinite-dimensional compact metric spaces. Several
invariants of this dimension function are studied.

In Part II we will prove several results concerning the relation between dim and essential
mappings onto D. W. Henderson’s [He] cubes J% where a is a countable ordinal number.

Chapter I. Infinite-dimensional spaces

A space is called infinite-dimensional if it is not finite-dimensional. Hure-
wicz [Hu] mentioned the possibility to somehow topologically classify infinite-
-dimensional spaces. In the last twentyfive years quite an extensive theory was
developed and most of the important results were recordedin [N], [E3] and
[E+P].

In this chapter we shall define several important notions in the theory of infinite-
dimensional spaces.

Preliminaries. Let us first establish some notational conventions. As far. as
standard notions from general topology and (finite) dimension theory are concerned,
we mostly follow [El] and [E2].

In particular, we note that the boundary of a subset 4 of a space X is denoted
by Fr4. A subset 4 of a space X is called clopen iff A is both open and closed in X.
By C we denote the Caator set.

The first infinite ordinal number is denoted by w, and ), is the first uncountable
ordinal number, Moreover, for an ordinal number e, we let A(x) be a limit ordinal
or zero and n(«) be finite such that o = A(6)+n(a).

1.1. Weakly infinite-dimensional spaces. Let us start with one of the most funda-
mental definitions is this treatise:

* AMS Subject Classification: 54F45.
1 — Fundamenta Mathematicae 130.1
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1.1.1. DEFINITION A (finite) sequence {(4;, B} of pairs of disjoint closed
sets in a space Xis called inessential if for some # € N (1 < m) we can find open sets O,
i=1,..,n such that

A,c0,c0,«X-B; and ﬂFrO—Q

i=1

Otherwise it is called essential.

We have the following characterization of the covering dimension, dim
([B2; 3.2.6]).

1.1.2. THEOREM. dim X' < n if and only if every sequence {(4,, BY)}i%! of pairs
of disjoint closed sets in X is inessential. B

Twenty years ago the characterization of covering dimension mentioned in
Theorem 1.1.2 led to the definition of weakly infinite-dimensional spaces. Both
P. 8. Alexandrov and Y. Smirnov used this characterization to obtain an 1nterestmg
new way of classifying infinite-dimensional spaces.

1.1.3. DerINITION. A space X is called weakly infinite-dimensional in the ‘

sense of Alexandrov (Smirnov), abbreviated A-w.i.d. (S-w.i.d.), if for every sequence
{(4;, B)}iZ 1 of pairs of disjoint closed sets in X there exist open sets ¥;, i = 1, 2, ...
such. that

d;cV,c V,eX-B;, and {']FrV (%] (ﬂFrV @ for some ) ..

Observe that if X is compact the notions A-w.i.d. and S-w.i.d. coincide. We
then call the space X w.i.d.

In this treatise we are interested mainly in these types of spaces. The following
lemma will be very useful.

1.1.4. LeMMA. Let F be a closed subspace of a space X and let {(4;, Bi)}w("')
be a (finite) sequence of pairs of disjoint closed sets in X such that {(4;nF, B,nF)}
Is inessential in F.

Then for some ne N (n< m) we can find open sets O, in X for i = 1,
that

vees B SUCH

A4;c0,c0,=X-B;, and Fa(\Fr0,=@.
=1
Proof. Since {(4;,nF, B;nF)}2% is inessential in F, for some ne N n<m)
we' can find open sets W; in F for i= 1 .., n such that

ﬂFrFW,»=Qf.

i=1

4;inFcW,c Wi «F—B; and

(Here Fry denotes the boundary operator w.r.t. the subspace F; smnlarly -F denotes
the closure operator w.r.t. F.) :
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By virtue of [E2; 3.1.2] there exist open sets ¥; in X for i = 1, ..., n such that

n
40V =@ = B;nV;,, FrpW;cV;, and NV;=0.
i=1
Put G, = Wi—V, and H, = (F~W)—V,for i=1,...,n

Observe that G; and H; are disjoint closed sets in X, both contained in F. For
i=1,..,n the sets 4,UG; and B,u H, are also disjoint closed sets in X. Now
let O; for i =1,...,n be open sets in X such that

4;0Gc0,c0,cX—(B,UH).

Then FrO;nFcV; for each i =1, ..., n. Consequently,

n n
NFronFe N\ V,=0. W
i=1 i=1

1.2. Other infinite-dimensional notions.

1.2.1. DeFiNiTiON [Sm]. Let X be a space and let o be an ordinal number.
Then we define

IndX=-1iff X=0,

Ind X < « iff for every pair (4, B) of disjoint closed sets in X we can find an
open set ¥ in X such that Ac V< Ve X—B and TndFr¥V <u,

Ind X = o iff Ind X<« and Ind X <o does not hold,

IndX = oo iff Ind X > « for every ordinal number o.
If for some ordinal number «, Ind X < « holds, then we say that X has large transfinite
dimension or Ind.

One of the oldest notions of infinite dimension theory is also the:notion of count~
able dimensionality:

1.2.2. DeriNiTION [Hul. A space X is called (strongly) countable dimensional,

abbreviated c.d. (s.c.d.) if X can be written as {J X, with IndX, finite (and X,
closed in X) for every n. m=d

1.2.3. DermNrmioN. For each subspace 4 of a space X we let for each n=0
P(4) = {U: U open in 4 and dimT*<n}.
We let 4y = X and Py = Py(X). For all ordinals # we will let 4, =X —-({U Py.
<n

Then for arbitrary ¢ we put P; = P,5(d;). Observe that each 4, is closed in X and

Ag= Ay whenever £> &',
By Baire’s Category Theorem, [E1l; 3.9.3], we have

1.2.4. LEMMa. Every topologically complete strongly countable dimensional
space X contains an open set U such that dimU < co. Ml

Using this Lemma Z. Shmuely proved in [Sh]

1»
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1.2.5. THEOREM. Every complete s.c.d. space X has A, = @ for some ordinal
number o. B

The set 4,,, is very useful in infinite-dimension theory. We will illustrate this by
a characterization of S-w.i.d. spaces in terms of properties of A4,,. This result
is due to E. G. Sklyarenko [Sk]. Similar characterizations exist for spaces having
Ind (see [E3]) and spaces having both sind and Ind (see [Ha]).

The characterizations reveal the “compact” nature of such spaces.

1.2.6. THEOREM. 4 space X is S-w.i.d. if and only if

(1) 4y, is S-w.i.d.,

(2) Ay, is compact, and

(3) For every closed set F disjoint from Ao, there is an ne N with F<P,. &

Chapter II. Classifications of collections of finite subsets

In this chapter we will introduce a classification of collections of finite subsets
by defining the ordinal number Ord for such a collection. This ordinal number
will be used to introduce the transfinite dimension function dim in the mnext
chapter.

We prove all set-theoretic results needed when dealing with the dimension func-
tion dim. The second section of this chapter will be devoted to a few sum theorems
on Ord and in the third one we will investigate the relation between Ord and the
classification: used by R. Pol [P2] to define his index for w.i.d. compact spaces.

_ 2.1. The ordinal number Ord. Let L be an arbitrary set. By Fin Z we shall denote
the collection of all finite, non-empty subsets of L.
Let M be a subset of FinL. For ¢ & {@} UFinL we put

M°={1eFinL: cnte M and snt = G},
M? abbreviates M,

S

2.1.1. DERINITION. Define the ordinal number Ord M inductively as follows
Y 0rdM =0 iff M =,

OrdM < « iff for every ae L, OrdM® <o, .

OrdM = o iff OrdM <o and OrdM <« is not true, and
~ OrdM = co iff OrdM >« for every ordinal number .

- The proof of the following easy result is left as an exercise to the reader.

2.1.2. LemmA. Let L be a set and let M, N < Fin L.

(1) If o,teFinL and ant = & then (M°)" = M,

() If 0,1 e FinL are both non-empty then ¢ e M® if and only if te M°.

() If NaM and OrdM exists then Ord N exists and Ord N < Ord M.

We call a subset M of FinL inclusive if: for every ¢, o’ € FinL such that o e M
and ¢’ = ¢ also ¢’ € M.

icm
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2.1.3. LeMMA. Let L be a set and let M be an inclusive subset of FinL. Then
OrdM = co if and only if there exists a sequence {a;}32, of distinct elements of L such
that o, = {a;}{=1 € M for each neN.

Proof. =: For some a; € L, OrdM* = co. Then also for some a, ¢ L—{a,},
OrdM*»*} = o, etc. We see that we can find a sequence 4y, 4, ... of distinct
elements of L such that for o, = {a;}j-;, OrdM" = c0; consequently M°" % &.
Since 6, uo e M for all o€ M™ and M is inclusive we have o,e M for each n.
<=1 To the contrary, assume that Ord exists. Since 6,, ; = 6,U{a,.;} € M and
@41 ¢ 0, We have OrdM " >0 for every n. By definition,

OrdM™ > Ord M°**+% = OrdM "+

Consequently, we proved the existence of an infinite decreasing sequence of ordinal
numbers, which is impossible. B

2.1.4. LeMMA. Let L be a set and let M be a subset of FinL. In addition, let n e .
Then OrdM <n if and only if |o6|<n for every ¢ e M.

Proof. =: By induction on the number #. If n = 0 then M = © so there is
nothing to prove. Assume that the implication “=>" is true for n— 1. Let M be such
that OrdM < n. Let 0 € M and take a € ¢. Then OrdM* <n—1 so lo—{a}| <n—1,
ie |lof<n.

<: Also by induction on n. f n = 0 then M = @ so OrdM = 0. Assume that
the implication “<=" is true for n—1. Let M be such that o] <n for every o€ M.
Pick ae L. Then if o’ € M® we have ¢’ = o—{a} for some ge M with ae¢. So
lo'l <n—1 for every o' e M" Therefore by our inductive hypothesis we have
OrdM* < n—1 for every ae L. Consequently, OrdM <n. B

2.1.5. LeMMA. Let L be a set and let M be a subset of FinL. If OrdM* > a+p
JSor some y € {@} UFInL, some ordinal number o and integer p =0, then OrdM?" > o
Jor some ¢ € {@}UFinL with lo| = p and yno = @.

Proof. By induction on p. If p = 0 then ¢ = @ is as required. Assume the
lemma holds for p—1. Then, by definition, if

OrdM’ 2 a+p = a+1+p~1

then we can find some ¢’ € {@}UFInL such that Ord M 2 a+1, |o'| = p—1
and ¢'ny = @. Then by definition we can find some aeL with a¢yuc’ and
OrdM™ @ >4 Put ¢ = o' {a}. B

2.1.6. LemMMA. Let &: L ~ L' be a function from a set L to a set L' and let
M cFinL and M' < FinL’ be such that for every o € M we have
(1) @(o)e M’, and
@ 12(0)] = |ol.
Then
OrdM < OrdM’ ,


Artur


6 P. Borst

Proof. By transfinite induction on OrdM’ = «. o = 0: then M’ =& and
hence M = @ so OrdM = 0. Assume that the lemma holds for all ordinal numbers
less than a given ordinal number «. Let M and M’ be as in the lemma and let
OrdM' = o. Consider M* for a given aeL. Let ce M® Then cu{a} e M and
ag¢o. Let b= &(a) and ¢’ = &(0). By (1): ®(ou{a}) = ¢’ u{b}e M’, and by (2)
we have ¢’ n{b} = @. Consequently,

1) &(0) = o’ e (M")".

By (2) we also have

@) 12(@)] = lo].

Then (1) and (2') imply that the properties (1) and (2) of @ are also satisfied
w.r.t. M® and (M’)". Observe that by definition,

Ord(M’)’ < OrdM’ = o.

Hence by our inductive. assumptions OrdM®<Ord(M’)® <. Since aelL was

arbitrary, OrdM < OrdM' = o. B

An alternative way of defining Ord comes from descriptive set theory, cf. [Mo]-

Given a set L let seq(Z) denote the set of finite sequences of elements of L.
A tree on L is a subset T of seq(L) such that if se T and if # is an initial segment
of s then ¢ € T. A tree Tis well-founded iff there is no sequence {s,: ne N} in T such
that for all n, domS, = n and s, <S$,+y, i.€. T has no mﬁmte branch.

Next given T and ae L we set

T(a) = {seseq(L): {a}"seT}.

One then defines the rank of well-founded trees as follows:

Rank (@) = 0;

Rank(7) <« iff for all ae L Rank(T(a)) <a;

Rank(T) = o iff Rank(T) < « and not Rank(T) <u«;

Rank(T) = oo iff T is not well-founded; )
To connect Rank and Ord we define for M < FinL a tree Ty, by

Ty = {seseq(L): s is 1-1 and for some o e M ran(s) = o} .

One can show that Ord.M = Rank(T}).

2.2. Sum theorems. Let us now prove some sum theorems on Ord.

2.2.1. LemMA. Let L be a set and let M, My and M, be subsets of FmL such
that M c M, UM,. Then

© Ord M < max(Ord M, Ord M) .

Proof. Induction on & = max(Ord M, Ord M,). If « = O then M, = sz— J;
hence M = @. If o> 0 observe that for every ael,

M MPOUM:,
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so that Ord M“ < max(Ord M7, Ord M3) < a by the inductive assumption it follows
that OrdM <o. B

For the next sum theorem we need the notion of a lower sum for ordinal numbers
as introduced by G. H. Toulmin [T].

2.2.2. DErINITION [T], [Pe]. Let ¢ and f be ordinal numbers such thata = o'+ p
and B = f'+q, where o’ and B’ are limit ordinals and p and g are integers. Then
the lower sum a@ B of « and B is defined as follows:

o if ' > p',
a@f =qatg=f+p ifa’=p,
ifo/ <p.

Let o and f be ordinal numbers. If « > § then let & (x, B) = a @ (f+1). Similarly,
if a B then let &(x, f) = @ (x+1). For this function the following holds:

2.2.3. LeMMA. Let o and f be two ordinal numbers. Then
(1) &2, By = 2(8, ),
) if f<o then &(o, B) > B, and
B if <o and o' <o then d(x, f)> (', B)
Proof. (1) if «> B then &(x, f) = ¢ ®f+1 and (B, o) = oc(-Bﬂ+1
(2) if B = o then P(x,a) = a@oa+1>a,
if f<a then ®(x, f)=o> B,
(3) if Aley < A(B) then &(c', ) = B < D(x, ), .
if A(e') = A(B) then &, f) = A[@)+n@)+n(f)+1 < d(«, f),
if A(@) > A(B) then (o, f) =o' <o = &(c, f). W

2.2.4. LemMA. Let L be o set and let M, My and M, be inclusive subsets of FinL,
such that whenever o € M is indexed as {ay, ..., a,} there is an i€ {1, ..., n} such that

{aj: j<ite M, u{@} and {a;:j>i}e M,u{0}.
Then whenever OrdM; <« and Ord M, < B,
OrdM < &(«, B) .
Proof. The relations < on the class of pairs of ordinal numbers defined by
(@ By< .oy it

is well founded, so it suffices to prove the lemma inductively w.r.t. this relation.
If {a, f) = <0,0) then M, = M, = & and hence for every c € M we have
lo] < 1. Consequently by Lemma 2.1.4, OrdM <1 = ¢(0, 0).
Let {a, B ><¢0,0) and assume that the lemma holds for all palrs (y, &)
with (3, 8 < {a, B). :

a<jand <8
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Cram. Let ae Land o = {ay, ..., a,} € M Then there areiy andi, in {1, ...,n}
such that

W) {ay: 1<j<ii}e M{U{@} and {a;: j>i} e Myu{@}, and

@ {a 1<j<i}e M, U{B} and {a;: j>i,} e MiU{D).

Proof of the claim. To find i; put @ = g, and find i {0, 1, ..., n} such
that {a;: 0<j<i}e M;U{B} and {a;: j> i} e M, U {@)}. Now put i, = max(i, D.
Then {g;: j> iy} e M,u{@} because M, is inclusive and

{o 1<j<is} = {a; 1<j<i} e MIU{D}.
To find i, put 4,;4 = a and do the same thing.

Case 1. a > B. Let e L. By the claim M°, M? and M, satisfy the conditions
of the lemma, while moreover

o Ord Mi <« <o
Then {&', B) <{a, B) so by assumption and Lemma 2.2.3(3)
Ord M < &(’, f) < (x, B) .
Case 2. « < B. Then for @ e L the sets M*, M, and M3 are as in the lemma and
OrdM;<p'<B for some f'.
From our assumption and Lemma 2.2.3(1) and (3) we then obtain
Ord M < & (u, B) < &(x, f).
In both cases OrdM"< &(x, f). Consequently, Ord M < &(x, f). W

for some o' .

2.3. The Brouwer-Kleene order and Ord. In [P2], R. Pol introduced a transfinite
classification of w.i.d. compact metric spaces by means of topological invariant
called index. For this he uses the Brouwer-Kleene order on FinN, which is defined
as follows:

2.3.1. DerFiNITION. For every o, te FinN let ¢ <7 if there is an ne N such
that

oni{l,.,n-1} =1n{l,...,n~1} and neo—rz.

When a subset M of FinN is well-ordered w.r.t. the Brouwer-Kleene order we
denote by fype M the ordertype of M.

2.3.2. DEFINITION. A subset M of FinN satisfies property (*) if:
(a) M is inclusive,

(b) for every o e M we can find infinitely many pairwise disjoint ¢’ € M such
that :
(bl): ono’ =G,
(b2): lo] = |o’|, and .

©3): M= M”
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The following lemma is useful in transfinite induction proofs involving prop-
erty (%).

2.3.3. LemMa. Let M be a subset of FinN. If M has property (%) then for each
aeN, M® has property (%).

Proof. Clearly M* is inclusive, so (a) holds. For (b) let 0 € M°. Observe that
M =M (M is inclusive) so that o e M. Find infinitely many pairwise disjoint
o' e M satisfying (b1), (b2) and (b3). For such 2 o' € M® for oce M* so
{a} e M° = M and so ¢’ € M. Next, (b1) and (b2) have nothing to do with a and
for (b3) simply observe that

(MY = (MY = (MY = (MY . W
2.3.4. LeMMA. Let M be a subset of FinN having property (*) and let B be a cofinite
subset of N. Put My = M FinB.

Then Mgy has property () and if Ord M exists then Ord My exists and Ord M B
= Ord M.

Proof. It is readily seen that Mj has property (#). As M, < M, Ord My < Ord M.
Next if Ord M = 0 then Ord My = 0 as well. So assume Ord M >0 and assume
that the lemma holds for all subsets N < FinN with Ord N < Ord M. It suffices to
show that

for every aeN there is some beN such that Ord M®< Ord(My)° .

If M* = @ then any b e B will suffice. If M* # @ then {a} € M for M is inclusive.
So find infinitely many b € N with M® = M®. As B is cofinite we can pick such a b
in B. Then for this b:

Ord M® > Ord M*.
Also because b € B, (Mg)° = M”nFin B (if ¢ ¢ B then (My)° = ) so by Lemma 2.3.3
and our inductive assumption

Ord(Mz)° = OrdM* > Ord M*. R
2.3.5. LemMA. Let M < FinN be inclusive.

Then Ord M exists iff M is well-ordered w.r.t. the Brouwer- Kleene order.

Proof. We prove the contrapositive. (i) If Ord M = oo then, by Lemma 2.1.3,
there is a sequence {#,: ne N} in N such that for every n {a, ..., a,} € M. Using
the fact that M is inclusive, we may assume that a, <a, <... But then
({as, .+, a,}: neN) is a strictly decreasing sequence in the Brouwer—Kleene order.

(i) In what follows whenever ¢ € FinN is written as {a;, ..., a,} it is implicitly
assumed that a;<a,<..<a, Now observe that if o= {a,..,a,} and
7 = {by, ..., b} then

o <t iff there is an 7 such that for j<i a; = b; and either i<m, n and a;<b;
orm=i—-1<n,
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If M is not well-ordered by the Brouwer Kleene order we can ﬁnd <o‘ neN )
in Mwitho; > 0,> 03> ... Write g; = {d\, ..., a,}. Tt follows that dzdzd>.
so there is an 7; such that 4 =d., for z>11

Then af >ai** >... so there is an i,>7; such that dy = a for iz And
S0 On.
Then {d!', ..., di’} € M for every n because M is inclusive.

Consequently by Lémma 2.1.3, Ord M = co. B

2.3.6. DEFINITION. Let 4 and B be sets well ordered by the order <, and
< p respectively. On Ax B we define the lexicografic order <, as follows:

(ag, b)) <i(a, b)) iff @y <, @, 0r a = a, and by <p by.

Observe that <, well orders 4x B.
For each ordinal o let 4, = {: f <a}. Clearly 4, is well ordered by <. We
define for each pair of ordinal numbers « and § the product axf as follows:

ax f = the ordertype of 4,x 4, with respect to the lexicografic order. -

For each ordinal number o we define g as follows:
a=0: 0f =1,
a=p+1: 0 = ofoyg,
& limit ordinal: @¢ = sup{mh: f<a}.
Let M cFinN be endowed with the Brouwer- Kleene order.
Then we put M() = {ceM: {i—1}<o<{i}} (= {seM: i = ming}) and
M(<i)={ce M: o<{i}}.
Observe that MHO)NM(j) =D

2.3.7. Remark. Let M be well ordered. Obsmve that 1f type M (i) = o for
infinitely many i then

if 7 + 7 and also that M(< i)« M(<)if i<).

type M Z o wy .
2.3.8. Remark. Let M- be well ordered. Then

type M = sup {type M(<1): FeN}. ‘
~ 2.3.9. THEOREM. Let M be a non-empty subset of Fin N with property (x). Then (i)
Ord M exists iff M is well ordered by the Brouwer-Kleene order and (ii) in that case

type M = ™M .

Proof. Lemma 2.3.5 givcs ().

‘We prove (ii) by induction on Ord M (note that (ii) is false for M = @: 0 # 1)
In case Ord M = 1, M consists of infinitely many singletons, Lemma 2 1 4 Nolmg
that i< ] iff {i} < { j} (in the B-K order) we_obtain

typeM Wy = co%

icm
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Let Ord M = > 1 and assume that type N = wg™ ™ whenever N has property (+)
and OrdN <.

(2) 0¥ < type M.
It suffices to show that for each S <a: wh*™* <type M. Let § be an ordinal number

such that f <« and §>0. Then by the definition of Ord M we can find an ie N
such that

OrdM*>8>0.

By property (%), we can find an increasing sequence j(1) <j(2) < ... of natural numbers
such that for every ke N we have M'< MI®, This yields Ord M*® > 8> 0 for
k=1,2,.. Set Ij=M®A{Fin(N-{1,..,j(k)})}. Observe that M'® has
property () by Lemma 2.3.3, and hence so does I}, by Lemma 2.3.4. According to
Lemma 2.3.4, Ord I} = OrdM*® > B>0. Define &: I} - M( Jj(®) as follows
#(0) = oL {j(R)}.

Then @ is an order-isomorphic imbedding of T}, into M(j(k)) when we con-
sider I, endowed with the Brouwer—Kleene order.

This situation and the inductive hypothesis give

wf <typel, = type ®(I}) <type M(j(k)) for every k= 1,2, ...

Considering the sequence of all M(j(k)) within M we obtain
wh-wy = ofT! <type M.
(b) type M < w§™™ .
By definition, for all ieN, Ord M’ = §,<a.
Hence by our inductive hypothesis type M’ < wd%M = ol
Put I'; = M(@)-{i}.
Define ¢: Iy — M as follows: @(0) = o—{i}. Then & is an order-isomorphic
imbedding of I into M’ Hence type I';<type M' = wh and
(1) type M(i) <type I'y+1<li+1.
For every ieN let S
(2) yi = max{B;: F<i}.
Then
“(3) @ = sup(y;+1).

Then by the way the subsets M(i) are ordered in M(K i) and - M(<D) = UM 0
ji=1

type M(<i)<max{type M(j): j<i}-i-
<max{wh+1: j<i}-i (by (1)
<(of +1)-i (by (2)
<oty iz afa

Lo oy = of*..
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Consequently, (3) and type M = sup {type M(<i): ieN } yield

type M<sup{w§*t} = wf,
i

which proves our theorem. W

Chapter III. A transfinite extension of the covering dimension

Using the ordinal invariant Ord discussed in Chapter II, we shall define
a transfinite extension of the covering dimension dim. We show that for a space X
dim X exists if and only if X is S-w.i.d.

In [P2] R. Pol developed a classification of w.i.d. compact spaces by assigning
to such a space X the ordinal number index X, We will prove that for these spaces
dim and index give the same classification; in fact the following equality holds
for a w.i.d, compact space X with dimX>1:

index X = w§"™*  (ordinal exponentiation) .
We will also extend in this chapter some theorems from the finite case; e.g. the
subspace theorem and the inequality dim ¥ < Ind Y. We will give an example of
a compact space X such that dimX = w, and IndX = wy+1 in Section 5.1

We shall prove a sum theorem for dim which is similar to the one for Ind proved
by A.R. Pears [Pe]. We shall also prove a product theorem. Both theorems will
be needed in the next chapter on essential mappings.

3.1, Transfinite covering dimension. In this section we introduce the transfinite
covering dimension and derive some of its basic properties.
Let X be a space. Define

L(X) = {(4,B): 4,Bc X, closed, disjoint} .
For arbitrary L < L(X), we set
My = {ceFinL: ¢ is essential in X} .

The following theorem inspired our definition of the transfinite covering dimen-
sion.

3.1.1. THEOREM. Let X be a space and ne o. Then
OrdMyxy<n if and only if dimX <n.

Proof. By Lemma 2.1.4 Ord Myx, <n iff for every € My lo| <n. By
Theorem 1.1.2,

dimX<n iff for every GEMyy, loj<n. R

We now give our transfinite extension of the covering dimension.
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3.1.2. DermviTioN. For a space X we set
dimX = ordML(x) .

Recall that by convention “dimX¥ = o is synonimous with “dim X does not
exist”.

We now delineate the class of spaces for which dimX does exist.

3.1.3. THEOREM. For a space X
dim X exists if and only if Xis S-w.i.d.

Proof. We prove the contrapositive:
First observe that 2 sequence {(d4,, B)}%, in L(X )isessentialiff {(4,, B)}'.; e M, [7e e}
for every n.

Now we see that dimXY = oo

iff there is a sequence {(4;, B)}=, in L(X) such that

{4;, B)}¥=, € My, for every n (Lemma 2.1.3);

iff there is an essential sequence in L(X);

iff X is not S-w.i.d. W

Next we prove a subspace theorem. In the process we introduce a few notions
which will be useful later on.

Let X be a space, F< X be closed and LcL(X). Put

LIF = {(AnF, BnF): (4, B) el}.

Observe that

L(X)|F = L(F)
and consequently,

Myiyr = My, .
Define ¢7: L(X) - L(F) by
$p(d,B) = (ANF,BnF).

Observe that

LIF = ¢x(L).
Finally, put

Myp = {o = {(4;, B)}i=y e FinL: for all open O;c X with
4,20, 0;c X—B;, 1<i<n, we have Fn [JFro, # a}.
i=1
3.1.4. Lemma. Let {(4;, B)}i=, be an essential family in a space X. Then
(4, B)) # (4;, B)) for all distinet i,je{l,...,n}.

Proof. Suppose (4, By) = (4, B;) for certain distinct #,j'e {1,...,n}
By use of normality of X we can find open sets O, and O; in X such that

Atl = Aj‘ [y O‘,C (7,,c OJ/ < GJ.CX—BJ. = X"‘Bi'-
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For each ie {1,..,n}—{i",j'} let O; be an arbitrary open set satisfying
4;=20,c0;c X—B;.

Observe that for each i = 1,...,n, 4, 0, 0;c X—B; and

ﬂFxO cFrO.nFr0, =@.

This implies that {(4;, B)}-, is inessential. Contradiction. B
3.1.5. LEMMA. MLJF= {oceFinL: o|F is essential in F and |o|F| = l6]}.

Proof. The inclusion <= follows from Lemma 1.1.4 and 3.1.4.
.For o, note that if {(4;,nF, B;nF)}}., is essential in F and if

4,;c0,c0;, = X-B;
for i =1, ..., n then
4,0Fc0,nF=0,nFcF-B; and Frg(0;,nF)cFrO,nF
for i =1, ..., n, so that certainly Fn {n']lFrOi # @,
e
3.1.6. THEOREM. Let F be a closed subset of a space X. Then
dimF = Ord My xyr < dim X .
Proof. Note that My r = My, from which follo§vs that
Ord My yp < dim X .
Clearly, My sy =My r; consequently
dimF< Ord M ygzy 5 -
Define @r: L(X) —» L(F) as above. Then for every o e il LOO|F
Pp(0) € My, and o] = |{®g(o)] .
Consequently, by Lemma 2.1.6,
Ord My xyr < Ord Mypy = dimF. W

The space X = (—D I"isnot S-w.i.d. (apply Theorem 1.2.6). Then, by Theorem 3.1.3,

dimX = co. If coX is the one point compactification of X then dimeX = @
Consequently, Theorem 3.1.6 is not valid for arbitrary subspaces.

3.2. Dim and Ind. We study the relation between dim and the large transfinite
dimension Ind. We will prove the inequality dim X <IndX.

Classification of weakly infinite-dimensional spaces 15

3.2.1. PrROPOSITION. Let X be a space, let t = {(4:, B)}i=1 e FinL(X) and
for i= 1 .»n let O, be an open set in X such that

4;c0,c0,cX-B,.
Then for F = (\FrO; we have
i=1

(1) Migy =My r and hence

(@) Ord Mjx, < dimF.

Proof. Let ¢ = {(A,, B)Yys1€ Mixy. Then crureML(X) Hence for open
sets O; in X, i =n+1,...,m, such that 4,= 0, 0; = X~ B; we have

G N OnﬂOi (\ 0,nF.

i=nt+1 i= i=nt+1

Consequently, ¢ e M L)+
Assertion (2) holds since by Theorem 3.1.6 and (1) we must have

Ord M} x) < Ord My = dimF. W

3.2.2. CoroLLARY. Let X be a space. If for (4, B) e L(X) we can find an open
set O in X such that

AcOcO0OcX-B ond dimFrO<a,
then Ord MY <o M

3.2.3. COROLLARY. Let X be a space such that for every pair (4, B) of disjoint
closed sets in X we can find an open set O in X such that

AcOcO0cX-B and dmFrO<o.
Then dimX <« B
3.2.4. THEOREM. Let X be a space such that Ind X exists. Then
dimX<IndX.

Proof. By transfinite induction on Ind X = a.

The case o = —1 is clear.

Assume the theorem holds for spaces with large transfinite dimension less
than a. Let X be a space with Ind X = «. Then for every pair (4, B) of disjoint closed
sets in X we can find an open set O in X such that

AcOcO0cX—-B and TWwdFrO<a.

Since our inductive hypothesis dimFr O < Ind Fr O < « for every such open set O our
theorem follows from Corollary 3.2.3. B

In Section 5.1 we will exhibit a compact space X satisfying dim X = w, and
Ind X = w,+1. Consequently, Theorem 3.2.4 is best possible.
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3.3. The relation with R. Pol’s classification of w. i. d. compact metric spaces.
In [P2], R. Pol introduced a transfinite classification of w.i.d. compact spaces by
means of a topological invariant called index. We shall prove in this section that for
a w.i.d. compact space X such that dimX > 1 we have

indexX = wi™¥ (ordinal exponentiation).
) ( p

We may therefore conclude that both classifications are equivalent and that the
properties of index shown in [P2] are also valid for dim. Let us introduce R. Pol’s
classification.

3.3.1. DERINITION. Let X be a compact metric space. We say that a sequence
S = {(4;, B;): ie N} of pairs of disjoint closed sets in X is separating if for each
pair (4, B) of disjoint closed sets in X the inclusions 4 < 4; and B < B; hold for
infinitely many i. Moreover, we define for such a separating sequence S,

Mg = {c e FinN: {(4,, B)};c, is essential in X}

(this motivated our definition of M;).
We quote the following two results from [P2].

3.3.2. THEOREM. Let S be a separating sequence in a compact metric space X.
Then X is w.i.d. if and only if My is well-ordered w.r.t. the Brouwer- Kleene order. @

3.3.3. PROPOSITION. Let S and S’ be two separating sequences in a w.i.d. com-
pact metric space X. Then

type Mg = type Mg, . B

The reader should compare the first statement with Theorem 3.1.3. It follows
that for a w.i.d. compact metric space we may define index X to be type M for
some separating sequence S.

3.3.4. PROPOSITION. Let X be a space and let L and L' be collections of pairs of
disjoint closed sets in X such that for every pair (4, B) in L there is a pair (4', B')
in L' with Ac A’ and B<= B’. Then

Ord My < Ord My, .

Proof. Define a function @: L — L' by taking for every (4, B) € L an element
(4', B") = ®(d4, B)e L' as above. We will prove that & satisfies the conditions of
Lemma 2.1.6.

Consider some o€ My. Then

(1) ®(0) is essential, so that &(c)e My,
and by Lemma 3.1.4,

2) lo| = |@(0)l.
So we conclude that the conditions of Lemma 2.1.6 are satisfied. Consequently,
since Ord M. exists, we have Ord M < Ord M. B

icm
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Let us state the following corollary to Proposition 3.3.4:

3.3.5. COROLLARY. Let X be a space and let L be a collection of pairs of disjoint
closed sets in X such that for every pair (F, G) of disjoint closed sets in X we have
some (A, B)e L such that F< A and G < B. Then

Ord My, = Ord My, . M

3.3.6. LemMaA. Let L be a collection of pairs of disjoint closed sets in a space X.
Moreover, let.c = {(4;, B)}i=1 and ¢’ = {(C;, D)}i=, € FinL be such that 4; < C,
and B;< D for every ie{1,...,n}. Then

MEc M.

Proof. Let y = {(4;, B)}=p+1 € M{. Then yuo € My and yno = &, Putting
(Ci, D)) = (4;, B)) for i=n+1,..,m, we see that yUo = {(4;, B)}L, and
yue' = {(C;, D)}i=, satisfy 4, C; and B;< D, for i= 1, ..., m. Then it is easily
seen that

yuo'e M.

Consequently, by Lemma 3.1.4, yne¢’ = @ and therefore ye MZ. W

3.3.7. LeMMA. Let S = {(A;, B)): i€ N} be a separating sequence in a space X.
Then My satisfies property () (Definition 2.3.2).

Proof. (a) Follows fromt he fact that every subset of an essential family is itself
essential.

(b) If o e Mg then {(4;, B)}ie, is essential.

Since S is separating, we can find for each i€ ¢ infinitely many jeN such
that 4;=4; and B;< B;. Select such j(i) so that j(i) ¢ o for every ieo. Let
&' = {j(D)};cq. Then (bl) is satisfied by our choice of j(i). That ¢’ € Mg and that (b2)
and (b3) are true for ¢’ follows directly from Lemmas 3.1.4 and 3.3.6.

Since there are clearly infinitely many pairwise disjoint such ¢’, we are done. M

Now we can use Theorem 2.3.9 to give the relationship between dim and index.

3.3.8. THEOREM. Let X be a compact space. Then the following statements are
equivalent : . ; g :

(1) X is w.id.,

(2) index X exists, and

(3) dim X exists.
Moreover, the following equalities hold between index X and dim X.

(a) dimX = —1 or 0 iff indexX = 0,

(b) index X = wd™X otherwise.

Proof. (1) & (2): see [P2; Lemma 3.2].
(1) & (3): Theorem 3.1.3.

2 — Fundamenta Mathematicae 130, 1
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We have index X = 0 iff My = @ for some separating sequence S. This is true

iff dimX<0.
" In the other case, if My % @ then Mg has property (x) by Lemma 3.3.7 and
Ord Mg = Ord My, by Corollary 3.3.5. Applying Theorem 2.3.9 we then get

Ord Ms grd. Mrexy

= @ dlmX_.

index X = type M5 = wg o

By Theorem 3.3.8 we can translate every result about index into a result about
dim (and vice versa). For example, we can restate [P2; Theorem 5.1] as follows:

3.3.9. TuEOREM. Let A~ be a family of w.i.d. compact spaces.
Then there exists a w.i.d. compact space X containing each member of X topo-
logically if and only if

sup{dimK: Ke ¥} <w,; B

3.4. Sum theorems. We shall prove a few sum theorems needed in later sections.
As usual X@® Y denotes the topological sum of the spaces X and Y.

3.4.1. PROPOSITION. Ler X = X, ® X,.
we have

Then for every te {@}UFinL(X)

Orsz(X) < nlaX(OrdME(X)lxl, Ordﬂi(x)lxz) .

Proof. We prove that Mj ) = My x, U My x, for every 7 € {@} U FinL(X).
Then the proposition will follow from Lemma. 2.2.1.
Let 0 € Mj(x). Then y= 60Ut € My, i.e.,, 1= {(4;, B)}i=, is essential in X.
But because X = X, ® X, it now follows easily that either .
{(Xin4;, X0 B)i=y {(X2n4;, X0 B}y
is essential so that
either y€ Mygyx, or  v€ My, ,
and hence
O' EML(X)[X1UML(JL)]X2 o .

3.4.2. COROLLARY. Let X = X, ® X,.
Then dim X = max(dim X, dim X,).

Proof. “2" Theorem 3.1.6.
“<” Proposition 3.4.1 for the case = = &. W

3.4.3. LEMMA. Let X be a space, and let X and X, be closed subsets of X such
that X = X, 0 X,.

Let 0 = {(4;, B)}}~1 € FinL(X) be such that

0 ¢ Mroox WMo, - -

icm
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- Then-we can find open sets . O; in X for i-=1,...,n such that

A;c0,c0;= X—B; - and ﬂFrO cX;nX,.

"Proof. Because ¢ ¢ M L(X)|Xx for K = 1,2, we can find open sets OF in X such
that
AiCOFC OFCX——Bi fori=1,..,n, and

n
NFrO¥nXy =@ for K=1,2
i=1
For i=1,..,n we let U; be an open set in X such that
A, cU,cU,cX-B, and U,cOin0}.
If we put 0; = (0!} =X,)UU,u(0}~X,) for i =1, ..,n we obtain
Fro,= (FrOj n X)) u (X, 0 X)) U(Fr0i n X,) .

Then the O;, i = 1, ..., n, are as required. B

We now prove a sum theorem for drm which is similar to a result obtained by
A. R. Pears [Pe] for Ind In this theorem the lower sum is used as defined in Defini-
tion' 2:2.2.

3.4.4. THEOREM. Let X be a space and let X; and X, be closed&ubsets of X such
that X = X; U X,. )
Then dim X < max(dim Xy, dim X,) ® (dlm(X1 nX)+1).

Proof. The case Xy n X, = & was already delt with in Cox ollary 3.4. 2 so that
we may assume that X, X, # @. Put M = My, My = My, ult; Lonjx: and
M, =M L)\ X1nXz» respectively. By Lemma 2.2.1 and Theorem 3.1 6 we have

o= O0rdM, = max(Orlef L)X OrdML(x)lxz) = max(dim X;, dim X,).

Put B = Ord M, = dim(X; n X,). Note that § <« by the subspace Theorem 3.1. 6..
‘We shall prove that M, M; and M, are asin Lemma 2.2.4. Leto= {(4;, B)}j=1€ M.
Consider i = min({k:, {(4;, B)}j=1 ¢ Ml, 1 <k<npuin}). Clearly,
{(4;, B)}i=ie M 0 {@}.

CLamM. o, = {(4;, B)}j=iv1 e MW {B}.

Proof of the claim. Since i = n implies o, =
Let o, = {(4;, B)}=1. Observe that o, ¢ M; =
Lemma 3.4.3 there is an open:set-Q; in X for each j =1,

& we may assume. that i<n:
ML(X)|X1UML(X)[X2 so that by
.., 1 such that
| 4= 05« 0,cx-B;, F= ﬂ FrOJ"c: XinX,.

Then, by v1rtue of Proposmon 3. 2 1(1), we see that

M ML(X)|F CML(X)]Xsz = Mz
o
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Since o6, U06, = 0€ M and ¢, N0, = O we have g, € M™ « M,. This proves our
claim.
Now we can apply Lemma 2.2.4 and obtain
dimX = Ord My < $(2, f) = max(dim X;, dim X,) @ (dim(X; n X;)+1). W
The following sum theorem will be used when we deal with s.c.d. spaces in
Section 4.4.

3.4.5. PROPOSITION. Let X be a space and let t € {@} UFinL(X). If X = UuV,
with U and V open in X then
Ord Mix) < @ (max(Ord M}y, OrdML(x)[y) ord MY,
where (A, B) = (X—U, X—V) e L(X).

Proof. We put M = Mix, My = Mz Mgy and M, = ME%D and
prove that they are as in Lemma 2.2.4. Let ¢ = {(4;, B)}}=1 € M. Consider

i=max({k: {(4;, B)Yj=r ¢ M,, 1<k <nju{l}).

Clearly {(4;, B)}Yj~;+1 € M,U{@}. We prove oy = {(4;, B)}izt e M, u{@).
Assume that 01 # . To begin, consider o, = {(4;, B)}}=;. Observe that
[ ¢M2 = ML(X) so that

(1) a0 {(4, B)} ¢ My, or

(i) (4, B) € 5.

In both cases we find open sets O;forj=1i,..,nand an open set O in X such that

’LAjc‘Ojc 0;cX—B; forj=1i,...,n, AcOcDcX—B

and

n
FrOuNFro; =0.
j=i

For C =,(7Va1;d D = X—0O we have C<V and DcU. Then also
M.‘L(X)]C [ M-‘L(X)ﬁ; and Mz(x)lp < MZ(X)[‘I)‘ .
Now assume
01§ Migye and oy ¢ Miyp -
Then, sincé o,Nt =@, for y = ¢, Ut we have

yé ML(X)]C and y ¢ML(X)|D .

Accordmg to Lemma 343 for y= {(F}, Gj)},_,_ we can ﬁnd open sets Vj,
j=1,..,m such that '

FjeV;cVijcX—-G and (\Fr¥,cCnD =Fr0.
- J=1
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m n
Consequently, (Y Fr¥;n N FrO; = @ and therefore
i=1 j=i

Uy = 0,U0UT = 0UT§ My,

so that o ¢ Mi,. Contradiction.
1t follows that o, € M} L(X)JCUM Lonp < M;. We conclude that mdeed M, My
and M, are as in Lemma 2.2.4. Thus we find

Ord M < #(OrdM;, Ord M) .

Also, by Lemma 2.2.1, Ord M, = max(Ord M}y 7, Ord M xy7), so we are done. M

3.5. The product with the Cantor set. We prove in this section that for a locally
compact space X we have

dimX = dim(XxC),

here C denotes the Cantor set.
The proof of the following lemma will be left to the reader.

3.5.1. LeMMA. Let X be a space and let % be a finite collection of clopen sets in X.
Then there exist a disjoint finite collection & of clopen sets in X such that for
every UeU there is a subcollection @' = & with .

U=U{D: De2'}. &

3.5.2. LeMMA. Let X be a compact space and let (4 ; B) be a pair of disjoint closed
sets in Xx C.
Then we can find a disjoint clapen cover {Dy, ..., D,} of C and for each
Jj=1,..,p a pair (F;, Gy) of disjoint closed sets in X such that:
r . r
Ac U (F;xD)) and Bc U (GixDp.
j=1 j=1
Proof. By a standard argument, [El; 7.4.10], and by Lemma 3.5.1 we can
find a finite open cover % of X and a disjeint clopen cover 2 of C such that for every

Ue% and De 2
6h) UxD)ynd =0 or (UxDnB=g.
Index 2 as {Dy, ..., ey D SEL

F; = My(4 0 (D;x X))

D,} and for each j =1,

and G, = Hx(BA(D;x X))

(here ITy: Xx C — X is the projection onto the first factor of the product X'x C).
By compactness of X and C and (1), F; and G; are closed and disjoint. Clearly,

P P
Jj=1 Jj=1


Artur


22 S . P. Borst

3.5.3. PROPOSITION. Let X be a compact space. Let
T= {(Au Bl)}l-—l € {Q}UFIHL(X)

and put v = {(4;xC, B; xC)},—
Then = GL(XX C) and OrdML(x) = OrdM;"(ch)

’ Proof “For notational snnphcxty denote’ L(X x C) by L’ We shall plove the

proposition. by transfinite induction on « = OrdML,

Fori=1,..,n write C; = 4;xC and D; = B;xC.

o=0: Slnce always OrdMLm >0 we are done.

Assume that the proposition is true for all f < a. Assute fir st that o is & successof,
say o = f+1.

Let b = (4, By) e L' — 7' be such that Ord ME"® = B, Then, by Lemma 3.5.2,
for the pair (A4, By) of disjoint closed sets in X x C we can find a clopen cover

{Dy, ..., D,} of C and a collection {(Fy, Gy),...,(F,, G,)} of pairs of disjoint
closed sets in X such that -
' P p
Ay UF;x D)) and By J(GixDy.
Jj=1 =1

., p define the following sets:
Y;=XxD; and M;=M,y,.

For j=1,

. P
Observe that XxC = @ ¥; so that by Proposition” 3.4.1,
j=1
OrdM;'® = p

for some j, € {1, ..., p}. Observe also A, ¥;; < Fjox D, and Byn ¥, < Gy x Dy
Now set 4,4+, = Fm, Biq = G, C n1 = A,,H'X‘C, D4 = B,eyxCand let
c= (An+1= n+1) 3 d= (Cn+i: Dn-hl)

NY; and B,nY;, = D30 Y}, so that since 'U {b}-€ M,
Then d¢ ' by Lemma 314 and so-¢ ¢t By Lemma 3 3 6

Mt u{b} Mz ro{d}

Now 4,n.Y;.= Cyy
we have /.0 {d} €M,

so that
olszU“” > olde o> oldM‘ P ﬁ

Consequently by‘our. inductive assum,ptlon, OrdME‘&;] =B, and hence

R . OrdMix 2o

smce c ¢ 7. : k N
Fmally assume that o is a hmlt ordmal For every ﬂ <o we have Ord M v =p

and therefore OrdM Iin) 2 ﬂ Consequcntly, Ord ML(X) >oc Convcrsely Identify X

with X x {0}.
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Then 4; < A;xC and B;< B;x C for each i.
Hence M}, < M},. But also Mjgc M. It follows that

Ord Miy < Ord Mg gy . M
3.5.4. THEOREM. Let X be a compact space. Then
dimX = dim(XxC).

<: Theorem 3.1.6.
21 This' follows from Proposition 3.5.3 by taking 7 = 71=0. ®

Proof.

3.5.5. PROPOSITION. Let Y be a space and let X be an open subspace of Y,
such that wy < dm X <oo. Moreover, assume that dim(Y—X) is finite.
Then . ’
' dim¥Y = dimX.
Proof. The set B = ¥Y—X is closed in Y.
Let P,(X) for w=1,2,... be as in Definition 1.2.3. Note thaf:— dim'P,,(X ) =7
by [E2; 3.1.14]. SN Lo

According to Theorem 1.2.6(2) we see that 4 = X~ U P,,(X) is compact,
and hence 4 is closed in Y.
Using the normality of Y we can find closed sets F and GinY such that

AcF, BcG, AnG=BnF=@

and
FuG =Y.
By Theorem 126(3) G, = GnXc P,(X) for some.z so. that dlmG1 is finite.
By [E2; 3.1.7] we obtain
from X = FUG, that dimF> w,, and
from G = GyuB that dimG< w,.
Consequently, by Theorems 3.4.4 and 3.1.6.

dim ¥ = dim(Fu G) = dimF = dlm(Fu G1) = d1mX l
3.5.6. PROPOSITION. A space X is S-w.id. iff Xx C is S-WI d.

Proof. <: Apply Theorems 3.1.3 and 3.1.6.
=: Let the subset 4, (X) of X be as deﬁned in 1.2.3. “Then A,,,O(X)
satisfies (1)-(3) of Theorem 1.2.6.
From the product-theorcm [E2 3.2.14] it follows that

P(XxC) ,,(X)XC
so that- - - e
A = A, (X C) = Ay (X)x C.

It suffices. to show that A satisfies (1)=(3) ‘of Theorem 1:2.6. ‘Conditior (2).i$ satisfied
since A,q(X) is compact. Now an application of Theorems 3.1.3 and 3.5.4 yields.(1).
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Finally, for (3), the natural projection II: Xx C—X will be used. By the
Kuratowski Theorem, [El; 1.3.16], IT is closed.

Let Fbe a closed set in X x C disjoint from 4. Then IT(F) is a closed set in X
disjoint from A, (X), so that II(F) < P,(X) for some n. Consequently,

FeI(F)x CcP(X)xC = P(XxC)
and we are done. W
3,5.7. THEOREM. Let X be a locally compact space. Then
dimX = dim(Xx C).

Proof. Since the cases where dim X is finite and dim X = co are delt with in
[E2; 3.2.14] and Proposition 3.5.6, respectively, we may restrict ourselves to the
case where 0y, <dimX < oo and X is S-w.i.d.

Let ¥ be the one-point compactification of X. Then X and Y are as in Propo-
sition 3.5.5. This is also true for X x C and ¥ x C by Proposition 3.5.6. Consequently
by Theorem 3.5.4,

dimX=dimY =dim¥xC =dimXxC. ®H

3.5.8. Remark. Itis easily seen that the results and proofs in this section remain
valid when C is replaced by any compact zero-dimensional space. Several questions
remain open. Naturally, we have

3.5.9. QuEesTION. Can the condition “locally compact” in Theorem 3.5.7 be
weakened ?

Solving this question will also have consequences for the results in Section 4.2.
Other problems connected with this one are

3.5.10. QuEesTION. For compact spaces X and a finite dimensional space Y
does the inequality

dim(Xx V) <dimX+dimY
hold? In particular, do we have k
dim(XxI") = dim X xn?

3.5.11. QuESTION. Is there some ordinal valued function @ such that for any
two compact spaces X and Y we have

dim(X'x ¥) < ¢(dim X, dim ¥)?

Finally, let us note that the following special case of Question 3.5.11 is also
still open:

3.5.12. QuestioN. Is the product of two (compact) S-w.i.d. spaces again
S-w.i.d,?

icm
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