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Cells and cubes in hyperspaces
by

Alejandro Illanes M. (Mexico)

Abstract. In this paper we prove that the hyperspace C(X) of all subcontinua of a continuum X
contains n-cells (Hilbert cubes) if and only if X contains #-odds (0 ~0dds):

Introduction. A continuum is a nonempty, connected, compact metric space.
Throughout this paper X will denote a nondegenerate continuum with metric d.
The hyperspaces of X are the spaces 2* = {4 = X: 4 is closed and nonempty}
and C(X) = {4e2": 4 is connected} both with the Hausdorff metric D. A sub-
continuum M of X is an n-odd (00-0dd) if there exists K'e C(M) such that M-K
has at least » components (an infinite number of components).

In studying the structure of hyperspaces, it is useful to know if they contain cells
or Hilbert cubes. In this direction, S. Mazurkiewicz in [2] proved that 2% always
contains Hilbert cubes, so dim(2¥) = 0. In [3], S. B. Nadler, Jr. found a sufficient
condition in order that C(X) contains a Hilbert cube (see Property C in Section 2).
He showed some interesting consequences from this result. Also he showed that C(X)
contains 2-cells if and only if X is not hereditarily indecomposable. J. T. Rogers, Jr.
proved in [S]that if X contains -0dds, then C(X) contains 7-cells. The latter suggest-
ed the question asked by S. B. Nadler, Jr. [4, Question 1.47] of if the fact that C(X)
contains n-cells implies that X contains #-odds (the question for # = 3 was pro-
posed by B.J. Ball).

In this paper we prove, with two different technics, that the answer to this
question is positive (Thms. 1.9 and 2.8). In the first proof, we suppose that X does
not contains n-odds, we calculate an upper bound for the dimension of certain sub-
spaces (¥ (H, M)) of C(X) and this implies that C(X) cannot contain z-cells. In
the second proof n-odds are comstructed explicitely from supposing that C(X)
contains n-cells, This proof is more involved but it allow us to prove also that if
C(X) contains Hilbert cubes then X contains co-odds.

1. First proof. We need the following conventions: A map is a continuous
function. The unit interval in the real line is denoted by I A nondegenerate sub-
continuum & of C(X) is an order arcif 4, B e & implies that 4 = Bor B< A4 (then &
is homeomorphic to I). f AcHc M <X and 4, H, M € C(X) we say that 4 is


Artur


58 A. Illanes M.

leaving H within M if there exist a map «: J — C(M) such that «(0) = 4 and
a(t)n(M-H) # @ for each t>0. We define

@(H, M) = {Be C(X): B is leaving H within M},
9(H) = {Be C(X): BnH % 3},
6(H, M) = {Be C(X): HcB= M)
and, for all R= X, ‘
F(R) ={AeC(X): AcR}.

X is locally intersectable (LI) if for all H e C(X) and 4 € 9(H), there exists an open
subset U of @ (H) such that 4 € U and, for each Be U, AnB # @ or Bc H. Xis
finitely intersectable (FI) if AnB has a finite number of components for all 4,
Be C(X). A continuum € < $(H, M) is upperly closed (UC) if Ae¥, Be C(X)
and A < B < H implies that B e 4. ¥ has the property & (n) (n > 1) if it is not possible
to construct n-odds with its elements, this means that if 4, Be ¢ and 4 < B, then
B— A has at most n— 1 components (for # = 1 this means that B—4 = &). We will
use the concept of dimension such as in the book [1]. Throughout this section H, M
will ‘denote elements of C(X) such that H <M.

 LenMA L1, €(H, M) is UC and connected.

Proof. Let A e 4(H, M) and Be C(X) be such that 4 = Bc H. Take a map
a: I - C(M) such that «(0) = 4 and a(t)n(M—H) # @ for all t>0. To prove
that Be ¥(H, M), it is enough to define f: I —» C(M) by

B(@) = Bu(U {als): 0<s<1t}).

: LevmaA- 1.2. Suppose that A€ C(H) and that (4,), is a sequence of elements of
C(M) such that A, > A and 4,04 #+ @ and A,n(M—H) 3 @ for all n. Then
Ae¥(H, M).

"Proof. For each n, choose a map a,: I- C(X) such that «(0) = 4,
a,(t) = AU A, for each t>1/n and s< ¢ implies that a,(s) = «,(). To prove that
AeG(H, M), define «: I C(X) by a(t) = U {a,(t): n 21}

~Lemma 1.3, If X is LI, then ¥(H, M) is c.ompact.

© - Proof. It follows from Lemma 1.2 and the fact that for each Be%(H, M),

there exists a sequence (B,), of elements of C(M) such that B< B, B,n(M—H) # @
for all » and B, — B.

LemMA 1.4. Let G be a closed subset of H and {G;: je J} the set of components
of G. Let ¢ <%(H, M) be a UC continuum. Let § = {Be¥: B< G}. Suppose
that X is LI Then the set of components of Fro(&) is

F = {80%(G;, H): jeJ and €n%(G;, H) is nonempty} .
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Proof. We only proof that Frg(8) = U {E: Ee F}.. Let BeFrg(#), then
there exists jeJ such that B« G;. Since X is LI, there exists an open subset U of
@(H, M) such that Be U and BnF # @ for each Fe U. Let (B,), a sequence of
elements of C(H) such that B, — B, and B, e U and B, &G, for each n. Applying
Lemma 1.2, we obtain that Be %(G;, H). Hence Fre(8) = U {E: E€ &} the other
inclusion follows from the fact that ¥ <« ¥ (H, M) is UC.

LeMMA 1.5. Suppose that X is F1. Let A, Be ¥ (H, M) be such that A< B and
B—A has at least n components, then there exist Ay, Bye C(M) such that
Ac A cB,nH and B;— A, has at least n+1 components.

The above lemmas imply:

LeMMa 1.6. Suppose that X is L1 and F1. If ¢ < % (H, M) is UC and has property
F(n). (n=2), then for all Ke C(H), ¢n%(K,H)c¥ (K, H) is UC and has
property & (n—1).

THEOREM 1.7. Suppose that X is L1 and FL. If € =« ¥(H, M) is UC and has
property & (n), then dimC<n—1 (n=1).

Proof. (1) Forn = 1: Let 4 €%. Since X is LI, here exists an open supset U
of €(H, M) such that Ae U and AnB # & for each Be U. If Be UnC, then
AUBeC, so A= B (¥ has property F(1)). Hence ¥ = {4} and dim¥% = 0.

(2) Suppose the theorem holds for n—1 and n>2. Suppose also that
% < %(H, M) is UC and has property & (n). Let A € % and let U be an open subset
of C(X) such that 4 e Un%. Since X is LI, we can suppose that 4nB # 9 for
each Be Un%(H,M). Let U,..,U, be open subsets of X such that
AUy, .., UycU, where (Uy,.., U, ={BeC(X): BcUv.. VU, and
BAU, # @ for each i}. Take an open subset U, of X such that

AcUycCl(Upclu.vul,.

Fori=1,..,m,define U¥ = {Be¥: BAU, # B} and G, = H-U,. Suppose
that {G': jeJ;} are the components of G;. By Lemma 1.4, the components of
Fr(U¥) are {€n% (G, H): 4n%(G;, H) # @ and jeJ}. Lemma 1.6 implies
that each continuum € N%(G}, H) = ¢(G}, H) is UC and has property & (@—1).
Then (see [1, Theorem VI.7]) dimFre(Uf) <n~2.

Let L, be the component of Uy nH which contains 4 and let L = CL(Lo).
Put @ = {Be®: BcL). Then Ade{Be¥: BcU, and BAUnU, # 3 for
cach i} =@, so Aelntg(P). Define V' =Uin..n U¥Inte(®). Since

dim Fry(Inte(2)) <n—2,

we have that dim(Fre(V)) <n—2. Notice that 4€ V= Un%. This proves that
dim% <n—1 and completes the proof of the theorem.

LemMA 1.8, If X does not contain n-odds, then X is LI and FL.(n = 1).
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THEOREM 1.9. If X does not contdin n-odds, then C(X) does not contain n-cells
(n=2).

Proof. Suppose & is an n-cell contained in C(X). Since n 2> 2, there exist 4,
Be % such that B¢ A, Let 4 be an n-cell contained in & such that 4 e % and
Bt J{G: Ge¥}. Let Hy,={){G: Ge¥}. Lemmas 1.5 and 1.7 imply
dim%(H,, X) <n—2. Then ¥¢%(H,, X) and ¥(H,, X)nF does not separate F
(see [1, Corollary to Theorem IV.4]). Let Ce 4—-%(H,, X) and ¢: I - & a map
such that ¢(0) = C, ¢(1) = B and Imon@(H,, X) = @. Let

t, = sup{tel: c(t)c H}.
Then 0< 1ty <1 and o(t,) € €(H,, X). This contradiction proves the theorem.

2. Second proof. We say X has property A if there exists a sequence 4, 4,, ...
of subcontinua of X such that

(a) AnA4, # @ and A,—4 # & for all n.

(b) 4,—A4, 4,— A4, ... are pairwise disjoint.
X has Property B (resp. property C) if there exists a sequence 4, 44, ... of subcontinua
of X which satisfy (a), (b) and

() 4,—- A

(resp. (¢') diam4, — 0).

In [3], S. B. Nadler, Jr. proved that if X has property C, then C(X) contains
a Hilbert cube. He asked in [4, Question 1.148] if the converse is true. In Section 3
we will show, with an example, that the answer is no. However, in this section we
will prove that are equivalent:

(1) X has Property A;

(2) X has Property B;

(3) X contains oo-odds;

(4) C(X) contains Hilbert cubes.

The equivalences between (1), (2) and (3) are easy to prove, so we will only show
that they are equivalent to (4). A little modification in the proof of Theorem 6 in [3]
gives:

ProrositioN 2.1, If X has property B, then C(X) contains Hilbert cubes.

From now on, we suppose that X does not contains co-odds and, in conse-
quence, X is FIL

LemMA 2.2. If A, Be C(X), A< B and A # B, then there exist 4,, By € C(X)
such that A< Ay, By B and 6(A,, B,) is an order arc.

Proof. Suppose that this assertion is not true. We will obtain a contradiction
by proving that X has Property A. For this, we will construct, inductively, sequences
Fy,F,,.. and E,, E,, ... of subcontinua of B such that:

() Fy—E,, F,—E,,... are nonempty and pairwise disjoint;
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(il A< E,nF,e C(B) and E,—F, # @ for each n;

(iii) EsnFcE,nF, < ... and E;oE,> ...

(1) For n = 1. Since £(4, B) is a subcontinuum of C(X) which is not an order
arc, there exist Ey, Fy € C(B) such that Ey ¢ F,, Fi¢E; and A< E, N F;. Since X
is FI, we can suppose that E,nF; is connected.

(2) Suppose that E,,..,E, and Fy,.., F, have been constructed. Since
&(E,nF,, E,) is not an order arc, there exist F,,, E,,;e C(E,) such that
E,nF,cE 10 Fyy, By nFy is connected E,, F,,q and F, FE .
This completes the induction,

Now we define H = Cl (U {E,nF,: n>1}). Then the sets F; —H, F,—H, ...
are nonempty and pairwise disjoint and, for each n, F,n H # . Thus X has Prop-
erty A. This contradiction completes the proof.

LemMA 2.3. Let Ae C(X)~{X} and ¢ > 0. Then there exist 6> 0,n21 and H,
Ki,..., K, € C(X) such that Ac Hc K n...nK,; K, —H, ..., K,—H are pairwise
disjoint; D(4, K,) <& (D is the Hausdorff metric for C(X)); &(H, K,) is an order
arc for each r and if Hc K, Ke C(X) and D(H, K) <9, then Kc K u...UK,.

Proof. Suppose that this assertion is not true. We will prove, inductively, that
there exist sequences K, , K,, ... and Hy, H,, ... of subcontinua of X and a sequence
P1>Pzs . Of points of X such that Ac H;c H,<..; K;—H;, K,—H,, ... are
pairwise disjoint; for all #» and m, D(4, K,)<e, p, € K,—H,, H,<K,, §(H,,K,)
is an order arc and H,nK,, is conunected; and if m >n, D(H,, H,) <3d(p,, H,)-

(1) By Lemma 2.2, there exist K;, H,eC(X) such that A< H;cKj,
D(4,,K)<e and &(K;, Hy) is an order arc. Choose a point p; € K; —H;.

(2) Suppose that K, ..., K,; Hy, ..., H, and p, . ..., p, have been constructed.
Let & = minimum({})(d(p,, H)— D(H,, H,)): 1<r<m<n}o{Bd(p,, H,):
1<r<n}u{e—D(4, H,)})>0. Notice that, for 1<r<n, H,# H,UK, so
&(H,, H,UK,) is an order arc. Since we are supposing the lemma is not true, there
exist Ke C(X) such that H,c K, D(H,, K)<§ and K& (H,WK)u...u(H, UK).
We can suppose that E = Kn (K U...UK,) is connected (X is FI). By Lemma 2.2,
there exist H, ., K,,1 € C(X) such that Ec H,., = K,+; = K and 6 (H, 1, Ky11)
is an order arc. Choose a point p, 41 € K41 —Hyey. Since Ky —H,, ..., K,— H, are
pairwise separated and H, < E, we have that En(K,u H,) is connected for each
r=1,..,n Then EnK, is connected and H,.;nK, is connected for each
r =1, ..., n. The remaining properties for K, H,.; and p,s, are easy to check.
This completes the induction.

Define 4y = CL(U {H,: n>1}). Then 4, € C(X), 4,n K, # D, p, € K,—Ao;
and K,—Ag, K,—Ay,... are pairwise disjoint. This contradicts the fact that X
does not contains co-odds and ends the proof.

Lemma 2.4. Let H, Ki,..,K,eC(X) be such that HcKin ..nkK;,
K,—H, ..., K.— H are pairwise disjoint and & (H, K,), ..., €(H, K,) are order arcs.
Suppose that D e C(K), where K = KU ... VK,, then:

(a) (DnK)—H, DK, and D H are connected for each s,
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(b) For each s =1, ...,r, the fumction i 2(H)n C(K) ~ &(H, K,)) given by
V(4) = (AnK) U H is contintous.

Proof. We only prove (b). Let ¢>0. Put
5= minimum({e}u{distance(Ks——N(s, H),K,—N(e, H)): s # t}) .

where distance(L, M) = inf{d(x,y): xeL and ye M} and N(¢, H) = {xe X:
d(x, Hy<e}. Let 4, BeD(H)NC(K) be such that D(4,B)<d. Given
xe(4nK)—N(s, H), there exists b € B such that d(x, b) < s; then be N(e, H)u
U(BAK,). This implies that W(4) = N(2¢, ¥(B)). Similarly, ¥(B) < N(2e, y1(4)).
Hence  is continuous.

LemMa 2.5. Let H, Ke C(X) be such that H< K and &(H, K) is an order arc.
Ifof is a locally connected closed subset of C(K), then st A"\C(H) 0 Cly(sf nF (K- H))
has at most one element.

~ Proof. Suppose that 4, Be s/ nC(H)NCl(of nF(K~H)) with B&A.
Let ¢ be a closed connected subset of 4 such that 4 € Int (%) and B¢ | {E: E€ %}.
Define G = | {E: Ee¥}. Then Ge C(K), GnH # &, B¢Gand Gn(K—H) # &.
let & be a closed connected subset of «f such that BeInt, (%) and
G—H¢ \J{E: Ec #}. Define L =) {E: EeF}e C(K). Since §(H, K) is an
order arc and Hu G¢ HUL, we have that HUL < Hu G. This is not possible since
BeCly(o# nF (K—H)). This contradiction proves the lemma.

Lemma 2.6. Let H, K,,..,K.e C(X) be such that HcoKjn..nk,
£(H,K,), ..., 8(H, K,) are order arcs and Ky —H, ..., K,—H are pairwise disjoint.
Let K = K(uU...UK,. Suppose that A= C(K) is such that AnH # &. Then there
exists ¢ >0 such that if 0 <6 < ¢ and Fe C(K) is such that FnH # &, F= N(g, 4)
and (AnK)UH = (FnK)UH for each s, then there exists >0 such that
D(B,F)< A, Be C(K) and BnH # @ implies that B= N(6, A)u H.

Proof. First, lemma is proved for r = 1. Let @: C(X) — R be a Withney map.
Let a =w(H), b=wlK), v, =o|§(H,K) and ay = w,(4VuH). If ay =b,
then K< N(J, 4)u H. Suppose then that a, <b. We analize two cases:

(a) There exists >0 such that Cl(w; '()—H)#N(e, 4) for all te(ay,b].
Take 6€(0,&) and Fe C(K) such that Fc N(e, A). Choose A>0 such that
D(B, F) < A implies that B< N(g, 4). If Be C(K), D(B, F)< 2 and B H # &,
then o,(BUH)<a,, so BOHc AUH.

. (b) For all >0, there exists 7 & (do, b] such that Cl(ws *(t)—H) < N(z, 4).
Take any 6>0 and let Fe C(K) be such that FnH # @, Fo N(s, 4) and
(AnK)VH = (FnK)U H. Let t, € (a,, b] be such that Cl(w7 (to)—H) = N(8, 4).
Take A>0 such that BeC(K), D(B,F)<Ai and BAH # @ implies that
0 (BUH) <t;. Then B—H< N(,4). This completes the proof for r=1.

Suppose now that r>1. For s = 1,...,r, put H, = | {&: 15 s}. Applying
the first part of this proof to the continua H, X and 4, we obtain g, > 0 with the
mentioned properties. Finally we define & = min{ey, ..., ).
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THEOREM 2.7. Let n> 1. Suppose that C(X) contains a path connected subcon-
tinuum sf which has a basis of open sets U such that Cl(U) is connected, locally
connected; no one of the points of U separates it; and dAim U = n. Then there exist:

(a) Subcontinua K}, K3, K2, ..., K}, K3, ..., K* of X;

(b) Subcontinua &y, ..., &, of s with nonempty interior (in of); -

(c) Points p, € K}, ..., py€ Kby and

(d) Subcontinua Hy, ..., H, of X
such that, for each re{l,...,n}:

M) H,eKin..nKj; Ki—H', ..., K]~ H, are pairwise digjoint and

é(H,, K3), ..., £ (H,, K7)
are order arcs.
(@) If r>1, then H,cH,_, and K{cK;™%, . K. <K}, Ki<H,_|.
(3) If Ae o,, then AcK{u..UK], AnH, # @ and, for each s =1,...,r,
ps€ AnK;—H,. -
4) Lc.cdcd.
Furthermore, if dimU = oo, infinite sequences with this properties can be constructed.

Proof. We will prove this theorem inductively.

(i) For n = 1. Let 4,, Be A be such that B# A, Let 4 € C(X) be such that
B4 and 4g € Int(C(4) N ) and let &> 0 be such that B#N(s, 4). Take 6>0
and H, Ky, ..., K,, as in Lemma 2.3. Then B&K,U...UK,,. Let o: I — o/ be an
injective map such that ¢(0) = 4, and o(l) = B. Put #, = sup{tel: - ¢[0,¢]
< C(H)} and S = 0(t,). Then 0<to<1, ScH and there exists i e {1, ..., m} such
that S'e CL{2(K,—H) n o). , R

Define Kf = K;u...UK,, and H, = Ho( {;: j # i}). Take an open sub-
set V of o such that S e ¥ < Cly (V) is connected, locally connected ; D(E, S) < 5/2
for all Ee ¥ and V is not separated by any of its points. Then CL (V) = C(KY).-
By Lemma 2.5, Cly(V)n C(H)NClea(Cluy(V)nF (Kl-wH)) has at most -one
element. Notice that ¥'— {S} is connected and it intersects C(Hy) and C(KD)—C(HY).
Hence there exists Te V—{§} such that Te Fr, (& " C(H,)). Thus S, TeVn
AC(H,)NFr (N C(H,)) and S # T. Then one of them is not in.

CLCLAV) & (K1 —H)).
So that there exists a nonempty, connected open subset W of & such that

CLW) = V—(C(HY) U Clo CLlV) " F (B~ H))) -

Define o = Cl(W). Since the function from «/, in &(Hj, K}) given by
E — EU H, is continuous, there exists Eq € o, such that E,u Hy = EU H, for each .
Ee /. Choose a point p, e E,—H;. ‘ [

(ii) Suppose that Ki;Ki,K3;..;Ki,Ks, ., K3 Sy, s #yiPys ey Py a0d
Hj,.., H, haye been comstructed and that r<n We will construct Kt .sa(,.H‘, ‘
Prey and Hr+1- )


Artur


64 A, Illanes M.

Let @: C(X) — R be a Whitney map. By Lemma 2.4, the function y: &/, — R
given by ¥(4) = (0((AnEKDUA4,), ..., o((A4n K}) U H,)) is continuous. By Theo-
rem 7, Chap. VI in [1], there exists a nondegenerate continuum & < Int(7,) such
that /| & is constant. Take 4, B e 4 such that B¢ 4. Let ¢ > 0 be as in Lemma 2.6
applied to H,, Hy, ..., H and 4. We can suppose that B¢ CL(N(2¢, 4)) and that
{Eesf: D(4,E)<2e}c of,. Let K= K{u...UK] and L = Cl, (component of
N(g/2, A)n K which contains A4). Since y(4) = y(B), we have that B—A4 < H,.
So that L is a proper subcontinuum of H,UL. Let §>0,m>1 and H, K, ..., K,
e C(H,uL) be as in Lemma 2.3 applied to Le C(LU H,)—{Lu H,} and &/2.

Since 4 ¢ C(H), Be C(H) and & is connected, we have that there exists
Fe#F—C(H) such that Fc N(gf2,L)nN(6/2, H) < N(¢, 4). Choose a point
ge F—H. Let ¢, = d(q, (U {K: q¢KDUH)> 0). From the choice of &, there
exists an open connected subset W of & such that Fe W< Cl (W) <&, and, for
each Ee Cl (W), E< N(¢/2, A)u H,and D(E, F) < ¢, /2. Define &7, { = Cl (W).

Let De o, .y. Given se{l,...,r}, p,e An(DnK;)—H,) and (DN K;)—H,
is a connected subset of CL,(N(g/2, 4) N K). It follows that D = Lu H,. Furthermore
DcN(S, H), so that De Ky u...uK,. In particular, there exists s, €{1,..., 7}
such that g e K,,—H. And then Dn(K,,—H) # @. Define

N=(U{K;: s #s)VH;, K™ =K{nN,. K" =KnN;
K= (WUK,)nH,

and H,,; = NnH,. The point p,,, can be choose in a similar way that p, was
choosen. This completes the induction and the proof of the theorem.

THEOREM 2.8. If C(X) contains n~cells, then X contains n-odds, (n=2).

Proof. Let & be an n-cell in C(X). Suppose that X has not co-odds. Let
Ki,...K}; &Py, ., D, and H, be as in Theorem 2.7. Then every element of <,
is an n-odd.

THEOREM 2.9. C(X) contains Hilbert cubes if and only of X contains oo-odds.

Proof. Let o be a Hilbert cube in C(X). Suppose that X has not co-odds.
Let Ki; K7, K3;..; 41,42, 3pispas.n; and Hy, Hy, ... as in Theorem 2.7.
Let de(){#,: n>1}. We will prove that 4 is an co-odd. For cach n, put
Ln = (K,’,"‘“H,,)U(.K,':+1‘ n+1)u"' Let H = ﬂ {'H‘Il: nz 1} Then

A—H = (A—HYOL)u({(d—H)NL)U...; Ly, Ly, ...

are pairwise disjoint and p, e (d—H)NL,. Given x € (4 —H) N L, there exists n > s
such that x & K{—H,. Then x & (4—H)n(X—(H,0(U {K/: t # s}))) < L,. This
proves that (A—H)NL; is open in 4—H. Hence 4 is an oo-odd.

3. An example. In this section we show a continwum X for which C(X) contains
Hilbert cubes but it has not Property C,
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Consider a nondegenerate, hereditarily indecomposable continuum Y. Let B
be a proper, nondegenerate subcontinuum of ¥ anlet f: ¥ — I be a map such that
B =f"(0). Define 4, = ¥x{0} = ¥YxI and, for each »n, define

A, = {(y, (0 f()e YxI: ye ¥}.
Finally, put X = 4,04 V... ¥YxI(Xis a book where the sheets are copies of ¥
and the spinc is B).

Notice that, for each n# m (n,m=0), 4, is homeomorphic to ¥ and
A, 4,, = Bx{0}. Furthermore X—(B x {0}) has an infinite number of components.
Therefore C(X) contains Hilbert cubes.

Now, suppose that there exist subcontinua E, E;, E,,... of X such that
Ey,—E, E,—E, ... arc pairwisc disjoint; diam E, — 0and E, — E, E, N E are nonempty
for all n. Choose N such that diam E, < diam (B x {0}) for each n> N. We analize
two cases:

(a) There exists n > N such that E, n(Bx {0}) # &. Then, for each m >0, all
the components of E,N 4, intersects Bx{0}. Hence E, = Bx{0}. In particular,
En(Bx{0}) * @ and Bx{0}£E It follows that EcBx{0}. Thus E,. N
A(Bx{0}) # @, sothat E,,; = Bx {0}. Then E,uEUE,, ,; = Bx{0}. This is a con-
tradiction since B is hereditarily indecomposable.

(b) E,n(Bx{0}) = & for each n > N. Let m > 0 be such that Ey < A4,,. This
implies that E < 4,, and then Ey., < A4,,. This contradicts the fact that 4, is here-
ditarily indecomposable.

Hence X has not Property C.

References

11 W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, Princeton,
New Jersey, 1948.

[2] S. Mazurkiewicz, Sur le type de di
Varsovie, 24 (1931), 191-192.

[31 S.B. Nadler, Jr., Locating cones and Hilbert cubes in hyperspaces, Fund. Math. 79 (1973),
233-250.

[4] - Hyperspaces of sets, Marcel Dekker, Inc., New York and Basel, 1978.

[51 J.T. Rogers, Ju., Dimension of hyperspaces, Bull. Pol. Acad. Sci, 20 (1972), 177-179.

de I'hyperesp d'un continu, C. R. Soc. Sc.

INSTITUTO DE MATHEMATICAS
CIUDAD UNIVERSITARIA
Mexico, D, ¥, C. P, 04510

Received 2 June 1986

3 — Fundamenta Mathematicae 130.1


Artur




