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Classification of weakly infinite-dimensional spaces
Part II: Essential mappings

by

Piet Borst (Amsterdam)

Abstract. We will prove several results concerning the relation between the transfinite dimen-
sion dim (introduced in Part I) and essential mappings onto D. W. Hendersor’s [He] cubes J=,
where a is a countable ordinal number. Counterexamples will show that the obtained results are
also sharp.

Chapter IV. Henderson’s problem

The purpose of this chapter is to investigate how well the value of dim and index
can be determined by using essential maps to Henderson’s transfinite cubes J®
(@< wy), [Hel.

To begin with we recall Henderson’s Theorem:

If a space X admits an essential map onto J* then Ind X > u.

The converse of this theorem is false. In Section 5.1 we will construct a compact
space X with Ind X = w,+1 which admits no essential map onto J*°*+1, Indepen-
dently, R. Pol [P2] constructed spaces such that the difference between Ind X and the
least o« such that X admits no essential map onto J* is arbitrarily big.

The situation for dim is much better. First of all we have the following theorem

0) If X admits an essential map onto J* then dimX >a.

Unfortunately, the converse is false, see Section 5.2 for a compact X with
dim X > e, +1 without an essential map f: X — J*+1,

However, we can prove

(1) If dim X > a+1 then X admits an essential map onto J°.

For limit ordinals « we even have

(2) dim X > a iff X admits an essential map onto J*
Thus, the difference in the case of dim is at most 1.

For locally compact spaces we can prove even more:

1 — Fundamenta Mathematicae 130.2
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3) If X is locally compact then dim X 2 o iff Xx C admits an essential map
onto J*.

Finally for s.c.d. spaces we have

4) Ifovis a limit ordinal and X is s.c.d. then dim X > o+ 1 iff X admits an essential
map onto J* 1,

This last theorem is also sharp, in Section 5.3 we will construct a compact s.c.d.
space X with dim X > @, +2 which admits no essential map onto J°+32,

4.1, Essential mappings I; introduction. Let /" denote the n-dimensional unit
n

cube, i.e. I" =[] [0, 1]. By 81" we denote the geometrical boundary of I" i.e.,

I" = {xel" x,€{0,1} for some iel,..,n}.
In addition, for a mapping /* X — Y and a subset B of ¥ we denote
fo=FfIf"B):f (B> BcY.
In finite-dimension theory the following‘ concept is well known.

4.1.1. DerNiTION [A]. A continuous mapping f of a space X into I" is called
essential, if there does not exist a continuous mapping g of X into 4I" such that

f=g on the subset f~*(3I") of X.
Observe that each essential mapping into /" is surjective.

4.1.2. THEOREM [A]. 4 space X satisfies dim X 2 n if and only if there exists
an essential mapping f X — I".

Our goal is to extend this theorem to transfinite values.

The following lemmas from finite-dimension theory will be useful in the remain-
ing part of this treatise. Together they actually constitute a proof of Theorem 4.1.2.
Their proofs can be found in [N, Ch. III].

4.1.3. Lemma. Let {(4;, B)Yi=1 be an essential sequence of pairs af disjoint
n

closed sets in a space X and let the continuous mapping f = i>< fit X - I" be such
=1

that f(A) = 0 and fi(B) =1 for i =1, .., n. Then f is essential.

4.1.4. LeMMA. Let f= y {fi: X = I" be an essential mapping of a space X
into I'. Then {(f; *(0), /i *(1)}i=y is essential.
We now describe Henderson’s [He] cubes and essential maps to them.

4.1.5. DEFNITION. We define for every ¢ <w, J% T° and p, as follows:
©): 7° = {0},

@: J* = [0, 1], T .={0; 1} and py = 0,
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@) J*T = Jx I T =

(iii): o a limit.

For f§ < alet A% be a half-open arc with J*n 4% = {pg},letJ, = (@ p<n® U AL)
(one-point compactification), let T% = J“‘ Up<a/P—T"), and let p, be the com-
pactifying point. For each S <« by if we denote the embedding of J*# into J%

(T*x DU {0Hu "% {1}), and p,1 1 = Pex {0}

The concept of an essential mapping to J* is defined as follows:

4.1.6. DEFINITION. A continuous mapping f: X — J* of a space X into J*
is called essential if there does not exist a mapping g of X into J* such that g(X) # J*
and f= g on f~ (T ). Otherwise f will be called inessential.

We need to isolate special subsets of the spaces J.

4.1,7. DerINITION. For each « < w; we define the collection of cells €,in J* as
follows:

0 ¢.= {7},

() Cpr1 = {C><I Ce4%,}, and

(iii) o limit: %, = {ifC): Ce %, p<al.

Observe that every cell in every &, is a homeomorph of some I”.

From [He] we quote:

Hi: (1) IndJ® = « for each o< ;.

(2) Each space J® is homeomorphic to a retract of the Hilbert cube J%.

H2: Let fbe a continuous mapping of X onto J*. Then fis essential if and only
if fo: £7Y(C) — C is essential for every cell C in €,. _

H3: If a space X admits an essential mapping onto J* then Ind X > a.

In this section we prove that H3 also holds if we replace Ind by dim. For technical
reasons we need to define the following collection in J*

4.1.8." DERINITION. For each o < . we define the collection of opposite faces P,
in J* as follows:
) 2, = {({0}. {11}
(i) Ppry = {(FxI, GxD: (F,®ePyu{*x{0}, J*x{1D}.
(i) « limit: 2, = {(i3(F), i4(@): (F, e Py, p<a}. '

4.1.9. Lemma. If {(F;, G)Yie1 € My, then there is a cell C in B, such that
{(CnF;, CnG)}i=y is a collection of distinct pairs of opposite faces of C.

Proof. By induction on the number «. If a is finite then let C = J* Assume the
lemma holds for ordinal numbers smaller than a given ordinal number «. First assume
that « is a limit ordinal. Recall that J* = {p,}u @ (J*u4l). The collection

B<ea

{(F;, G)}i=, is essential, so one sees that F;nF; # @ for all i,je{l,. Lup It is
readily seen from the definition of opposite faces that {(F:, G))}i= consists of opposite
faces in J* = J® for some B < a. Our inductive hypothesis gives a cell C in J? with
the required property. Clearly Ce %, by definition.

1%
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Now assume that « is a successor, say « = f+1. Consider {(F;, G)}'=1. Then
for at most one i, e {1,...,n} we have

(Fios Gi) = (P x {0}, J* x {1}]).
Let 0 = {1, ..,n}—{iy}. Then for each ie ¢ we have
(Fy, G)) = (F{ xI,GyxI) for some (F;,Gj)e 2.

Observe that {(F;, G)}ie, is essential in J%. We can apply our inductive hypothesis
and find a cell C’ in J® such that {(C'nF{, C'nG})};., is a collection of distinet
pairs of opposite faces of C’,

Put ¢ = C’'xIe C,. Observe that for each ieo

((C' nF)XI, (C'nG)xI) = (CnF;, CAG).

So we conclude that

{(CaF;, CAGYHay < {(CAF, COGYliepUi(CAT X {0}, CaTPx (1))}

consists of distinct pairs of opposite faces of C. W

4.1.10. PROPOSITION. For each o.<w; we have Ord Mg, = c.

Proof (induction on o). For a=1 My, = {({0},{I1D} = #,. Hence
Ord Mg, = 1. Assume that the proposition is true for all f < «. Let us assume first
that « is a limit ordinal. Since for each B <o« we can consider the space J? as
a subspace of J* and accordingly 2, as a subcollection of 2, we then clearly have
by our inductive hypothesis

Ord My, > Ord My, = 8.

Hence Ord M, > «. On the other hand if (F, G) € &, then (F, G)e 2, for some
B<a, it then follows readily that M. = M$;® so that

OrdME D < f<a.
Hence also Ord Ms, <o. Next assume that « is a successor, say o = p+1.
Put Zp = {(Fx1, Gx1): (F, ) e Py} and let a = (Fo, Go) = (I"x {0}, I*x{1}).
- CLAM. My; = M5,

Proof of the claim. By definition 2 = #,~{(F,, G,)} so that Mj_c My is
immediate,

Let ¢ = {(Fy, G)}i-1 € Mp;. Then o € Mp, so that by Lemma 4.1.9 we can

find a cell C in %, such that {(Cn F;, Cn G))}i=1 is a collection of distinct pairs of
opposite faces of C.

For i=1,..,n put D;= CnF, and E; = CAG,. In addition put
Dy = Cn(’x{0}) = CnF, and E,=Cn@*x{1})=CNG,.
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Observe' that {(D;, E)}i=o consists of distinct pairs of opposite faces of a cell C.
Then [E2; 1.8.1] implies that {(D;, E)}, is essential in C.

Since D; = F;and E; = G;foreach i = 0, ..., n, we conclude that y = {(F,, G0
is essential in J*. Consequently, y = U {a} € My, and a ¢ ¢ which implies o € Mg,
and our claim is proved. Now it is easy to see that for ¢ = {(Fi, G)i=1 Py
o is essential in J® iff {(F,x1, G;xID)}i-y is essential in J* This implies that

Ord M3, = Ord My} = OrdMg, = .

(Formally we should apply Lemma 2.1.6.) It follows that OrdMp, >o. Also if
b= (FxI, GxI)e #; then

Mg = {(FixI, Gix DYyt {(Fy, G)Yiey € MB,}.

Hence Ord Mp, = Ord Mj,+1< f. Together with Ord M5, = B this implies that
OrdM..pz =0 N

4.1.11. THEOREM. For o < w; we have dimJ® = a.
Proof. From Proposition 4.1.10, Theorem 3.2.4 and H1 we obtain
a<dim/*<IndJ* = o. W ‘

Let f'be a continuous mapping from a space X onto J* and consider #,. Then
we define C

L) = {(F'E).HO): F.Ge?,).

4.1.12. LEMMA. Let f be an essential mapping from a space X onto J°. Then
Ord M, L) =0,

Proof. Let &: &#, — L(f) be defined by &((F, @) = (f~Y(F),f 1G)).
We show that & satisfies the conditions of Lemma 2.1.6. Let ¢ = {(F;, G)li=s € My,
Then, by Lemma 4.1.9, {(CnF;, CnG)}=y is a collection of distinct pairs of
opposite faces of a cell C in %,. H2 and Lemma 4.1.4 give us that

{(F 1CnFR),f H(CnG))i-
is essential in X.
Consequently ®(o) = {(f~'(F),f *(G))}=1 is essential in X, so that

Do) e My, .

We conclude that @ satisfies the conditions of Lemma 2.1.6 so that by Proposi-
tion 4.1.10

Ol'dML(f) = OIdMg“ >0,
4.1.13. THEOREM. Let f be an essential mapping from a space X onto J®. Then

dmX>zo.


Artur


78 - P. Borst

Proof. Since My is a subset of Mpy, we obtain by Lemma 4.1.12 the
(in) equalities .
dimX = Ord My 2 Ord My 2o. B

In Section 5.2 we will show that the converse of Theorem 4.1.13 is not true.
We will construct a compact space X satisfying dim X > w, + 1 which does not admit
an essential mapping onto J*°*2, The converse does hold when « is a limit ordinal.
For this see Section 4.3. We finish this section with a lemma which is the key to the
results in the next sections,

4.1.14. LemMa. Let X be a space and let {F,}i2 be a sequence of closed sets in X
o0

such that {F;};%; is a pairwise disjoint clopen collection in F = | F,. Let « be a count-

=1
able: limit ordinal and let {B: p<o} be indexed as {f;: i=1,3,5,..} and let
B, =1 fori=2,4,6,.. Moreover, for some n =0, let g: X — I" be a continuous

mapping. If for each i = 1,2, ... there exists a mapping f;: Fy — J® such that
(0)) fix(g|F): Fi— JRxIt = Jhtn
is essential then we can find a mapping f: X — J* such that

, fxg: X=JxI" = jg*tr
is essential.

Proof. For even i we consider f, as a map from F; to 45~* U {p,}. Let h be the
constant. function from F— {J F; to p,.

i=1

Since {F;}{2, is a pairwise disjoint collection of clopen subsets in F one easily

verifies that
Sf= hU Ufi F— {Pu}u U Thodl) ="

is continuous, and fx (g]|F): F - J*xI" is a continuous surjection.

Since every cell CinJ*x I" = J**" can be considered as a cell in one of the sub-
spaces JAxI" i=1,3,5,.. and we also have that

(fxg)|Fi = fix (9| F)

is essential, by H2 we obtain that £ x (g]F) is essential. Now extend f over X to
a map f', H1. Then also f"xg: X —J*t" is essential. M

.4.2." Essential mapping IT; a characterization. Asnoted before we cannot charac-
terize the value of dim directly by means of essential mappings into the cubes J*
However for locally compact spaces we can characterize the value of dim by essential
mappmgs as follows

“42.1. THEOREM Let X be locally campact and %< a)1 Then dlmX> o zﬁ“ XxC
admits an essential map onto J*. ...\ i
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For the proof of the necessity we need the following proposition.
4.2.2. PROPOSITION. Let X be a space. Let Ord M3y = o for some
o = {(4, B)}i=1€ {a} UM,

and let, for eachi= 1, ..., n, gi: X > I be a continuous map such that gi(d;)= 0 and
gi(B;) = 1. For each i =1, ..,n define g;: XxC— I by gyx, ¢) = gi(x) and let

nz0

'g=>n<gi: XxC—1".
i=1

Then we can find a mapping f: Xx C — J* such that the mapping
fxg: XxC = J*x]" = J*t»

is essential.

Proof. By transfinite induction on the number «. If « = 0 then J° = {p,}
is a single point. Apply Lemma 4.1.3 Assume that the proposition is true-for all
ordinal numbers f <«. Assume first that « is a successor, say o = f+1. There is
some @ = (4y+1, Bys1) € L(X) such that a ¢ 6, 0 U {a} € My, and Ord Mg > B.
Let gn+s: X —1I be a continuous mapping such that g,,+1(A,,+1) = 0'-and
In+1(Bys1) = 1. Let g, 41 XxC — I be defined by

gn+1(‘x Q) = Gna1(x).

Then by our mductlve hypothe31s there is a mappmg f "t XxC —>J" such that
f x(g,,ng) XX C o PPXIXI® = J*

is essential. Clearly,
f=fXgyei: XXC ST xT =J*

is the required map. Assume now that o« is a limit ordinal. Let us first consider the

Cantor set C. Put C; = [n;, m;]n Cforeachi =1, 2, 3, ... where the points n,and m,
are defined mductlvely as follows: ‘
ny = 0 ) ml = ni+1/3l and  myy. = m+13.

Observe that
(@) {C;}i24 is a disjoint clopen. collection in"C;. -
® = 0. Gi={1},°

= .
(c) C; and C are homeomorphic for each i.

We want to apply Lemma 4.1.14 for the construction of £. Because « is a countable
ordinal number, the collection {f: p <} can be indexed as {ﬁ, i=1,3,5,.}
Let B, =1fori=2,4,6,... Since Ord My x, > f; for i= 1 2, ..., by our inductive
hypothesm and (c) we can “find ‘mappings o

L fir Fi XXCy=JM  for i=1,2,..."."
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such that
fix (| F): Fi— I

is essential. Then we may apply Lemma 4.1.14, which gives the required mapping
fi XxC->J*. N
Taking ¢ = @ in Proposition 4.2.2 we get:

4.2.3. THEOREM. Let X be a space such that dim 2 « for some countable ordinal
number o. Then we can find an essential mapping f: XxC—~J* W

For the sufficiency we use the following argumentation. The existence of an
essential mapping from X% C onto J* implies according to Theorem 4.1.10 that
dim(X'x C) > a. But by Theorem 3.5.7 dim X = dim (X x C) whenever X is locally
compact, so we are done. This completes the proof of Theorem 4.2.1. W

Together with the results of Section 3.3 we obtain the following:

4.2.4. THEOREM. Let X be a compact space and let o < wy. Then the following
statements are equivalent:

(1) index X = of,

(2) dmX >«, and

(3) there exists an essential mapping [+ XxC - J* H

4.3. Essential mappings III; the difference; limit ordinal numbers. To be able
to state the results of this section in an economic way we define (informally) for
a space X

Ess X = sup{o < @;: X admits an essential map onto J%}.

R. Pol, [P2], has shown that the difference between Ind X and Ess X can be arbi-
trarily large. We show that the difference between dim X and Ess X is at most 1.

4.3.1. THEOREM. If dim X = a+1 then X admits an essential map onto J*.
Combining this result and Theorem 4.1.13 we may conclude
Ess X< dim X <EssX+1.

The second result shows among other things that if Ess X = « < w, then X actually
admits an essential map onto J*

4.3.2. THEOREM. If X o space and 0. < o is a limit ordinal then diim X >« iff X
admits an essential map onto J°.

Clearly if « = EssX is a successor then it is a maximum so X admits an
essential map onto J% If « is a limit then by Theorem 4.1.13 dim X > § for every
B <d. Hence dimX > a, but then. we can apply Theorem 4.3.2.
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4.3.3. PROPOSITION. Let X be a space. In addition, let Ord M{ey, > o for some
o = {(4:s B)}Yi=0 € Myxy, n >0 and let for every i=1,...,n, g;: X - I be a con-
tinuous mapping such that g{A4,) =0 and g,(B;)Y =1 and let

g=>n<gi: X - I
i=1

Then we can find a mapping f:+ X — J* such that the mapping

fxg: X - Jx]" = Jetn
is essential.

Proof. By transfinite induction on the number c. If « = 0 then J° = {p,} is
a single point. Apply Lemma 4.1.3. Assume that the proposition holds for all ordinal
numbers f <. Assume first that « is a successor, say « = f+1. There exists an
a = (4,11, Byyg) € L(X) such that aé g, ou{a} € Myy, and

Ord M =B

Take a continuous mapping g,.,: X — I with g,+:(4,+1) = 0and g, (B4} = 1.
Then by our inductive hypothesis there is a mapping f': X - J® such that

F' % (Guey Xg): X > IPxIxI" = JP¥ix]

is essential. Clearly f = f'xg,.1 is as required.

Now let us assume that o« is a limit ordinal. We want to apply Lemma 4.1.14.
Put b = (4y, B,) and y = o~ {b}. Using the normality of X we can find a sequence
0,, 0,, ... of open sets in X such that

Ayc0,c0,c0,c0,c...c X—B,.

Putting F; = FrO, we see by virtue of Proposition 3.2.1(1) that M}, =M ooy for
i=1,2,.. Consequently, for i=1,2,..

b b v
Mixy = M D = (M) ‘:M{(x)m
so that
Ordﬁi(x)m =,

Because « is a countable ordinal number the set {a: f <o} can be indexed as
{B:i=1,3,5,..}.Fori=2,4,6,..let f; = 1. Since B; <« there exist b, & L(X)
such that Ord MY, > B; for i = 1,2, ... Then by our inductive hypothesis we can
find mappings fi: F; » J# for i = 1,2, ... such that

ﬁxglFi: Fi - Jhix "= JﬂH—n

is essential. An application of Lemma 4.1.14 gives us the required mapping
fiX-7n

Theorem 4.3.1 now follows By takingn = Oin Proposition 4.3.3. In the following
lemma we shall apply Theorem 3.4.4.


Artur


82 . P. Borst

4.3.4. LEMMA. Let X be a space and let « be a countable limit ordinal such that
dim X > 0. Moreover, let {o,}i24 be a sequence of ordinal numbers such that ;<o
Sfor every i= 1,2, ... There exist sequences {F;}{2, and {G}i21 of closed sets of X
such that for i = 1 2,

1) Giy1 =Gy,

(2 F,=Gi—Giyy,

3 dmF;>o;, and- -

4 dimG;=o.

Proof. Put G; = X and assume that G; has been constructed. Since a; <
we can find some (4, B)e L(X) such that

OrdML(x)]Gi ? oy

Let W be an open set in G; such that AnG,c We W¥< G,~B. Put C = WG’
and D = G;—W. Then G; = €U D. Because o is a limit ordinal, by virtue of
Theorem 3.4.4 we have

(i) dim C>o or

(i) dim D > a.
Without loss of generality (i) holds. Let Gy =C and O be an open set in G; such
that

AnG; cCc:OcD'G‘cG ~-B.

Then by Corollary 3.2.2 for F; = Frg, O we have by our-choice of (4, B) that
dimF; > w;. Consequently, F; and G,,; are as required. W

4.3.5. Proof of Theorem 4.3.2. “=": Theorem 4.1.13.

“=”: Write {f: f<a} as {ﬁl i=1,3,5,..} and for i=2,4,6,.. let
B:=1. Put.a; ="f;41 for i = 1,2,.. Then we can find a sequence {F} 21 such
as in Lemma 4.3.4. By Theorem 4.3.1 we can find mappings f;, 7 = 1, 2, ..., such that

fii By - JP

is essential. Consequently by using Lemma 4.1.14 (the special case that n = 0),
we obtain the 1equ1red map o :

44. Essentml mappmgs IV; strongly countable dimensional spaces. As mentioned
before, in Section 5.2 we shall construct a compact space X with dim X = wy+1
for which there does not exist an essential map f: X - J*°*1. The space X contains
no finite-dimensional open subsets and is c.d. but not s.c.d., Lemma 1.2.4.

It is natural to ask whether for s.c.d. spaces it is possible to improve Theo-
rem 4.2.1. The answer to this question is rather surprising. We shall prove that if’ X
is s.c:d. and if « is the successor of a liniit Ordinal then dim X > « iff there is an
map f: X — J% In Section 5.3 we shall construct a compact s.c.d. space X such
that dimX > w, +2. which .does not admit an essential map fi X - J**2, Con-
sequently, our result is best possible. :
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We shall need the following lemma.

4.4.1. LeMMA. Let X be a space and o = {(4;, B)li-1€ Myx. If
=f\ X—(4,0B) then the following holds:

- MZ(X) = MEL(X)iE .

Proof. Clearly M{uyz=Mix). Also, My, < Mixyz for let

v = {(4s, B)htpr1 € M
and fix open sets O,, i=1,..,m, such that 4;c0,=0;c X—B,. Theg

i

F=(\FrO,cE and cuy = {(4;, B)}i=y is essent1a1 so that
i=1

m
@+ NFro; = ﬂ FrO;nFc ﬂ FrO;nE.
i=1 i=1 i=1
Consequently, cuye M Lenie SO thaty e Mg tone- B
~We now turn to s.c.d. spaces. We refer to 1.2.3 for the definition of the sets 4,
and P,.

4.4.2. THEOREM. Let X be s.c.d. and S-w.i.d. Then
1) 4, = @ for some c.
Put O, V="X—A,: for < a. Then
(2) for every closed F= X, n = min{¢: F Oy} is a successor ordinal.

Proof. The first part follows from the fact that by Theorem 1.2.6. 4, is com-
pact so we can apply Theorem 1.2.5 on 4. -

For the second part observe that the casc FN 4, = @ is already covered by (:f,)
of Theorem 1.2.6. For FnA,, # &, observe that Fn 4, is compact; each O;is

open in X and for every limit y we have O, = {J O, is an increasing union. Con-
g<y
sequently, if F<= O, for some limit ordinal y then

F=(FAOu)V(FNAy,) <0y 0s = O
for some w,<{<y. M
Using this theorem we can prove:

4.4.3, LEMMA. Let X be a s.c.d. space such that for some countable limit ordinal «
we have dim X = a+1. Moreover, let {0,}i%; be a sequence of ordinal numbers such
that o; <a, for every i = 1,2, ... Then there exist sequences {F,},_1 and {G}iz1 of
closed sets in X and an aeL(X ) such that for i=1,2,

(1) Gis1 =Gy,

@ FicGi—Giyys

(3) Ord Moy, > ;5 and

(4) Ord Miye,z0.
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Proof. Since dim X exists, X'is S-w.i.d. by Theorem 3.1.3. Let # = min {5’: there
is a closed set F in X with F< O,, and dim F = a+1}. Observe that by the second
part of Theorem 4.4.2 7 is a successor. Put y = A(y) and n = n(y)) > 0. Let G be
a closed subset of X with G; = O, and dimG; = a-+1. Then let ¢ = (4, B)e L(X)
be such that

OrdM;(X)lth = .

Assume that G; has been constructed. By Lemma 2.1.5, since o;+n+1 < a, we can
find some & = {(4;, B)}4L} € FinL(X) such that a¢ ¢ and

Orszt}x‘)"Gi =0,
We have
G;c 0, = 0,UP,(4,)
so that
G=G—0,cP[4,).
Observe that G is closed and since dimP,(4,)<n, dimG<n.
By Lemma 1.1.4 we can find open sets O; in X for j = 1,...,n+1 such that

nt+1
NFrOo;nG=4a.

j=1

4;c0,c0;cX—B; and

nt 1

Put F; = N FrO;nG;<G;—G = G;n0;. By virtue of Proposition 3.2.1(1) we
=1 -

see that Mzcxns, < ML(X)[F;-
Consequently,

il(Jx';mi (ME(X);GD" c it 2(X)|Fg
so that

Ol'dMuL(x):Fl. = ;.
Now let U and ¥V be open subsets of G; such that

FcUcUc0,, 4,nG, =G,~0,cVcVcG,—F,
and

UuV=G,.

Now apply Proposition 3.4.5: since « is a limit ordinal we must have

@) OldML(X)lU >« or

(ii) OrdMLm[y >aq or

(iii) OldM,_(X)|G‘>oc where b = (G;—U, G;— V).
If (@) is true then dimU = a+1 and U< O, which is impossible because 'y <n and
by our choice of #.

If (iii) is true then by Lemma 4.4.1 for E = Un Ve O, we have dimE = o +1
which is again impossible.

We conclude that (i) must hold. Clearly G;.; = V is as required. M

We can now prove the main result in this section.
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4.4.4. THEOREM. Let X be a s.c.d. space and let o be. a countable limit ordinal
number. Then dim X 2 o+ 1 if and only if there exists an essential mapping f: X — J**1,

Proof. “«": Theorem 4.1.13.
=": If dimX>o+1 then we are done by Theorem 4.3.1. For the case
dimX = a+1, write {f: f<a} as {B;:1=1,3,5,..} and for i=2,4,6,...
let B; = L. Putting a; = B;+1fori= 1,2, ... we can find a sequence {F;};2; and
aecL(X) as in Lemma 4.4.3. Let g: X — I be such that g(4) =0 and g(B) = 1.
Then since Ord Mgz, > 8; for some b,e L(X), b; st a for i =1, 2, ... we can
find by Proposition 4.3.3 a mapping f;: X——>J"‘ for i=1,2,... such that

5ix@glF): Fy—J"xI
is essential.
Then by Lemma 4.1.14 we can find an essential mapping from X onto J°*!, B

Chapter V. Counterexamples

In this chapter we will construct some counterexamples to show that our results
on dim are best possible. The spaces will be compact and metrizable. The first space X
satisfies dim X = w, and Ind X = wy+1 showing that in general dim and Ind are
different. Thus Theorem 3.2.4 is best possible. The second space Y satisfies
dimY = wy+1, yet ¥ admits no essential map onto J*°*. This concerns Theo-
rems 4.2.3 and 4.3.1. Finally, the third space Z shows that Theorem 4.4.4 is best
possible: Z is s.c.d., dimZ = w,+2 yet Z admits no essential map onto J*°*2,

5.1. A space X with dimX = w, and Ind X = wy+1. In this section we first
prove that the space X constructed in [B+D] satisfies dimX = o, and
IndX = wy+1.

5.1.1. ExampLE. According to [B+D] there exists a compact metric space X
such that

(1) nd X = wy+1,

(2) X admits no essential mapping onto J®*!, and

3 Xis s.c.d.

We prove that also

@) dmX = o,.

Proof. dimX > w, since X contains copies of I" for every n = 1, 2, ... The
inequality dim X < w, follows readily applying (2), (3) and Theorem 4.4.4. M

In [P1] R. Pol constructed a w.i.d. compact metric space which is not c.d.
From this fact he was able to derive in [P2] the existence of a class & of s.c.d. compact
metric spaces satisfying

sup{indexT: Te T} <w; and sup{lndT: T'e T} = w;.
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Clearly by Theorem 3.3.8, sup{dim7T: Te 7} < w,. Consequently, we see that the
gap between dim and Ind can be arbitrarily large.

R. Pol [P2; Remark 3.3(a)] put forth the problem of obtaining such spaces in
a more explicit way. We restate Pol’s problem as follows.

5.1.2. ProBLEM. Construct compact metric (s.c.d.) spaces T such that the
family & consisting of these spaces satisfies

sup{dim7: Te I} <w; and sup{IndT: Te Ty =w,.

Since we have constructed a space X with dimX = w, and Ind X = wo+1 the
following more specific question arises:

5.1.3. PROBLEM. Can we construct for every ordinal ¢, wy <o <@y, a compact
metric (s.c.d.) space T, such that

dimT, = w, and IndT, = a?

As was mentioned by R. Pol, it should be noted that if we have constructed
such spaces T, an application of Theorem 3.3.9 gives us a w.i.d. compact space X
that contains every 7, topologically.

This space X would have no Ind so that by [E3; Th. 4.2.] X would not be c.d.
Consequently, we would then have constructed another, more explicit, example of
a w.i.d. compact space X which is not c.d.

5.2. The failure of Henderson’s characterization for dim. In this and the next
section we will use upper semicontinuous decompositions to construct our coun‘er-
examples. We fix some notation on decompositions and prove two results that we
will need in all constructions.

Let E be a decomposition (partition) of a space X. For x e X, E[x] denotes the
unique element of E containing x. Also for 4 = X we put E[4] = U E[x]. Moreover,
if dis a metric on X then wed

u(E) = sup{diam,(E[x]): x€ X} .

5.2.1. DEFINITION. A decomposition E of a space X is wupper semicontinuous
(abbreviated u.s.c.) iff for every closed set A= X, E[A] is closed. It is easily seen
that E is u.s.c. iff the corresponding quotient map is closed.

5.2.2. PROPOSITION. Let X be a space and d a metric on X. Let {C,: neN}
be a pairwise disjoint collection of closed subsets of X; let for each n E, be an u.s.c.
decomposition of C, such that

limu(E,) = 0.
n-w

@ ©
Then E = ) E,u{{x}: xe X— U C,} is ws.c.
n=1 n=1

@
Proof. Let A= X be closed. Note that E[4] = Au | E[AnC,]. Let
n=1
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xe X—E [A] First pick e >0 such that B(x, 384 = @. Second find n, € N such
that [l(E,,) < ¢ for n 2z ny. Third U E,[4nC,] is closed so pick é € (0, &) such that

‘no .
B(x, U E,,[AnC,,] ]
n=1

Now also B(x,8)nE[4d] =
and so

@. For if n>ny and ye AnC, then d(x,y)>3e

B(x,)nE(y)<B(x,e)nB(y,8) = O
It follows that E[A4] is closed. B

Without proof we state-

5.2.3. THEOREM. If X is compact metric and E is- an u.s.c. decomposition of X
then the quotient space X|E is compact and metrizable as well.

For-a proof use [El; 3.2.11+4.2.13].

We will construct a compact metric space X with dimX > a)o+l but which:
cannot be mapped onto J“°*! by an essential mapping. By this we see that the
converse of Theorem 4.1.13 is not true. We also see that the characterization of dim
by essential mappings to Henderson’s cubes stated in Theorem 4.2.1 is indeed one
of the nicest we can obtain.

We construct the space as a quotient space of the unit interval I by taking 2
proper semicontinuous decomposition.

5.2.4. BEXAMPLE. A compact space X such that dimX = cuo +1 and which does
not admit an essential map onto J*°*'.

Construction. To begin, we put for >3 and ie {1, ...,2"}

Up=((~1D-27"i27") and %, ={U,;:i=1,..,2"}.
Next we choose, by induction on r, a copy C,; of the Cantor set in U,,; for each i as.
follows. For n = 3 choose Cay, ..., Csg albltrarlly Let n>3 and assume the C,;

are chosenforl €ig<2", m<n. Let D, = U.C,; Then D,is closed and nowhere
m<nig€2m

dense in 1, so for each i < 2" we can find a nonempty open interval O,; = U,;—D,,.
Choose C,; inside O,;. ’
We list the properties of the C,;:
Cl: {C: 1€i<2", n>
C2: Cpi= Uy,
C3: diam(C,;) <277,
C4: diam(C,; 0 Cpypq) <27"F1

3} is disjoint,
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an
Next let for each », C, = U C,; and let ¢,: C, — I" be a contintous surjection such

that for every i '

i=1
g.(C) = {xel" (i—-1)27"<x, €27,

Note that this implies that
C5: for each yel, gy (») € CyUCyyy for a (unique) iefl,..,2"— 1}
L] @
Let E={{x}: x¢U C}u U {g,'(»): yeI"}. Then E is upper semicontinuous.
n=3 n=3

We let X = JJE and g: I ~> X will be the quotient map. We shall now show that X
is as required.
The following claim will be very useful in what follows.

5.2.5. CLAM. For n>3: if i,je{l,...,2"} and |i—j|>1 then
Q(ﬁm)nq(Um‘) < Q(-Dn)
(for n =3, D, = 9).

Proof. Let xe U,; and ye U,; be such that ¢(x) = g(y). Take the unique m
for which x, ye C,,. We must show m <n.
Set = g(x). Then for some k <2™

7)) = G () = Uyt Upige 1 -
The assumption m > n now readily gives us an /<2" with
g7 ) e Uyu Upyy
contradicting the assumption on x and y. M
5.2.6. CLAIM. dim X > 0, +1.

Proof. Let F = ¢([0, 1/8]) and G = ¢([7/8, 1]). Now by C4 and C5 for every
x e X we have
diamg~i(x)<27% = 1/4

so that g X(F) < [0, 3/8] and ¢~ *(G) = [5/8, 1]. It follows that F and G are closed
and disjoint in X. We show that

Ord MG = @, .

Let n>3, and let o, be the collection of pairs of opposite faces in the n-cube
I" = g(C,) = X. Then o, is essential in X. Let 4 = {0} xJ""* and B = {1} xI""*,
Then
Acg(C,)cF and Bcg(Cpum)eG@
and
(4,B)eo..
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It follows that t, = {(F, G)}U(s,—{(4, B)}) is essential in X, so that by
Lemma 2.1.4.

Ord MY > n—1.
Since n was arbitrary we conclude that Ord M{3y > w, . M

5.2.7. CLAIM. X admits no essential mapping onto J°°**.

Proof. Let f: X — J*%! be continuous. We find a cell K in J°*?! such that
Jx: fTHK) > K is not essential. This is sufficient of course by H2. Write

0
Jeotl — oo 7 {Pmo}XIU ) (JIXIUAiXI).
i=1

Set for ie N, K; = J'x I and P; = f~Y(K;). Note that {K;: ie N} is the collection
of cells of J°*1. Finally put
F=f71J™x{0}), 4=q P,
G=fT1J"x{1}), B=q1G.
Let 0 =dy<ey<dy<..<d,<c,,y =1 be a sequence of points in I such that
fori=1,..,p
(e, d)n(AuB) =0
and for i =1,..,p+1
dici )N A=9 or (di-,c)NnB=@.

Letd; =0and ¢p,; =1 and find fori = 1, ..., p ¢}, d; and k; as follows:

1. X (¢;, d)ng™ ' (P) = O for every k then let (¢}, di) = (¢;, d;) and k; = 1.

2. If (¢;, d)ng™ (P # & for some k then let k; be the least such k.

Next set O = ¢~ (f 1(Kyu4*xD)); then O is open and ¢”'(PY <=O. Let
(ci, di) be a nonempty open interval in (¢;, d;)n O. Next set -

Gy=Uld -1, el [dioy, clnd # B,
Gp = U{ldi-1, ¢l [di-y, ¢]nd = G} .
Then A = G4, B< Ggand G, and Gpare closed and disjoint. Find n, € N so big that
27" <jmin{di—cj: 1<i<p}, ki<myfori=1,..,p.
Now put
Uy=U{Ue%,: UnGy# @}, U= {Ue, UnGy#J}.
Note that if U,,in G4 # @ and U,,;n Gy # B then |i—j| > 1, so that by Claim 5.2.5
90N q(Us) = (D) -
Now consider g~!(P,,). Note that
g Pu)n (el d) = B

2 — Fundamenta Mathematicae 130.2
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for i=1,...,p. Hence
g P =Gu G U,uU;.
Now ¢ {F)nUz =@ so that Fng(Up) = @. Likewise Gn qUy) = 9. Also
P,cqU)uqUs).
Set O = P,,—q(Up). The set O is open in P,, and Frp, 0c q(Uy). Also 0 <=q(U,)
s0 -Frp, O = q(TU,). Now
: FnP,cO0c0cP, —G.

Frp, 0<qU)nqUp<q(Dy)

we see that dimFrp O<n,—1. But
Pro 0

(FAP,, GAP)e {(FHA), fTA(B)): i=1,

where {(4;, B): i = 1, ..., ny~+1} are the pairs of opposite faces in K,,. It follows
from Corollary 3.2.2 that o is not essential in P, . Cohsequently by Lemma 4.1.4,
S|Py, is not essential. M

wongtl} =0

- By virtue of Theorem 4.3.1 we have
5.2.8. CorOLLARY. dimX < w,+1. B

5.3. A strongly countable dimensional example. In this section we show that
Theorem 4.4.4 is best possible by constructing a compact s.c.d. space X with
dimX = w,+2 but which does not admit an essential map onto J**2,

Before we start the construction we prove two lemmas which are interesting 1n‘

their own right and which we need when verifying the properties of our-space X.
5.3.1. LemMA. Let X be a space, let o = {(4;, B)}Y=1 and y = {(C;, DY}Z4
be elements of FmL(X ) and set G = U ((4;— C)u(B,— D). Finally assume. that
n= dlmG < .

Then
Ord My, < Ord Mixy+n+1.

) Proof We show that Ord Mg Ton = ot+n+1 lmphes OrdMZ(X)> o for e\“lery ‘oc
Find t = {(F;, G)}YiZ} € M{y such that Ord M{(%, > and, as dimG =n, find open

ntl
sets Oy, i— 1, ., n+1 suchthat F;c 0; < 0, X—G;and F= (FrO;is dlSjomt
from G.". - =1

.. .By Proposmon 3. 2 1 we have OrdJVI Sooye = Ord ML(X) za As FnG = O we
have ™ : ’ o

A,nFc CinF: and . BinFe D;nF
for i =1, ..., m. Hence by Lemma 3.3.6

OrdM}’,(x) ?Oldmz(x)lp ? OrdMZ(X)IF =, [ |

b @ ©
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Loosely speaking this lemma says that if ¢ and 7 differ only by sets of dimension
< n then the difference between Ord My, and Ord M}y, is at most n+1.

5.3.2. LEMMA. Let X and Y be spaces. Let f: X — Y be closed and continuous.
Let Fc X be closed such that

— dim F and dim f(F) are finite and

— for every closed set G in X disjoint from F Aim G is finite and f | G is a homeo-
morphism.

Then dim ¥ < wo+dim F and in particular, taking f = id, dim X < wy+dimF.

Proof. Setn = dim F. We must show that Ord M7y, < w, whenever ¢ € FinL(Y)
and |o| = n+1. Let o = {(4;, B)}i2{ € FinL(Y). In X find open sets O; for
i=1,..,n+1, such that

FH4) =0, 0= X—f71(B)
nt1l

and G= () FrOi is disjoint from F. Let U; = ¥Y—f(X—0); then
i=1

A;cU;cU,cY-B, for i=1,...,n+l1.

n+1

CraM. () FrU, cf(F)uf(G).
i=1

n+l

Proof of the claim. Let ye ﬂ FrU,; and suppose yéf(F) then for some
xeX havef 1(y) = {x}. For every i, U;cf(0;), hence U, cf(O,) =f(0;) so

that xe ﬂ 0,. On the other hand if for some i we have x€ O, then <oy
i=1 n+1

and y e U; which is impossible. Hence x € ﬂ FrO,;, i.e. y € f(G). So now by Propo-
sition 3.2.1(2) =1

Ord Miy, < dim(f(F)Uf (@) <amp. B
Before we start the construction of our space X, we first define some auxiliary
notions. To begin, let M < I? be Sierpiiski’s universal curve [E2; p. 122, Fig. 12].
Let o be the collection of open squares removed from 72, in the construction of M.
For ieN let . )
H; = {Ke A : K has edge-length 379,
We shall use the following properties of M and A .
Ki: M =I*-(J%); dimM = 1..
K2: o = {K: Ke '} is pairwise disjoint.
K3: o= UoX,.
=1

For Ke A and >0 we set
D(K, &) = {xelI*: d(x,I*-K) = &}

(here d is the euclidean metric.on I%).
2‘
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Next we need a space defined by Smirnov [Sm]. For every « < w; Smirnov
defines. a space S, as follows:
— 8o = {0},
— Og+l = SaxL
— if « is a limit then S, = (@ S,) (one-point- compactification).
B<a

We need Spo+2- We write
S = Swu+2 = SWDXIz = {p}xlzu( @ S,,XIZ).

n<woo
We simply identify {p} x I with I? and we write T;, for S, x I?. We define our space X
in two steps.

Step 1. For each Ke # define fi: K — 1 by fe(x) = d(x,I*—K}. Note
that f(K) = [0,%-377], if Ke X';.
The fi’s induce by Proposition 5.2.1 an w.s.c decomposition of X:

E = {{x}: x¢U A} v U i fel): xeK}.
Our first space is X; = S/E’, the quotient map is denoted by g. By xx we denote the
(unique) point in ¢(K)ng(I>—K).
Step 2. Let ieN and Ke #';. For n>i we let
I = a(A MG, 337) = {g(x): xe K, 37" V< fi(0) <3377}

Of course, basically, I, = [37"*%,4-37"]. Note that {I,: n>i} converges
to xg. Next let
QK,n = SnXD(Ks 3_")C Tn

for n>>i. Then g| Qg , is a homeomorphism and in X, {g(Qx): n> i} converges
to xg. Let fr,: TxnUq(Qx.) — 9(Qx,,) be continuous such that
f K,n(IK,n) = Q(Qk,n) and
Snld(Qx,) is the identity.
Again by Proposition 5.2.1 the decomposition E’ determined by
{fen Ke ' ,nzi,ieN}
is w.s.c. We let X = X,/E'" and r: X; — X the quotient map.
We introduce a few more pieces of motation.
— yg = r(xg) for each Ke A
— s=rog: S— X is the quotient map from S onto X.
— Z = s(I?).
— 8, = 5|T,; note that, basically, s, is the identity (ne N).
— For Ke A'; and n>i+1 set

Ten = a(fre K: 3377 <fx0) <37
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Note that for each X and n r|Jg, is a homeomorphism.

We pause to describe a picture of X; and X. The space X, is obtained from §
by replacing each K e A" by a piece of string, of length }-377 if Ke ;. In each
square {xx} = g(K—K) and x is the place where the piece of string belonging to X
is attached to g(i).

Then X is obtained from X, as follows: whenever Ke o', and n =i the piece
Ix,» is wound around the cylinder Qg,. The piece Ji, ., stays as it is connecting
Ok,n 10 Okpnes-

Between T; and T, there is one piece; between T, and T there are 9 pieces;
in general T, is connected to T,,; by 9! pieces of string.

The first few properties of X are easily established.

5.3.3. CLAIM. X is s.c.d.

Proof. For each neN set Ty = U s(T)u U {r(g): KeA; and i<n}‘.
Then 73 is closed and X = s(M)u U T}.

neN

— For each n, dim7, = n+2.

— (M) is obtained from M by identifying each set of the form E~K (Ke &)
to the point yg. So s(M) = {yx: Ke £} us(I*— ) with dim{yx: Ke A }*=0,
dims(J?— |J #) = 1 so that dims(M)<2.

In fact s(M) is homeomorphic to 72 so dims(M) = 2.

We conclude that X is s.c.d. W

5.3.4. Claim. dimX > w,+2.
Proof. Let
A; = 5(Spex {0} x 1),
Ay = 5(S,,xIx {0})

By = s(Spox {1} x 1),
and B, = s(Sy,x Ix{1}).
Note that (4, By) and (4,, B,) are in L(X). We show that Ord M}, > w,, where
o = {(4;, By), (4,, By)}. To this end note that for each n ¢|s(7,) consists of the last

two pairs of (n+1)-dimensional opposite faces of s(7,). This shows immediately
that for every n

Ord Micxysry = 1+

This proves our claim. M
The inequality dim X < @, +2 follows from Theorem 4.3.1 and the fact that X
admits no essential mapping onto J*°*2, which we prove in the remaining part of

this section. ‘ ;
To be able to formulate our next two lemmas we introduce for each neN

M,=1*~ {Ked;;i<n}.
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Let us call a pair (4, B) of disjoint closed subsets of X o.%. iff for every Ke o we
have

" Ans(R) =0 or Bns(K) =@

5.3.5. LeMMA. Let (4, B) be a pair of disjoint closed subsets of Z. Then for some
neN (4ns(M,), Bns(M,)) is o.k

© Proof. Let o = {Ked': 4ns(K) + B +# Bhs(K)}. Then " is finite. This
follows readily using property K3 of 2 and the compactness of S,,.,. For some

neN A" < |JoA;. Clearly, this n works. M
i<n

5.3.6. LEMMA. Let ne N and let (A, B) be an o.k. pair of a’l.syomt clased subsets
of Z. Then there are open sets U and V in I? such that
(@) AU =5(SyxU), BV =5(Sp,x¥), UnV =@,
@) if i<n and Ke A ; then K< U or KcV
ifi>nand Ke A, then Rc Uor ReV or Rn(Uu V) =

Note that by (ii) Spox U = 5~5(Sy, % U) and likewise for U, V and V so that
UnV = :

Probf. Let
Ay = (dsM)U{yg: Ans(K) # @} and
By = (Bns(MD))u{yg: Bas(K) # 07 .

In s(M) find disjoint open sets U, and ¥, suchthat Uy n V, = @, Ay, = Uy, By < ¥y,
{yx: Ke Ay, i<n}cUyuV, and {yx: Ke X }nFr(Uyu¥Vy) = @. In I? let

=s-1(Uo)UU{K' yx€ Up} and "Sﬂ(Vo)UU{K g€ Vo}.

It is not hard to verlfy that U and V are as requlred ]

53.6.a. Remark Because s, = §|T, is essentially the identity it is easy to see
that .

s,,“(U'ns( W) =S,xU, s YU ns(T) = S,xT

and likewise for ¥/ and 7. W

5.3.7. CLAM. Every closed set G in X disjoint from Z can be covered by f mtely
many sets S(T,.), neN. In addition, dlmG is ﬁnn‘e

Proof Slnce s“(G) nIZ = @, we have sHG) < U T,. Because each T,, is

. n=1
open in S and 5Y(G) is compact s"’(G) can be covered by finitely many T, where
neN. The fact that 5|T,: T,; - s(T;) is a homeomorphism proves the claim. M
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- 53.8. CLAM. Let o = {(AL,Bi)}i 1,2 €L(X) and let F be a closed subset
of X such that

w0

(1) FAZe U s(T) for some ke N,
) o is messentml on Fns(T,) for every. neN.
Then o is inessential on F.

P1 oof. From the compactness of FnZ and the fact that each s(’I;,)nZ is open
in U s(T)nZ follows

n=1
k

FnZ < U s(T))
n=1

for some keN.
We may put

@ Frs(Ty).

F, = F—F, is CllSJOIl]t from Z and closed in X. Hence we have by Claxm 5.3.7
1

@ FﬂS(Tn)

n=k+1

F, =
fdr some /. ‘ o
1
Consequently, F = @ Fns(T,) so that by (2) ¢ is essential on F. B
n=1

©5:3.9: CLAIM. X admits no essential map onto J*°*2,

Proof. Assume that 2 X — J**2 is essential. We will denve a contradlctlon.
We wrlte

T2 = JOx ]2 = (pyx TP @ (JPxIPuA'xI) "
i=1

We let K, = Jix1? and P, = f~Y(K) for ieN. Note that by H2 f|P; is essential
for each i. We set 7
Ay =IO D, Bo=FTIm (XD,
A, =f 71T xIx{0}) and B, = IPxIx{1}).
Let o = {(4;, By), (4. By)}; it follows readily that
Ord M 0| nzi

for each i e N: o|P; consists of two pairs of i inverse 1mages of opp051tc faces ‘of K,
through an essential map.

Now we replace (4y, By) and (4,, B,) by pairs of dls_]omt closed sets Wthh will
be much casier to handle; here we use Lemma’s 5.3.5 and 5.3.6. Comsider
(d;Z, BnZ) forzj=1,2. By Lemma 5.3.5. we -can find nye N such’-that
(A ms(M,,u) B, As(M,) is 0.k.: for j= 1,2. Next. we find open sets Uj.and ¥;


Artur


96 P. Borst

in I? satisfying the conditions from Lemma 5.3.6 again for j = 1, 2 and for n = ng.
We let C; = U} and D; = V] for j = 1,2. In addition, put y = {C;, D;}’=;. We
will show that for y, which will replace ¢ in the remaining part of the argument, we
have the following:

A: For some m, iye N we have for each i>1i,

Ord M} xyp, = i—(m+1).
Put 7, = 5(Su,x M,,) and Yy = 5(S,,xK) for each Ke A", Clearly
X=7Y,0U{Yx: Ked,i<n}.
Now for j= 1,2 pick open sets U; and ¥} in X such that
Ujn Y =Ui'nY,,, ViaY,=VinY,, U/nV/ =g,
A;nZc Uy, {ye-Ked,ign}c U UV} .
Welet Cj = U} and D} = V}' for j=1,2. It follows that

J

B,nZ<c V] and

H= jgl(Aj—c;')u(Bj:EyS
is closed and disjoint from Z. Hence by Claim 5.3.7 dim H = m< @, According
to Lemma 5.3.1 for 3" = {(C}, D})}3=; we have
Ord M (xy(p, > i~ (m+1)
for every i=1,2,.. An application of Lemma 4.4.1 gives us, when we put

E" = (\ X—(C] U D)), that Ord M}xypenp,>i~(m+1) for i =1,2, ... Observe
i=1

2 2
that E” < (Y (X—(Uy v V})). Put E= (¥, —(Uy UV})) and for i<ng, Ke i,
Jj=1 i=1

2
E, = .nl( Ye—(Uy OV))).
j=
Since for each i< ny, Ke A; we have Yy U;j or Yy <V}, we obtain

2 2
NE=@Wuvp) = 0 (%, -0 V) = £
J= J=
so that
Ecinty,.
Consequently, we may write E” < EQ(® {Ex: Ke A 1< ng}). We will prove
that for each Ke X', i<n,
g = OrdM}}‘,('X)IEK <.

For this let us consider the mapping # defined in step 2 of our construction. Especially
we consider r|r Y (Eg): r }(Ey) - E;. Put F= r Y EQng(K). Then xg¢F,
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since yg ¢ Ex. We have dimF< | and the construction of » shows us that r(F) is
finite-dimensional.

Clearly, using the same argument as in Claim 5.3.7 we see that each closed G
in r~!(Ey) which is disjoint from ¢(K) is finite dimensional and HG: G — (@
is a homeomorphisni.

Now we may apply Proposition 5.3.2 which gives us dim Ex < wg +1. Conse-
quently by definition, we can find our ny as desired.

By Proposition. 3.4.1 we obtain that, if we take

ip >max{ng: Ke &' i<n}+m+1, OrdM}"'('X);EnPi Zi—{(m+1)
whenever 72 i,.

Then the equality y”’|E = y|E gives us A.

Now we establish the following:

B: If Ke ' (say Ke ")) and § >0 then there are j and ny in N with ng=1i
such that whenever n,je N satisfy n>ng and j # j, there is an e < & with

sTHPYA(S,x DK, 8)) = 0.

Case 1. For every jeN and every neN if n>i and 3™ "<4 then
S—l(Pj)nQK,n = 0. i

In this case let jx = [ and pick ng such that 3°"% < &. Then given j and n take
g=37" ‘

Case 2. There exist jg, meN with m>i, 3™ <5 and s™'(P;) N Oy 0 # O.
In this case we can find y € K with 5(») € P, and ¢(3) € Iy, Let & = d(p, I*~K).
Then ¢<37™™ < 4. It follows that

DK, e) = ¢ 'qg() =s™1(P;y) .
But then we can find an ng > i such that
g7'q(Mu U (Six DK, ) e s~ f 1" x 2y 4% x I?)
nZnx

because this last set is open and contains g ~*g(y). This last set is also disjoint from
s™Y(Py) for j # ji so that we have found our j and ng.
Since dimM = 1, we can find open sets O, and O, in I* such that

U;c0,c0;c1*-7,
for j=1,2 and
MAFrOnFro,)=0.

Let D = FrO;nFr0,. Dis compact, D= (J & and 2 is pairwise disjoint. Hence
Ap={KeX: KnD # O}
is finite. Now fix »; and i; in N such that
ny >max({ng: Ke A p}u{n)), and
iy >ny+4+m+l+max{jx: Ke oA p}.
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Let F, = (z u $(T)Y U s(T). Then

dimFy <2+ +1) = n,+3.
{(4;, B)}1L5 e Fin L(X) such that according to A
4OrdM£‘E}};)]pil =1 —(771 +4)—(m+ 1) .

,ny+6 such that for every i

H

Find <

Find open sets O; for i =3, ...

n+6
Fin ﬂ Fro; = 0

i=3

A;,c0,c0,c X—B, and

m+6

Now set F= P, ﬂ FrO;. Then by P10p051t1011 3.2.1

Ord Ml ayr 2 i — (g + ) —(m+1) > 1.
In particular, y|F is essential on F. We obtam a contradzctlon by showing that
ylF is not essentxal on F.

To thls end note that FnZ< U s(T) so that by Clairn 5.3.8 1t sufﬁces to show
that for each n

y|F is not essential on Fr\s(T,,).

For n.<ny this is no problem as Fns(Z;) = @ in this case..So let'n = n,, and let
8 = d(D, I*—(U #'p)). For each K& o', choose ¢ <8 as quaranteed by B; this
is possible because n, >ng and i; > ji for each Ke A p. Set

0= U {xek: d(x,I*~K)> &g} .

KeX'p
Let G, = S><OandGz—S><(I2 0) Now GlnGz— U S,,xD(K &x) SO that
by B -
. _Sn (Pix)m,GlnGz Q
whence - '
Sy 1(Pu) = (S‘; l(Pu)m Gl) @ (S (Pu) a GZ) .
Now let y = (S, % Ul. S, x 73, (S,, U,, S x V,)}, then

s,.(v) = vlS(T)

for recall (5.3.6. a) that s,(S, x Ul) = Clns( ) elc

() ForKe A'p: DNK # @and DU, = @, hence by 5.3. 6(11) Kr\U1 —M'Q
This implies that S,x T, n(s;1(P;,) A Gl) @, whence y' is mnot cssentlal on
1(Pu)n G,. - 5!
(ii) By our choice_ of 0, and 02

Sy xU; < 8, %.0; =85x0;=T,~ (S xl/})
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for j=1,2 and

Fr(S,x 0)nFr(S,x 0;) = S,x D .

But S,x D= S§,%x0 = T,~G, so that y’ is not essential on s;%(P;)" G, either.
Consequently, y"is not essentiation s '(P,,). Translating everything to s(T;,) through s,
we obtain that y is not essential on P;,ns(T}), hence certainly not on Fns(T,).
We conclude that y is not essential on F and we obtain the desired contradiction. M

The author is indebted to J. van Mill and X. P. Hart for their valuable advice.
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