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Let N be a cardinal number. We say that a Hausdorff space X is a N-space
iff there exists a basis B of open sets of X such that

(1) |B|< N and

(2) for every element Ue B we have |FrU|<N.

ProBLEM 4. Is there a universal element in the family of all regular (resp.
Hausdorff) N-spaces?
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On symmetric products
by

Juliusz Oledzki (Warszawa)

Abstract. Two notions X (n) and SP Xg of symmetric products of a Hausdorff compact space X

are studied, The n-fold symmetric product X(n) is a subspace of the hyperspace 2X of subsets of X
containing at most # points. For a group G of permutation of a set of » elements, the #-fold G-sym+

metric product SP¢ X is the orbit space of the permutation action of G on the n-fold cartesian product
X"of X. It is proved that some shape properties are invariants under the operation of these products.
An example shows that the fixed point property is not such an invariant (this is the negative answer
to the Borsuk and Ulam problem [1]). Examples of the symmetric product of somie one-dimension_;ﬂ
continua are considered. k T

1. Introduction. In the paper, compact Hausdorff spaces are considered. For
a space X, let 2% denote the space of closed subsets of X with the Vietoris finite

topology. For a metric space one can get the same topology by using the Hausdorff

metric. The n-fold symmetric product X () of the space X is the subspace of 2% of
subsets of X containing at most n points ([1]). The space X(n) can be obtained
([6], [18]) as a quotient space of the cartesian product X" with the following relation:
two points (Xq, .o, %)y (P1s s ¥u) € X" are equivalent if the sets {%15 e X} and
{P1s -wes yu} are equal. Denote the natural projection by =,: X" - X(n).

Let G be a group of permutations of a set of » elements. The n-fold G-symmetric
product SP%X ([17], [8], [5]) of a space X is the orbit space of the permutation
action of G on the cartesian product X" of X. Let ng: X" — SPGX denote the
identification map. Thus ©g(xy, ..., X,) = %g(Pis ..., ) iff for some g € G y; = Xy
for i =1, ...,n. If G is the group of all permutations of a set of » elements then
SP% is denoted by SP". It is easy to see that SP? X = X(2) for any space X.

Suppose that = is one of the maps 7, or ng. Let f2 X — ¥ be a map. The map
xf: X" — X" defined by f (X1, .. %) = (F(¥1)5 -, (%)) preserves fibers of the
map n. Hence we can define the map n(f): n(X")—> 7 (Y™") such that the diagram
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commutes. If f is continuous, then n(f) is continuous ([7]). If maps f,g: X » ¥
are homotopic then n(f), n(g): n(X") — n(¥™") are homotopic too. If f: X — ¥ and

1 Y= Z then n(gf) = m(g)on(f). If X is the inverse limit of an inverse system
{X,,p,,L} then =(X") = lim {n(X}), n(pf), L} (5], [10]).

Borsuk and Ulam asked ([1]) what topological properties are preserved under
the operation of taking a space X to its n-fold symmetric product. Some answers
to this questions are in [1], [5], [6], [7], [10]. In particular, Jaworowski proved
(71, [8], see also [5]) that

(1.1) if a compactum X is ANR, then X(n) and SPg X are ANR (the uncompact
case was proved by Nguyen To Nhu [I5]).

The invariance under the operation of symmetric product of some shape
properties was studied by Kodama, Spiez and Watanabe ([10]). They proved that
if X is ¢ither ASR or ANSR or movable or uniform movable then X (n) is such too.
They also showed that if Sh(X) = Sh(¥) then Sh(X(n)) = Sh(¥(n)) and if
Sh(X) = Sh( Y) : then Sh(X () = Sh(¥(n)).

2. Shape propertles of symmetnc products. For notation of shape theory see
,[3], [13], [14] LetX = { " Dby L} be an inverse system of X, € ANR with projections
8 Xy — X, a< B, «, f L, where L is a direct set. X is movable ([13]) provided
everyae Ladmitsa feL, ,B >0, such thateach y € L, y > o, admits a map r: X, — X,
sansfymg T R TR ‘ S

LY T SR

ot ety g
(2 1) AR TEN R P
A compact space X‘ is movable if Xis an mverse limit of a movable inverse system

(2. 2) LBMMA ({5], [10]).-If X = th where X = {XG, P L} is an mverse system
of compact spaces and G is a group of permutation of a set of n elements, then

LX) = im0, m e, I},
PSgX = lim {PS} X,, ng(ph), L} .

(2. 3) THEOREM If a compact space X is movable, then SPgX is movable for
every group G of. permutatzons of a set of n elements.

r~p

Proof. Lét X be aninverse limit of a movable ANR-system X {X o Db, L}
By Lemme? (2:2), SP! X is an inverse limit of an inverse system Y= {SPG o Ts(ph),
L} which fﬂr (l 1) ig*'ah ANR-system. Let o e L. Sihce X is movable, there .is
BelL, Bxia suth:that for’ every y €L, y o there is a map rr X, - X, 'Satisfying
{(2.1). Hence a map ng(r): SPgX, — SPGX satisfies the condition

ne (P, )Pn'&(r) =~ n5(ph) .
Thus Y and so SPZX are movable.
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By a similar argument as in [10], where it is done for the n-fold symimetric
product X (), one can prove the following two theorems for any posmvc mteger n

and a group G of permutations of a set of n elements. v

(2.4) THEOREM. Let X and Y be compact. If Sh(X) <. Sh(Y) then - Con
Sh(SPg X) < Sh(SP% Y)
and if Sh(X) = Sh(Y) then Sh(SP}X) = Sh(SP% Y)

(2.5) TueorReM. If X is an ASR (resp. and ANSR ‘or uniform movable) then
SPLX is ASR (resp. ANSR or uniform movable). . Vo ;

A continuum X is said to be pointed 1-movable ([2], [11]) if for some xe X
the pointed continuum (X, x) is an inverse limit of a pointed ANR-sequence’
{(X,, x,), P’} such that for every integer » there is m > n such that for every pointed
map f: (5%, 5¢) = (X, %), Where S is a c1rcle and everym'>n ‘there is 4 pointed
map r: (S, 50) = (X, X)) With pyo f = Por rel. s,.

(2.6) THEOREM. If a continuum X is pointed 1-movable, then X (n) and SP"
are pointed 1-movable. S

Proof. The pointed 1-movability is an invariant under the operation of taking
a space X to its cartesian product ([16]) and also is an invariant of continuous
mapping of continua [11]. So, if X is pointed l-movable then X" and then
T (X") = X(n) and ng(X") = SPgX are pointed 1-movable. :

The shape dimension sd(X) ([13]) of a compact space X is less or equal to
k if X is an inverse limit of an inverse ANR-system {X,, p%, L} with dim X, Sk

o

(2.7) Lemma ([6]). If X is a separable metric space then .
dimX(n) = dlmX"
Using similar arguments, one can proof that for the X:
(2.8) dimSPLX = dim X". '
(2.9) TueoreM. If X is a compact space and sd(X) <k then
ﬁd(X(n))<k n and sd(SPGX)<kn. o

Proof. Let X = lim{X,, p%, L} where X,e ANR and dlme<k for oteL
Since dimX"<k:n, by Lemmas (2.2), (2.7) and (2. 8) sd(X(n))<k n and.
Sd(SP"X)<k n. ot e

3 Examples of symmetric product of some one-dlmensmnal cuntmua. The 2- fold.
symmetric product of a circle S is a Mobius strip ([1]). We can imagine a circle S
as the segment [0, 1] with identified points 0 and 1 and. the S(Z) as; ‘the. triangle
{(a,B); 0<b<a<x1} with identified vertices and points (a 0) and (1,4 for
O<a<l. AR . .
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‘ (3.1‘)”'T‘I"he ‘subset §' = {{a,0}: ae S} of the symmetric product S(2) is
homeomorphic to S and is a deformation retract of S(2).

The map k: S ~ §' < S(2) given by A(a) = [(a, 0)] is an embedding. The deformation
H: S(2)x[0, 1] = §(2) can be defined by

[(a+1b, (1-1)b)]
[(@a+t—ta, b—t+1a)]

if a+b<1,

H([(a, )], 1) = { if a+b>1

Let 3 8-S be a map of degree k such that £(0) = 0. Then 7,(f)(S') =S’ and
degm,(f)lss = k, so we have the following homotopies: :

32 hof = my(f)oh  and Al Hyomy(f) o foh™ e Hy .

(3.3) THEOREM. If S is a solenoid then Sh(S) = Sh(S(2)).

Proof. The S is an inverse limit of an inverse sequence of circles {S,, pn}.
By - Lemma (2.2), S@2) = im {S,(2), 7a(pm)}. By condition (3.2), b = {h,}, where
h,=hfor n=1,2,..,is a shape equivalence between S and S(2).

It is easy to prove the following lemma.

.(3.4) LemMmA. Let a space X be a wedge Y v Z of spaces Y and Z where
YN Z = {x,}. The 2-fold product X(2) is a union of the spaces Y(2), Z(2) and YxXZ
lying in such a way that Y(2) 0 YXZ = {{y, %o}; ye Y}, Y(Q)nZ(Q2) = {xo}
and Z2NY xZ = {{x,,z2}; zeZ}.

Marde$ié ([12]) proved that Case-Chamberlin curve C ([4]) is non-movable
but its suspension has a trivial shape. The curve C is an inverse limit of an inverse
seip:ence {C,, pm} where, for every n, C, is the wedge of two circles § and S’ and
Py =p: SV S — 8V S issuch that for generators a and b of the fudamental
group, wy(S v '), py(a) = aba™'b! and p, () = a’b%a"?b"2.

(3.5) THEOREM. The 2-fold product C(2) of the Case-Chamberlin curve C has
a trivial shape.

Proof. By Lemma (3.4) (S Vv §)(2) = SQuS'(2Q)u §xS' and by (3.1)
8x 8" is a deformation retract of (S v S7)(2). Let ¢’ and b’ be generators of the
group 7,($xS'). The map =,(p): (S v §)(2) = (S v §)(2) induces on the
fundamental groups the homomorphism m,(p), which maps &' to o' b’ '~ ' b~
and ¥ to a'?b? a'"2 b "2 The fundamental group of Sx S’ is comutative, so
frz(p)# is the zero homeomorphism. Since the second homotopy group of $x S
is trivial;'p is null-homotopic. Thus the shape of C(2) is trivial

N 4 Fi’xeld p_oint property. Borsuk nad Ulam (111, p- 878, problem (B)) asked
if ‘the fixed pO{nt property is an invariant under the operation of the symmetric
product. We give the negative answer to this question.
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(4.1) LeMMA. Let X be a contractible compactum and x, € X. If there is a con-
traction H: Xx[0,11~ X such that Hy=idy, H(xo, ) = H(x,1) = X, for
tel0,1], xeX and, for every 0<t<t'<1, H; '({xo}) cintHy'({xo}), then
X' = {{xo, x} € X(2); x€ X} is a retract of X(2).

Proof. For every xe X, let t(x) = inf{t; H(x,t) = xo}. Since
Hy *({xo}) = int Hy *({x0})

for t <t’, the map #: X — [0, 1] is continuous.
We define r: X(2) » X’ by

, _ [{xo, H(y, ¥x)} if t(x).st(y)b
r({x, ) = {{xz, H(x, t()}  if 1(x) > 1) .

The map r is well defined since if #(x) = #(y) then H(p, #(x)) = H(x, 1(y)) = Xo.
Both H(x, #(»)) and H(y, #(x)) are continuous, thus r is continuous. Since #(xp) = 0
and H(x, 0) = x,-it follows that r({xs, x}) = {0, x}. A .

Knill ([9]) constructed a contractible continuum B such that B, but not Bx [0, 1],
has the fixed point property. B is a subset of the Euclidean space E% and B= RU2D
where R = {(r-cosM, r-sinM, 2—r)2") e E*;1<r<2 and M> 1} and 2D is
a disk of radius 2 and a center 0 = (0, 0, 0) and lies in the plane x; = 0.

(4.2) Tueorem. There is a continuum X with the fixed point property such that
the X(2) does not have the fixed point property.

Proof. Let I be the closed segment [(0,0,0),(0,0,1)] < E3 X=Bul
X has the fixed point property as a wedge of two spaces with the fixed point property.
By Lemma (3.4) X(2) is a union of the spaces B(2), I(2) and BxI where
BQ)nIQ2) = {0}, B@QnBxI={{b,0}; beB} and IQ)nBxI= {{0,t}; tel}.
1t is easy to see that there is a deformation of B to 0 as in the assumption of Lemma
(4.1), so B(2) can be retracted to BxJUT (2). The space I(2) is homeomorphic to
a disk ([1]) with the arc 4 = {{0,7}; tel} in its boundary; hence I(2) can be
retracted to A. Thus the whole space X(2) can be rectracted to Bx1I Then X(2)
does not have the fixed point property, since its retract does not.
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On functions of bounded n-th variation
by

S. N. Mukhopadhyay and D. N. Sain (Burdwan)

Abstract. Following Sargent [15], a definition of bounded th variation for real valued functions
is introduced and it is shown that this definition is equivalent to that of Russell [11]. Various prop-
erties of functions of generalized bounded variation are established.

1. Introduction. One approach to get a definition of functions of bounded
variation of higher order is based on the concept of higher order divided differences
(cf. [9], p. 24). This was followed by Russell ([10], [11]) and others (see, for example,

"[2]). This method was also followed in [7] to define absolute continuity of higher

order. Another approach was due to Sargent ([14], [15]) who introduced the concept
of absolute continuity of higher order which involved the notion of generalized
derivatives, Sargent was concerned with the descriptive definition of the C8-
saro-Denjoy integrals which needed the concept of absolute continuity of higher
order. She did not specifically mention bounded variation but her method suggested
a definition of bounded variation of higher order. The two approaches are different.
Therefore, it is natural to ask if these two approaches have any connection. The
purpose of the present paper is to give an answer to this question. Following Sargent
[15] (see also [4]) we have introduced two definitions of bounded variation of order
n which are analogous to the concept of ¥ Band ¥ B* of [13], pp. 221-228, and showed
that on intervals these definitions are equivalent to that used by Russel [11].

2, Definitions and notation. Let f be defined in some neighbourhood of x. If
there are real numbers og(=f(x)), ¢; ..., &, depending on x but not on / such
that

r

\ i
Fx+h) = Z ui% +o(h),
. =% i ,
then «, is called the Peano derivative of f at x of order r and is denoted by fi,y(x).
Clearly, if fi)(x) exists then Jw(x) exists for all 4, 1 €i<r. Also, if the ordinary
rth derivative f®(x) exists, then f;,)(x) exists and is equal to f*(x). The converse
is true for r =1 only. . :
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