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The smallest number of free prime closed filters
by

Jan Pelant (Praha), Petr Simon (Praha)
and Jerry E. Vaughan * (Greensboro, NC)

Abstract. We show that every non-compact Hausdorff space has at least ¥, free prime closed
filters, and every non-compact completely regular, Hausdorff space has at least,§, free prime closed
filters. .

§ 1. Introduction. A filter & on a topological space X is called a closed filter
provided that each F in & is a closed set. A filter & is called a prime closed filter
provided & is a closed filter and for every Fin &, if F = HUK, with both H and K
closed sets, then H € # or K e #. A filter & is called free provided it has no adherent
points in X (i.e. no point of X is in the closure of every member of. #). The natural
way to construct a prime closed filter is to start with an ultrafilter » on X and
define

Fw) = {FcX: Fis a closed set and Feu}.

Obviously. & (u) is a prime closed filter on X. In fact, every prime closed filter on X
can be constructed in this way: .

1.1. LemMA (Frolik [2]). If & is a prime closed filter on X, then there. exists an
ultrafilter u on X such that F = F(u).

In this paper we are concerned with the following question:

‘1.2, Among all non-compact spaces, what is the smallest cardinal number
that arises as the number of free prime closed filters on a space?

A countable discrete space obviously has 2° free ‘prime closed filter (where ¢
denotes the cardinality of the continuum), and as far as wé know, the number 2° is
the answer to 1.2 (in the class of Tp-spaces). Our main résult shows that under
GCH this is indeed the case (in the class of completely regular Hausdorff spaces):

1.3. THEOREM. Every non-compact completely regular Ty-space has at least 8,
Jfree prime closed filters.

* The major part of the collaboration on this paper was done in June 1984 at the Topology
Semester sponsored by the Banach Center, Warsaw.
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1.4. CorOLLARY. Under GCH, every non-compact, completely regular T,-space
has at least 2° free prime closed filters.

Whether or not GCH can be removed from 1.4 remains unsolved. For the class
of Hausdorff spaces, we know even less:

1.5. Every non-compact T,-space has at least N, free prime closed filters.

We do not know the full extent of the effect of separation axions on 1.2, but
we do have the following example:

1.6. There exists a T~ (not T-) space which has exactly one free prime closed
filter.

The proofs of these results are given in Section 2, We conclude this section
with a few remarks.

In addition to prime closed filters, there are other kinds of prime filters for
which one could ask a question analogous to 1.2. For instance, what is the smallest
number of free prime open filters possible on a non-compact space? For Ty-spaces,
this is the same question as 1.2 by virtue of the following remark:

1.7. Remark. If X is a T space, then the number of free prime closed filters
on X is equal to the number of free prime open filters.

Proof. Let 4 denote the set of all frec prime closed filters on X, and let B
denote the set of all free prime open filters on X. We will show that |4] = |B] by
the Schroeder-Bernstein theorem. For each free closed prime filter & on X, pick
one ultrafilter # on X such that & = %(u), and consider the map defined on 4
by F(u) » O0(u), where we define

0() = {0 < X: O is an open set and O eu}.

To show that the map goes into B, it suffices to show that O(u) is free in X. Let
xe X. Since F(u) is free, there exists a closed set Fe #(u) such that x e (X-F).
Since X is T, there exist disjoint open sets U and Vwith xe Uand F < V. Thus Ve O(u)
and Uncly(¥) = @; so x is not an adherent point of O(u). To see that the map
is one-one, let & and &, be distinct members of 4, and say that the ultrafilters u
and v were the ones chosen so that &, = F(u) and F, = F (v). Let F be a closed
set in u—v. Then (X—F) is an open set in v—u; so O(u) # O(v). Thus |4] <|B|.
In a similar manner, we can define a one-one map from B into 4 (and no separation
axioms are needed in this case). Thus |4 = |B|.

There are four other kinds of prime filters which we could consider: prime
z-filters, maximal closed filters, maximal open filters, and maximal z-filters. The
analogous version .of 1.2 is, however, easily answered in these cases: The ordered
space @, has exactly one free maximal closed filter, and exactly one free prime
z-filter (hence exactly one free maximal z-filter). To get a space having exactly one
maximal open filter, let w denote the discrete space of natural numbers, and f(w)
its Stone~Cech compactification. For the space, take B(w)—{u}, where

ueo* = Blw)—o .
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If we consider all prime closed filters (both free and non-free).or if we consider
only non-free prime closed filters, then again the analogous version of 1.2 is easily
answered. Every infinite 7,-space has at least 2° prime closed filters (of both kinds)
by Lemma 2.1, and the countable discrete space has exactly 8, non-free prime closed
filters (the minimum number possible in an infinite T,-space). '

Notation. We let o, B, 9, 8, 5, and 7 denote ordinal numbers, ¥ an infinite
cardinal number, and () the Stone-Cech compactification of %, with the discrete
topology on . Recall that there are 2** uniform ultrafilters on %. Some elementary
facts about prime filters can be found in [4, 12E]. o

§ 2. Proofs.

2.1. LeMMA. If X has a discrete subspace Z such that Z has no complete accumula-
tion point in X and |Z| = x, then X has at least 2*" free prime closed Silters.

Proof. It suffices to show that if » and v are distinct ultrafiliers on Z, then
Fu) # F@). Let Aeu—v. Then cly(d)eFu), dut cly(4)¢ F(v) since
cdx(A)NZ = A ¢v.

An infinite open cover % of a space X is called inflexible provided for every
¥V < if ¥ covers X, then [V = [%].

2.2. LeMMA. Let X be a Ty-space and % an inflexible open cover of X. If |U| = %
is regular, then X has at least x free prime closed filters.

Proof. By 2.1, we may assume that X does not have a discrete subset of
cardinality . Let {U,: o <x} be an inflexible open cover of X. We may assume
that there exist points ‘

Vo€ U—U {Up: B<a}

for @ <x. Clearly, ¥ = {y,: a <%} is a right separated subset of X and has no
complete accumulation point. By transfinite induction. we construct discrete sets
Z,< Y and an increasing sequence 7, of ordinals less than % such that 7o = 0 and
for all @ <y, Z, is a dense subset of {y,: 1, <1 < »}. Construct Z, and #, as follows:
Put , = sup{U {n,: @ < y}}. Since the Z, are discrete, |Z,| < x, and since x is regular,
n, <. Let Z, be a discrete, dense subset of the set ¥, = {y,: 7, <7<} (this is
possible since ¥, is right separated). This completes the construction of. the sets
Z, for « < x. Since the closure in X of Z, is not compact, and X is T, there exists
an ultrafllter #, on Z, such that u, is free on X. We claim that if <, then
F(uy) # F(ug). By construction of Y, there exists an open set Ue % such that
Z,c U and Z; = (X—U). Thus the closed set X—U € u;—~1u,; s0 F(uy) # F(up).
Thus there are at least » free closed prime filters on X. : o

A point x in a space X is called a x-pofnt provided there exists a family
{U,: « <%} of pairwise disjoint non-empty open subsets of X such that

xecl(U)-U, foral a<x.
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2.3. LEMMA. If x is a %-point in X, then there exist 2*" prime closed filters converging
to x in X. i

Proof. Let {U,: a<x} be a family of pairwise disjoint non-empty open sets
such that x is on the boundary of each U, and let u, be an ultrafilter converging
to x with U, € u, for all @ <. For each uniform ultrafilter v on %, define

P(v) = {FeX: Fis a closed set, and {w<x: Feu,}ev}.

If vy # vy, let Aevi—v,, and put F = cly(U {U,: a e 4}). Clearly, we have
Fe P(vy)—P(v,).

2.4. LemMA. If is a non-compact, completely regular To-space, and for every x
in X there are fewer than 2° prime closed filters converging to x in X, then X has at
least 2° free prime closed filters. ‘ o

Proof. Let % be an open cover of X with no finite subcover, and having smallest
possible cardinality. Then % is an inflexible open cover of regular cardinality. As
in the proof of 2.1, by using % we may pick a right separated set ¥ which has no
complete accumulation point in X. Let Z be a dense, discrete subset of ¥, Since
we are concerned with free filters, we may assume that X = cly(Z). Let x = |Z],
and let f% B(») — B(X) be a continuous map such that f|x is one-one onto Z. We
have. two cases.

Case 1. fis not finite-to-one. Then there exists y € f(X) such that £ “(p) is
infinite; so [f~Y(y)| > 2°. Every uef~!(y) can be considered as an ulirafilter on %5
so every. f(u) can be considered as an ultrafilter on the set Z. Ifue ), by co-
tinuity f(4) converges to y. Since Z is discrete, these distinct ultrafiliers contain
distinct prime closed filters (converging to y). Hence, by hypothesis, y e f(X)—X.
Thus there are at last 2° free prime closed filters on X.

- Caéé' 2. f is finite-to-one. Thus flo* is finite to one. Hence, A(X) contains
ahomeomorfiphic copy T of w* [3]. We make use of the recent result of Balcar and
Vojtds [1] which says that every point in w* is a c-point of w*. If Tn X is dense
in T, then every point x in T'rn X is a e-point in TA X, but this is impossible in light
of 2.3 and our hypothesis. Thus T X is not dense in T. This implies that
ITA(BX—X)| > 2° so there are at least 2° free prime (even maximal) closed filters
on X. This completes the proof,

Proof of Theorem 1.3. If X is not countably compact, then X has at least
2° free prime closed filters by 2.1; so we assume that X is countably compact, Let %
be an inflexible open cover of X of regular, uncountable cardinality ». If %> N,
then by 2.2, we are done; 50 we assume that x = 8;. As in the proof of 2.1 we
construct a right separated set ¥ = {y,: « < %} which has no complete accumulation
point, but this time, by using 2.3, we select each Y s0 that there are at least 2° prime
closed filters in X converging to Y. Let Z be a dense, discrete subset of ¥, If 1Z] = 8y,
we are done by 2.1; so we assume that Z is countable. Put Z = {z.: n < w}. Since
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the closure of Z is not compact, there exists an ultrafilter « on Z which is free on X.
For each n<w, let {#(n, o): « <2° be a family of distinct prime closed filters
converging to z,. For each « < 2°, define

F(a) = {F< X: F is closed, and {n<o: FeP@,m)}eu}.

Clearly each (o) is a free prime closed filter on X, To see that they are distinct,
let {W,: n<w} be a family of pairwise disjoint, open sets such that W,nZ = {z,}
for all n<w. If o # f, then for all n < w, pick :

Fn € (g(n: (x)—g(ni ﬁ))U(-?(Tl, ﬁ)‘_g(n: “)) .

If 4={n<w: FeP@n,a}eu, then cy( {F,: ne 4})eF()—F(p); so they
are distinct,

We now proceed towards the proof of Theorem 1.5 with the following ‘two
lemmas.

2.5. LemMA. Every free maximal closed filter on a space X contains a free chain.

Proof. Let . be a free maximal closed filter on X, and let M, € .#. Assume
that we have constructed sets M, e.# for all <y such that if «<f <7, then
M, is a proper subset of M,. Then ¥ = {M,: <y} is a chain contained in 4.
If % = @, we are done; so we assume that (| % # . If () % ¢ .#, then, by max-
imality, there exists M e . such that (N ¥)nM = @. Hence {MnM,: a<y}
is a free chain contained in 4. If () % € .#, then since () & = &, we can find
an element of .4 which is a proper subset of ¢ and continue the induction.

2.6. LeMMA. If X is a non-compact T,-space, then X has at least two free prime
closed filters.

‘Proof. Since there exists a closed subset of X which is not H-closed [4, 17L(3)],
we may assume that X is not H-closed. Thus there exists a free maximal open filter
on X such that ¢ < w. Then #(u) is a free prime closed filter on X. If #(u) is not
a maximal closed filter, then it is contained in a maximal closed filter; so we have
two free prime closed filters on X. We assume, therefore that #(u) is maximal.
Now this implies that for every Fe #(u), F° (interior) is not empty (if F? =@,
then X—F is open and dense, hence is in the maximal open filter @, but this is
impossible since F and X— F are not both in u). Let € be a free chain contained
in #(u). We may assume that % = {C,: a<x}, % is regular, and if o <f <%,
then Cy=C, By transfinite induction, construct points x,€ X and ordinals.
7, <% such that

M) a1, and x, € C,,

@) xp ¢ C,, for all f<o, and

(3) o < B implies 7, <.

Then Z = {x,: & <} is a discrete subset of X and has no complete accumulation
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point in X (else ) {C,: @ <x} # &). Thus X bas indeed at least two free prime
closed filters (by 2.1).

Proof of Theorem 1.5. Suppose that X is a non-compact T,-space which
has only countably many free prime closed filters. Since X must be countably compact
(by 2.1) every maximal closed filter on X is closed under the operation of taking
countable intersections. Let {.#;: i <} list all free maximal closed filters on X,
and let {#,: n <w} list all free prime, non-maximal, closed filters on X (if any).
Since distinct maximal filters contain disjoint sets, there exists

Myedlo~\{#;: 0<i<aw)}.
For every n<w, pick M, e #,—%P,, and put F = ) {M,: n<w}. Then Fe ./#,.
By 2.6, there exist two free prime closed filters, say &/ and %, on the non-compact
subspace F. Define

% = {He X: H is closed and HnFe o/}, and
#* ={Hc X: H is closed and HnFe %} .

Then &* and #* are distinct free prime closed filters on X, and are contained
in maximal closed filters. Now M, is a member of both &/* and #*; so &* and
B* = M. Say that B* # M,. Thus B* = 2, for some n < w, but this is impossible
since M, e #*. This completes the proof.

Proof of 1.6. We need to construct a Ty-space which has a unique free prime
closed filter. For the set, take X = ;. For a base for the topology take

{&-—F: «<w and Fis a finite subset of w,}.

Note that if H is closed and infinite in this topology, then H contains a final segment
of o, and if o is the first ordinal such that [, o;) = H, then H = Sula, y),
where S is either a finite set or an increasing sequence of ordinals converging to o
in the order topology on w;. From this one can show that the set & of all closed,
non-compact subsets of X is the unique prime closed filter on X.

In conclusion, we remark that our techniques show (in ZF C) that certain special
classes of non-compact completely regular T,-spaces spaces have 2° free prime
closed ﬁlters One such class is the class of all finally &,~compact spaces (i.c., spaces
in whlch evcry open cover has a subcover of cardinality strictly less than ,). In
such ‘spaces, every inflexible open cover has cardinality < Ny, so in the proof of
Theorem 1.3, we do not have to call on 2. 2, and therefore we get 2° free prime closed
filters. Another such class is the class of spaces having countable spread (i.ec., every
discrete subset is countable). In such spaces we start the proof with any inflexible
open cover, and its corresponding right separated set ¥. Then the discrete subset Z
of Y is countable; so the last part of the proof of Theorem 1,3 shows that we get
2° frée 'prime closed filters in this case too.
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