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On local 1-connectedness of Whitney continua
by

Hisao Xato (Hiroshima)

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Abstract. In [23], S. B. Nadler proved that the property of being locally connected is a Whitney
property. In [25], A. Petrus proved that there is a Whitney map @ on a 2-cell D such that ()
is not locally 2-connected and not 2-connected for some ¢ > 0, which implies that the property of’
being locally 2-connected (or 2-connected) is not a Whitney property. Naturally, the following
problem will be raised: Is it true that the property of being locally 14onnected is a Whitney property 7
In this paper, we prove the following. (1) If X is a locally 1-connected continuum contained in
1 2-dimensional manifold, then each Whitney continuum of X is also locally 1-connected. Moreover,,
if X is simply comnected, then each Whitney continuum of X is simply connected. (2) There exist.
a 2-dimensional compact AR Z and a Whitney map « for C(Z) such that w~1(¢) is not locally
1-connected and not simply connected for some # > 0.

0. Introduction, By a continuum we mean a nonempty compact connected
metric space. Let X be a continuum with metric d. By the hyperspace of X we mean
C(X) = {d| 4 is a subcontimum of X} with Hausdorff' metric dy. In 1291,
H. Whitney proved that for any continuum X there exists 2 map o: C(X) — [0, o)
satisfying '

(1) o({x}) = 0 for every x€ X, and

() if 4, Be C(X), A4=B and 4 # B, then w(4) < w(B).

Any such a map o is called a Whitney map and o~ *(t) (0 <t <w(X)) is called
a Whitney continuum. A topological property P is called a Whitney property if
whenever X has property P, so does every Whitney continuum in C(X). Many
properties of Whitney continua have been studied by many authors (e.g., see
references).

In [23], S. B. Nadler proved that the property of being locally connected is
a Whitney property. In [25], A. Petrus proved the following result:
~ There exists a Whitney map @ for C(D) such that o~ 1(¢) is not locally 2-con-
nected and not 2-conmected for some #>0, where' D is a 2-cell. But, in [26]
J. T. Rogers proved that if X is a continuum with HY(X) = 0, then for any Whitney
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map o for C(X) B (0™*(t)) = 0 for any ¢, where H(X) denotes the Cech 1-di-
mensional cohomology of X. Also, in [10], we proved that the property of being
shape l-connected is a Whitney property. Naturally, the following problem will
be raised: Is it true that the property of being locally I-connected is a Whitney
property? In this paper, we answer to this problem. In fact, we prove the following:

(1) If X is a locally 1-connected continuum contained in a 2-dimensional ma-
mnifold, then each Whitney continuum of X is also locally 1-connected. Morcover,
if X is simply connected, then each Whitney continuum of X is simply connected.
Hence every Whitney continuum of D is locally 1-connected and simply connected,

(?) There exist a 2-dimensional compact AR Z and a Whitney map o for
C(Z) such that w™'(¢) is not locally 1-comnected and mot simply connected for
some t> 0.

We refer readers to [15] and [24] for hyperspace theory.

1. Preliminaries. In this section, we list some notations and facts which will

be needed in the sequel.
A metric space X is locally n-connected if for each x e X and neighborhood
U of x in X there exists a neighborhood ¥ of x in U such that each map f:
§'— ¥ (i<n) is null hometopic in U, where S denotes the i-sphere. A metric
space X is approximately locally n-connected (see [1]) if for each xe X and neigh-
borhood U of x in X there exists a neighborhood ¥V of x in U such that for any
£>0 and map f: §' » V (i< ) such that x e f(S") there is a map g: §' = ¥ such
that g is e-closed to f and g is null homotopic in U. We need the following (see
{1, @.np.

(1.1) Let X be a locally compact metric space. If X is locally (n— 1)-connected
and approximately locally n-connected (n > 1), then X is locally n-connected.

A compactum X is nearly 1-movable [21] if for some (and hence for every)
¢mbedding X into the Hilbert cube Q, the following holds: For each neighborhood
U of X in Q there exists a neighborhood ¥V of X in U such that for each loop
Ji §' = 0D — V and for each neighborhood W of X in Q there is a finite, disjoint
collection of disks D, in D and an extension f*: (B—U D)) = U of f such that
S*UdD) = W. Clearly, “1-movable” implies “nearly 1-movable”. It is well-known
that solenoids are not nearly 1-movable.

(1.2) (D. R. McMillan, Jr. [21]). Each continuum in a 2-dimensional manifold
is movable, hence nearly 1-movable. ‘

(1.3) (0. Dydak [2]). Let f: X — Y be an onto map between continua such that
S~Xp) is a nearly 1-movable continuum Jor each ye Y. If X ig locally 1-connected,
then Y is also locally I-connected and n,(f): m (X)— n,(¥) is an epimorphism.

(1.4) (J. Dydak [2]). If X is a subcontinuum of a locally 1-connected continyum ¥
and the decomposition space YIX is locally 1-connected, then X is nearly 1-movable,

(1.5) (3. Krasinkiewicz [16]). Let X be a continuum and let » be a Whitney map
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Sfor C(X). Then if w(4) = o(B) and &> 0, there is neighborhood U of A in X such
that B U implies dy(A, B) <a.

) Let (P, <) be a partially ordered space. Then a map w: P — [0, co0) is said
to be a Whitney map if (i) w(p) = 0 for p e MinP, (ii) o(p) < w(q) for p <g, and
(i) w(p) = w(q) for p, g e MaxP. Thus a Whitney map o for C(X) is a Whitney
map in the above sense for C(X) ordered by inclusion. Then the following fact is
very uscful.

(1.6) (L. B. Ward, Jv. [281). Let P be a compact metric partially ordered space
such that Min and Max P are disjoint closed sets and let Q be a closed subset of P
such that Min Q « MinP and Max Q = MaxP. Then a Whitney map for Q can be
extended to a Whitney map for P.

2. Local I-comncctedness of Whitney continwa. In this section, we prove the
following theorem.

(2.1) Tunorem. Let X be a continuum such that each subcontmuum of X is nearly
L-movable. If X is locally 1-connected, then for any Whitney map o for C(X), w0~ Yt)
is also locally 1-connected for each t. Moreover, if X is simply connected, then o~ (®)
is also simply comnected for each t.

Proof. Let @ be a Whitney map for C(X) and let 0 <z <w(X). Consider
the following subset Y in X'xo~(f):
B Y= {(x, ) e Xxo () xed}.

Then Y is a continuum. In fact, the map p = p,|¥: ¥ — @™ *(¢) is an open and
monotone map, where p,: Xx o™ (t) » 0~'(¢) is the projection map. Note that
p~Y(A) = A for cach 4 & w™(t) and 4 is nearly 1-movable. Hence, if Y is locally
1-connccted, by (1.3) we see that o™ () is locally 1-conmected. Now, we shall show
that Y is locally 1-connected. First, we shall show that ¥ is locally con‘nected. Let
(x, 4) e ¥ and % be any neighborhood of (x, 4)in Y. Take ¢ > 0 and a neighborhood
U of x in X such that if y ¢ U and dy(4, B) <e, then (v, B) e %. By (1.5), there
is a closed neigliborhood A* of 4 in X such that if Bew“‘(t)n_ C(A4*), then
dy(A4, B) <t We may assume that A* is a locally connected cor:tlnuum. Take
a path connected neighborhood V- of x in X such that Ve Un4*. Set
W = {(y,B)e Y| yeV, Be C(4%)} .

Then #" is a neighborhood of (x, 4) in ¥ and # = %. We show that % is path
connected. Let (v, B) € #. Since y € ¥, there is an arc a: I — V such that a(0) = x,

et : =1(]0, t]) such that $;(0) = x,
(1) = p. By [15], there are two segments B, f2: 1 — @™ ([0, at B
,B(l()l) =yA, B2(0) = y and B,(1) = B: Define an arc y from A to B in o~ X0, t])

by

- [py(1=35), for 0<s5<1/3,
() = { a(3s~1),  for I/3<s< 2/3,
B(35—2), for 2/3<s<1.

§ — Fundamenta Mathematicae 131, 3
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Since A* is locally connected, there is a retraction
R: 0~ X([0, t) 0 C(4*) = 0~ '(t) n C(4*)
such that R(C)> C for each Ce 0™ ([0, £]) n C(4*) (see [4, (1.2)]). Then ¢ = Ry:

I o™ (t)n C(4*)is an arc from A to B such that x € o(s) for 0 < 5 < 1/3, 9(s) € o(s)
for 1/3<s<2/3 and ye a(s) for 2/3<s< 1. Define an arc y’ from x to y in ¥ by

X, for 0<s<1/3,
Y'(s) =1 a(3s—1), for 1/3<s<2/3,
Vs for 2/3<s<1.

Define an arc : 1 — Xx o™ () by 0(s) = (¥'(s), o(s)) for se I. Then 0(s)e ¥ and
0(s) e #" for each s el This implies that Y is locally connected. Next, we shall
show that Y is approximately locally 1-connected. Let (x, 4)e ¥ and # be any
neighborhood of (x, ) in ¥. Take a neighborhood 4* of A in X and a neighborhood
U of x in X such that (Ux C(4*))n ¥ = %. We may assume that 4* is a locally
connected continuum and U < 4*. Since X is locally 1-connected, there is a neigh-
borhood ¥ of x in U such that any loop f: S* — ¥ is null homotopic in U. Set
¥ =(VxC(4®)N Y. Let ¢>0and let f: S* — ¥ be any map with (x, 4) e £(S).
We assume that /(0) = (x, 4). Consider the following maps f; = p,f: $* — V and
fa=pafi St >0 ()N C(4Y), where py: Xxo () » X and p,: Xx o ()~
— o~ *(t) are the projection maps. Since f; is null homotopic in U, there is an
extension fi: D — U of f;. Choose points 0 = dg, @y, ..., Gy, @yyy = 0 of S
such that diam(fy([a;, @14,]D) <8/2, diam[C(U {Befo(la;, a4 D)) N~ ()] <e/2
(see (1.5)), and diam(fy([a;, a,4,]) <&2 for each i =0, 1,...,n (see Figure 1).
folay)
f1(a/.1)
az
a fla)
f-;(al)

Fig. 1

For each i, take a neighborhood 4; of U {Befy([a;, a4 1))} in 4* such that
&@(C(Agnw‘l(t))<e/2. We may assume that each 4, is a locally connected
continuum. As before, take arcs a;: I — 07 Y([0,1]) (= 0,1, ., n) such that
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2,(0) = f1(@), (1) = fa(a;) and «(s) o (s’) if < 5", Since each 4, is locally con-
nected, there is a strong deformation retract R;: (C(4) A ™ X([0, t])) = C(4) n o™ (t)
such that Ry(B, s)= Ry(B, s') if s <s'. We identify [a;, a;, ] with I, where [a;, 9;4.4]
is the arc from a; to @;44 in S*. Define maps g;: IxI — C(4;)no~*([0, t]) by
Ry(,(2), 5), for ze {0} x1,
g((1~5)z-+5h(z)) = < R(f1(2), 5), for ze Ix{0},
Rot;41(2), 5),  for ze {1} x1,
where 0 < s< 1, and for each ze {0} x JUIx {0} n {1} X I, h(z) is the unique point

of Ix{1} such that the segment in Jx [0, 2] from the point (1 /2, 3/2) to z contains
h(z) (sce Figure 2). Define a map g: Dx{0}uS*xJ— C(4Y)no~ ([0, 1] by

(v2,32)
) ‘ e 11
(1-s)z+sh(z)
{a.0F z 1,0)
Fig. 2

glDx {0} = f{, gllay, ay41]1xI = g,. Since 4* is locally connected, there is a strong
deformation retract R: (C(4¥)nw ([0, 11))xI—~ C(4*)na~!(t) such that
R(B,s) = R(B,s') if s<s'. Define a map Fy: Dx{0}uS*xI— C(A*)nco_“(t)
by Fo(p) = R(g(y), 1). Then dy(F,|S* x {1}, f;) <e. By identifying [a, a;4 ] with 1,
define maps k;: IxI— A; by

FACHR for ze {0} x1,
k((1—8)z+sh(2)) = { /1), for zeIx {0},
Sfilaey), for ze{l}xI.

By using k;, we have a map Fy: Dx{0}uS*xI— U such that F,|Dx{0} =-.-f1’
and Fy|[a,, a;(1x I = k;. Then we have d(F[S"* x{1},f) <& By the construction,
F,(y) € Fy(y) for each ye Dx{0}uS*x I Define a map

F: Dx{0}uS*xI— (UxC(4¥)n Y by F(y) = (Fi(»), F,(»)

6*
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for y& Dx {0} u S xI. Then F|S* x {1} is sufficiently near to f. Hence ¥ is approxi-
mately. locally I-connected. By (1.1), we see that Y is locally 1-connected. Hence
we conclude that o~ *(¢) is locally 1-connected. Similarly, moreover, if X is simply
connected, we see that @™ (¢) is also simply connected. This completes the proof.

Let X be a continuum in a 2-dimensional manifold. Then X is locally 1-connected
if and only if X is an ANR. Hence we have

(2.2) CoroLLARY. Let X be a continuum in a 2-dimensional manifold. If X is an
ANR, then for each Whitney map o for C(X), @™ (t) is locally 1-connected for each
t. In particular, every Whitney. continuum of a 2-cell D iy locally 1-connected and
simply connected.

Proof. (1.2) and (2.1) imply (2.2).

3. The property of being locally I-comnected is not a Whitney property. In this
section, we prove, by showing a counterexample, that the property of being locally
1-connected (or simply connected) is not a Whitney property.

In fact, we show that there exist a 2-dimensional AR Z and a Whitney map
for C(Z) such that e~ (¢) is not locally 1-connected and not simply connected
for some 7> 0. )

It is known that if Z is a 1-dimensional ANR (resp. AR), then for any Whitney
map o for C(Z), o™ %(¢) is an ANR (resp. AR) for cach ¢ (see [20]).

(3.1) Exampre. Let X = {X,, p, ,+1, N} be the inverse sequence as follows*
1) X; = {x} and X,(n>2) is the unit circle $*, and
(2) the bonding maps p, ,+1: X,+1 = X, are covering projections with degree
2 (n=2), and p, ,: X, » X, is the constant map. \‘

Set X = invlim X, Then X is the dyadic solenoid, and hence it is not nearly
l-movable. Let p,: X — X, be the projection. Now, consider the infinite telescope

0
T(X) = U M(p,p+1), Where M(p, ,+;) denotes the mapping cylinder obtained by
=1
Pani1: Xy =~ X, e, M(p, 1) is oblained by identifying points
C(x, Un) e Xy x{1/n}

and p, ,+1(x) € X, for x € X, in a topological sum X, U (X, % [1/(n-+1), I/nl)
and T(X) is obtained by identifying each point of X, x {1/n} in M(p,.1,,) and the
corresponding point of X, in M(p, ). Let Z = S(X) = T(X)u X be an AR
having the same topology as in [17, (4.1)] (sec Figure 3). Define a map
wZ-I by px,f) =t if [x,d]eT(X) and u(x) =0 if xeX. Also,
define a natural retraction ,: Z — pu~'([t, ID(tel) by Yu2) = pyn(x) for
x€ X, Viz) = [pyyu(x), ] for z = [x,5]e u*((0,#]) and xeX,, Y (z) = z for
ze u~([t, 1]), 'where g(z) is the natural number such that 1/g(t) <t < 1/(gt)~1)
(for more detail construction of S(X), see [17]). Noté that u~(z) is homeomorphic
to §* for 0 << 1. Then Z is a 2-dimensional AR. Next, we construct a Whitney
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X % % X
e X‘
¥
A
0 W 13t 2 1
Fig. 3

Lo i o . . |
map o for C(Z) as follows: Consider the arc & = {u~(t) = Y(X)| 0<1< 1}

in C(Z). Define a map w;: & = [0,3/2] by o,(u~'(t)) = t+1 for 0<2<1/2,

and w,(u~(#)) = —3t+3 for 1)2<¢< 1. By (1.6), there exists a Whitney map
fot C(Z) which is an cxtension. of ;. Define 2 map w: C(Z) — [0, ) by

o(d) = sup {0, (YD)l te M(A)}f(diﬂmrﬂ(fl)) wy(4) - .
Clearly, o({z}) = 0 for zeZ. Suppose that 4,Be C(Z), AcB and A # B. If
Bop~4t) for some 1, then o(4) = wy(4) < wy(B) = w(B). ¥ diam u(B)>0,
then sup {0,(Wi(A)| t € u(A)} < sup{w,(Y«(B))| 7€ u(B)} and :

(diam p(A)) wz(4) < (diam p(B)) @,(B),

hence w(4) < w(B). This implies that o is a Whitney map for C(Z). Note that
X e o~ 1(1). Now, we shall show that @™*(1) is not locally 1-connected. Consider
the following decomposition space P

@', %) = (u((0, 12D/ X, *) .

Letg: 1= Y([0; 1/2]) — Z' be the quotient map. Since 1[0, 1/2)) is an ANR and
X is not nearly 1-movable, (1.4) implies that 2’ is not locally 1-connected at *. Let
U = C(u~X([0, 1/2)) nw~(1). Then % is a neighborhood of X in o~ }1). Let
A€ %. Suppose that 4 5 X. Then we see that 1/4(4) is anarcin WY (A)), where

f(4) = sup{s| s€ u(4)}. Then there is the unique point a(A).of W y(4)(A) such that

there are two arcs 4, and A, satisfying that 4, NA; = {u(A)}, 4y, = ¥ ra(4)
and. w(4,) = o(4,). Define a map F: % —~ Z' by .
qo(4) . for Ae and 4 # X, o

F(A)vz»{* for A=X.
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Let ze Z’ and z 5 » Then ¢~ *(z) is one point set. Choose unique two arcs 4,
and 4, in p"Yu(g™'(2))) such that 4;nd, = {g7(2)}, o(4d,) = w(d,) and
o(d,ud,) = 1. Set B(z) = A;ud,. Define a map G: Z' - % by

for zeZ’ and z # *,
for z=%xeZ',

G(z) = { ’;f)

Then FG = 1z.. This implies that w™'(1) is not locally 1-connected at X. Similarly,
we can conclude that Z/X is a retract of w™*(1). Since Z/X is not simply connected
(see [22, Theorem 1]), w~*(1) is not simply comnected.
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