

Infinite products of alephs

b)

Kandasamy Muthuvel (Milwaukee, Wis.)

Abstract. F. Bagemihl [1, Theorem 2] proved that if for some fixed ordinal γ , $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for every $\alpha \geqslant \omega$, then $\gamma < \omega$. The purpose of this paper is to show that there is no fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large α and if there is a fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large limit ordinals α , then $\gamma < \omega$.

The following theorem leads to show that there is no fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} - \aleph_{\alpha+\gamma}$ for all sufficiently large α and if there is a fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} - \aleph_{\alpha+\gamma}$ for all sufficiently large limit ordinals α , then $\gamma < \omega$, which is much stronger than theorem 2 in [1], which says that if there is a fixed ordinals γ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for every $\alpha \geqslant \omega$, then $\gamma < \omega$. It is interesting to note that if there is a fixed finite ordinal m such that $2^{\aleph^2} = \aleph_{\zeta+m}$ for every ordinal ζ , then for every limit ordinal α , \aleph_{α} is a strong limit cardinal and hence by a well-known result in [3, P.50, (6.21)], $\aleph_{\alpha}^{|\text{cf}|\alpha|} = 2^{\aleph^{\alpha}}$, (where cf α is the least ordinal cofinal with α) which implies that $\aleph_{\alpha}^{|\alpha|} = 2^{\aleph^{\alpha}} = \aleph_{\alpha+m}$ for every limit ordinal α .

THEOREM 1. If there are fixed ordinals γ and $\beta \neq 0$ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large α of the form $\beta \cdot \xi$, then $\gamma < \beta$.

Proof. Assume the conclusion to be false. Then there are ordinals ϱ and $\eta \neq 0$ such that $\gamma = \beta \cdot \eta + \varrho$, $\varrho < \beta$, and $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large α of the form $\beta \cdot \xi$. Then

$$\aleph_{\alpha+\beta+\eta}^{|\alpha+\beta+\eta|}=\aleph_{\alpha+\beta+\eta+\gamma}\quad\text{ and }\quad \aleph_{\alpha+\beta+\eta}^{|\alpha+\beta+\eta|}=\aleph_{\alpha+\beta+\eta}^{|\alpha|}=\aleph_{\alpha+\gamma}^{|\alpha|}=(\aleph_{\alpha}^{|\alpha|})^{|\alpha|}=\aleph_{\alpha}^{|\alpha|}=\aleph_{\alpha+\gamma}\,.$$

Hence $\aleph_{\alpha+\beta+\eta+\gamma} \leq \aleph_{\alpha+\gamma}$, and consequently

$$(1) \alpha + \beta \cdot \eta + \gamma \leqslant \alpha + \gamma.$$

Since $\varrho < \beta \leq \beta \cdot \eta$, we have

$$\alpha+\beta\cdot\eta+\gamma=\alpha+\beta\cdot\eta+\beta\cdot\eta+\varrho\geqslant\alpha+\beta\cdot\eta+\beta\cdot\eta\geqslant\alpha+\beta\cdot\eta+\beta>\alpha+\beta\cdot\eta+\varrho=\alpha+\gamma,$$
 which contradicts (1).

Our assumption is therefore untenable, and the theorem is true.

256

K. Muthuvel

COROLLARY 1. There is no fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large α .

Proof. By taking $\beta=1$ in the previous theorem, we have $\gamma=0$. If $\gamma=0$, then for sufficiently large limit ordinal α , $\aleph_{\alpha}=\aleph_{\alpha+\gamma}=\aleph_{\alpha}^{|\alpha|}=\prod_{\xi<\alpha}\aleph_{\xi}>\sum_{\xi<\alpha}\aleph_{\xi}=\aleph_{\alpha}$ which is a contradiction.

Corollary 2. If there is a fixed ordinal γ such that $\aleph_{\alpha}^{|\alpha|} = \aleph_{\alpha+\gamma}$ for all sufficiently large limit ordinals α , then $\gamma < \omega$.

Proof. By taking $\beta = \omega$ in the previous theorem, we have $\gamma < \omega$.

Remark. Patai's theorem [2, Theorem XIV] states that if there is a fixed ordinal γ such that $2^{\aleph_{\alpha}} = \aleph_{\alpha+\gamma}$ for every α , then $\gamma < \omega$.

By the remark preceeding Theorem 1, the hypothesis of Patai's theorem implies the hypothesis of the Corollary 2 in this papaer.

References

- [1] F. Bagemihl, Infinite products of alephs, Mathematische Z. 177 (1981), 211-215.
- [2] L. Patai, Untersuchungen über die Alefreihe, Math. und naturw. Ber. aus Ungarn, 37 (1930), 127-142.
- [3] T. Jech, Set Theory, Academic Press, New York, San Francisco, London 1978,

DEPARTMENT OF MATHEMATICAL SCIENCES THE UNIVERSITY OF WISCONSIN-MILWAUKEE P. O. Box 413 Milwaukee, Wisconsin 53201 U. S. A.

Received 5 March 1987

Clifford theory for p-sections of finite groups *

by

Morton E. Harris (Minneapolis, Minn.)

Abstract. Let K denote an arbitrary field of prime characteristic $p \neq 0$. Let N denote a normal subgroup of the finite group G such that G/N is a p-group. Here, in this situation, we demonstrate some basic results of Clifford theory for irreducible modules and blocks of K[G]. These results extend and generalize work of several authors.

1. Introduction and statements. Our notation and terminology are standard and tend to follow the conventions of [5]. In particular, all vector spaces encountered in this article have finite dimension, all modules over an algebra are right and unital, if n is a positive integer and V is a module, then nV denotes the module direct sum of n copies of V and if A is a ring then U(A) denotes the multiplicative group of units of A.

Throughout this paper, G denotes a finite group. N is a normal subgroup of G, K is a field with $\operatorname{char}(K) = p > 0$ but is otherwise arbitrary and K[G] and K[N] are the associated group algebras. Also W denotes an irreducible K[N]-module, $I_G(W) = \{g \in G | W \otimes g \cong W\}$ denotes the stabilizer of W in G, $P_N(W)$ denotes a projective cover of W and $\operatorname{Irr}(G|W)$ denotes the class of irreducible K[G]-modules V such that W is a composition factor of (and hence a direct summand of) V_N . Clearly $I_G(W)$ is a subgroup of G containing N and $\operatorname{Irr}(G|W)$ is non-empty. Also G denotes a block of G denotes the class of irreducible G in G denotes a block of G denotes the stabilizer of G and G is the set of blocks of G that cover G denotes the stabilizer of G and G is a subgroup of G containing G and G and G is a subgroup of G containing G and G and G is non-empty.

Our first main result is:

PROPOSITION 1. Suppose that $I_G(W)/N$ is a p-group. Then all K[G]-modules of Irr(G|W) are isomorphic.

This result seems only to be known in the case that the field K is "sufficiently

^{*} Part of this research was completed while the author was a visitor at the Mathematics Departments of the Technion, Haifa, Israel; Bar-Ilan University, Ramat Gan, Israel and the University of Kiel, Federal Republic of Germany.