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Infinite products of alephs
by

Kandasamy Muthuvel (Milwaukee, Wis.)

Abstract. F. Bagemihl [1, Theorem 2] proved that if for some fixed ordinal A NL“‘ = Re+y for

every azam, then ¢ < . The purpose of this paper is to show that there is no fixed ordinal ¥ such
that N!:J = Ny+y for all sufficiently large a and if there is a fixed ordinal ¥ such that NLN! = Nat+y

for all sufficiently large limit ordinals @, then y < w.

The following theorem leads to show that there is no fixed ordinal y such that
NL“'"-NHV for all sufficiently large o and if there is a fixed ordinal y such that
btl"]—— ‘,'M for all sufficiently large limit ordinals «, then y <w, which is much
stronger than theorem 2 in [1], which says that if there is a fixed ordinals y such
that n# = N4y for every o 2 o, then y < w. It is interesting to note that if there
is a fixed finite ordinal m such that 2%¢ = w,,,, for every ordinal &, then for every
limit ordinal «, %, is a strong limit cardinal and hence by a well-known result in
[3, P.50, (6.21)], 8if* = 2%« (where cfa is the least ordinal cofinal with «) which
implies that sl = 28% = w,.,, for every limit ordinal o.

THEOREM 1. If there are fixed ordinals.y and B # O such that wl*l = Nysy Jor
all sufficiently large o of the form B-&, then y <B.

Proof. Assume the conclusion to be false. Then there are ordinals ¢ and 5 # 0
such that p = B++0, 0 < f, and §l*l = Ry, for all sufficiently large o of the form
BE& Then

R = Napppey  and  NES = sl <l = I = 8l = .
Hence Ry4p.,y € Nyt ye and consequently
6] at+ Bty <aty.
Since ¢ < B <y, we have

atfonty =atfy+pntozatpntpyzatfntp>otpyte=aty,

which contradicts (1).
Our assumption is therefore untenable, and the theorem is true.
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COROLLARY 1. There is no fixed ordinal y such that 8l = %,, for all sufficiently
large o.

Proof. By taking p =1 in the previous theorem, we have y = 0. If y =0
then for sufficiently large limit ordinal o, ¥, = Nay = M = IT N> Ny = N’
which is a contradiction. g

COROLLARY 2. If there is a fixed ordinal y such that NL"' = Rary Jor all sufficiently
large limit ordinals a, then y <o.

Proof. By taking f = w in the previous theorem, we have Y <,

'Remark. Patai’sNtheorcm [2, Theorem XIV] states that if therc is a fixed
ordinal y such that 2™ = x,,, for every a, then Y <.

By the remark preceeding Theorem 1, the h is of Patai’ impli
. , ypothesis of Patai’s theorem implic
the hypothesis of the Corollary 2 in this papaer, e
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Clifford theory for p-sections of finite groups’?
by

Morton E. Harris (Minneapolis, Minn.)

Abstract. Let X denote an arbitrary field of prime characteristic p # 0. Let N denote a normal
subgroup of the finite group G such that G/N is a p-group. Here, in this situation, we demonstrate
some basic results of Clifford theory for irreducible modules and blocks of X [G]. These results
extend and generalize work of several authors.

1. Introduction and statements. Our notation and terminology are standard
and tend to follow the conventions of [5]. In particular, all vector spaces encountered
in this article have finite dimension, all modules over an algebra are right and unital,
if n is a positive integer and ¥ is a2 module, then n¥ denotes the module direct sum
of n copies of ¥ and if 4 is a ring then U(4) denotes the multiplicative group of
units of 4. .

Throughout this paper, G denotes a finite group. IV is a normal subgroup of
G, K is a field with char(K) = p > 0 but is otherwise arbitrary and K[G] and K[N]
are the associated group algebras, Also W denotes an irreducible X[N]-module,
Io(W) = {ge G|W ® g=* W} denotes the stabilizer of W in G, Py(W) denotes
a projective cover of W and Irr(G| W) denotes the class of irreducible K[G]-modules
V such that W is a composition factor of (and hence a direct summand of) Vy.
Clearly Iq(W) is a subgroup of G containing N and Irt(G|W) is non-empty. Also
b denotes a block of K[N], Irr(b) denotes the class of irreducible K [N]-modules
in b, I;(b) = {g € G|b" = b} denotes the stabilizer of b and BI(G|b) is the set of
blocks of K[G] that cover b, cf. [6, Section 6]. Clearly I(d) is a subgroup of G
containing N and BI(G|b) is non-empty.

Our first main result is:

PROPOSITION 1, Suppose that I4(W)/N is a p-group. Then all K[G}modules

of Irx(G|W) are isomorphic.
This result seems only to be known in the case that the field X is “sufficiently

* Part of this research was completed while the author was a visitor at the Mathematics
Departments of the Technion, Haifa, Israel; Bar-Tlan University, Ramat Gan, Israel and the Uni-
versity of Kiel, Federal Republic of Germany. o
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