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Solution to a compactification problem of Sklyarenko
by
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On his 60th birthday

Abstract, Concerning a function SkI originally introduced by Sklyarenko to study compactness
deficiency def, we establish a theorem that Skl X = defX for every separable metrizable space X.
This answers a problem of Sklyarenko affirmatively.

1. Introduction. All spaces considered in this paper are assumed to be separable
and metrizable. By a compactification of a space X, we mean a compact metrizable
space containing X as a dense subspace. For undefined notion see [3] and [5].

The compactness deficiency def X of a space X is the least integer z for which X
has a compactification oX with dim(eX—X) = n.

J. de Groot [4] proved that a space X has a compactification aX with
dim(eX—X)<0 if and only if X is rim-compact. Motivated by this result, to
study further def he introduced the small (resp. large) inductive compactness
degree cmp X (resp. CmpX) of a space X. In general, the inequality cmp X
< Cmp X < def X holds [5]. The well-known conjecture of de Groot that cmp X
= def X has been negatively solved by R. Pol [9]; the space X of Pol’s example
has cmp X = 1 and Cmp X = def X = 2. It is unknown whether there is a space
X with Cmp X <defX. !

Another condition to study def is due to E. Sklyarenko [10], [11], which is
denoted by Skl X < » as in Isbell’s book [6]; a space X has Sk1X < nif X has a base #
such that BdB,nBd.B;n..nBdB, is compact for any n+1 distinct members
of #. Sklyarenko proved that Sk1.X < defX” [10] and asked whether SklX = defX
for every space X [11]. Recently, J. M. Aarts, J. Bruijning and J. van Mill [2] proved
that Cmp X < Sk1.X. In this paper we give an affirmative answer to Sklyarenko’s
problem above. Namely, we shall establish-a theorem that Sk1X = def X for every
space . As an application it will be shown that a nmon-compact space X has
a compactification «X with dim(«X—X) = n if and only if Skl.X < n.

2. Preliminaries and lemmas. Let & be a collection of subséts of a space X,
We shall write [&]" for {71 7 is a subcollection of & with |7 =n}, N &

1 Added in proof. Recently the author has constructed such a space.
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for N{S: Se&}, U& for U{S: Se&), Bd¥ for {BdS: Se &} and Cl¥
for {Cl1S: Se &}

2.1. DeErINITION. Let o be a collection of closed subsets of a space X, The
k-order of of is defined as follows: k-orde/ <n if ()2’ is compact for every
ﬂ' € [.Rl]"+1.

With this terminology, SkiX < if and only if X has a base # such that
k-ordBd# <n. Skl is a general notion of the covering dimension dim, indeed
SklX < dim X for every space X, since dimX < if and only if X has a bace &
such that ord Bd# <n [8, Theorem 12.13] and in gencral k-ord Bd # < ord Bd 4.

. 2.2 LemMA. Let of be a locally finite collection of open subsets of a space X,
# a base for X with k-ordBd(of U B) <n, F a closed subset of X and U un open
subset of X containing F. Then there are a locally finite collection U of open subsets
of X and a base &' for X such that F< \) %< Cl(U %) = U and k-ord Bd(of U B’
u) < n.

Proof. We may assume that 4 is countable. Enumerate #as# = {B;: ieN}.
Consider the collection {(C;, D)): i€ N} of all pairs of elements of % such that
CIC;= D, and either C1D;= U or D;nF = @, Let us set

v,= Di—U{Clc;: j<i}
M= {ieN: ClV,= U},

for every ieN,
Vv ={V;:ieM}

Then ¥ is a locally finite collection of open subsets of X and we have Fe'(J ¥
cClU?)c U Let F = {F;: ie M} be a closed cover of F such that F;cV;
for every ie M. Since {Cy,...,Ci_y, D;}=B, we can express

{Cls RN Ci—l » Di} = {Bi(l)s ey Bi(i-—l)! Bi(i)}

by using the original indexing of 4. From BdV; < {J {Bd By;,: | <j< i}, we can
take 2 closed subset E; of BdBj) for each j, | <j<i such that BdV; = U {El:
1<j<i}. Let us set

& = {E: 1<j<i}, M= {i(j): 1<j<i},

E.=U{E:i()=Fk 1<j<iand ie M}

Then we have
(a) E, is closed in Bd B, for every ke N and ¥V, Bd B, = @ for every ke M B
Since ¥ is locally finite, so is {E.: keN}. If E, # @, then pick up a point
x, € B, and set Jy = {x,: ke N with E, # @}. Then J, is discrete and closed in X,
because {E,: k € N} is locally finite. Thus %, = {Be #: BdBnJ, = @} is a base

for X. For every i e M, inductively, we shall construct #,, U,, A and J satisfying
the following conditions (1) to (5) below;

(1) U, is open in X such that F,<= U; e ClU, < V,,

for every keN.
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(2) A, is a locally finite collection of closed subsets of X such that BdU,; =
U ‘%/‘i’

(3) J; is discrete and closed in X such that J;< ¥V,

(4) %, is abase for X such that #,= {Be #,: BdBnJ;= @ and {Ke A" ;: CIB
NK # @} is finite}, where p = max{je M: j<i},

(5) k-ord(Bd(«/ B {BdU;: je M with j<i}U{E;: keN} <n.
Suppose that m e M. Assume that we can construct &y, U, X', and J; satisfying
conditions (1) to (5) for each ie M with i<m. Let p = max{ie M: i<m}. By
the induction hypothesis, in particular, the following property (b) is satisfied.

(b) k-ord(Bd(o/ L)V {BdU;: jeM with j<p}u{E: ke N)<n

To construct 4, U,, A, and J,, we only need the property

(b) and that %, is a base for X. Thus in case m = minM, let p = 0. Since
By {By: keN with E, % @} = @, by (a), the property (b) is safisfied. Let us set

#H = {N\H#': #'e[Bdt U{BAU;: je M with j<p}tu
U{E: keN-M,11"}.

nj

Since & is locally finite, & is countable. Thus & is also countable. Enumerate #
as # = {H;: ieN}. Since o and {E,: ke N} are locally finite, so is 2. Since
BdV, = U &, by (b), HnBdV,, is compact for every He 5. Thus therc is
a finite subcollection #* of #, for every ie N such that

(©) HinBdV, = | &,

(d) {U#': ieN} is locally finite,

(e) CU BN F,, = @, and

(f) Cl(U #)n(H;—~ &) = @ for every j<i.
Let ) = F,u U {(H;nCLV,)=U #': ieN}. Then, by (¢), wehave F,, c F,, = V.
Since o is locally finite, F., is closed in X. Consider the collection {(C;, D}): ie N}
of all pairs of elements of &, such that CIC; = D and either Cl DicV, or
ClD;nF, = Q. Let us set

0,= D;—|) {CIC}: j<i}
L= {ieN: C10,<V,}, and

for every ieN,

0= {0 ielL}.

Then @ is locally finite and F,= 0 < ClO< ¥, where O = |J 0. Let us set
U, =0-|){Cl(U #": ieN}.

By (d) and (e), U, is open in X and F, < U, =ClU, = V,,. Thus cox1dition )
is satisfied. By the construction of O;, we take a finite subcollection %; of #, such
that BdO; = | (Bd%)). Let us set

K.(B) = {ngdeB

K'(By= U {K(B): ieL}

ifBe ¥,
otherwise, and

for every Be #,.
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Since 0 is locally finite, so is {K'(B): Be %,}. By (d), {BdB: Be £} is locally
finite, where B = |J {#': ie N}. Let us set

{BdU, nBdB
(BdU,NK'(B)

A = {K(B): Be a&,}.

if Be#"

K@) = otherwise, and

Then we have K(B) @ BdB and 2, is a locally finite collection of closed subsets
of X. Obviously, we have |J) o, =Bd U, Since
BdU, =BdOuUBA(|) {Cl(U #): ieN})
= {{BdO;: ieL}u | {BdB: Be %"}
= U{U{Ki(B): Bes,}iieL}u ) {BdB: Be R}
= J{K'(B): Be #,}u |J {BdB: Be "},

we have BdU, = {J &,. Thus condition (2) is satisfied. For each Ke &, with
K # (@ select a point xi € K. Then the set

Jn = {xg: Ke A, with K # @}

is discrete and closed in X, because ', is locally finite. Since xx € K <« Bd U, < V,,,
we have J,, = V,,. Thus condition (3) is satisfied. Let us set )

B, ={BeB, BABNJ, =@ and {Ke A, CIBNK # @} is finite}.

Then, by (2) and (3), 8,, is a base for X. Thus condition (4) is satisfied.

Next, we shall prove that condition (5) is satisfied. To this end, let
%’E[Bd(&{u&?m)u{Bde jeM with j<m}u{E: keN}]""*. We shall show
that ¥ is compact. We distinguish four cases.

Case 1. BdU, ¢%.
In this case we have ¥e[Bd(s/u®,)U{BdU;: je M with j<p}u{E.:
keN}"*L. Thus, by (b), () ¥ is compact.

Case 2. BdU,e¥ and E, €% for some keM,,,.‘
By (a), we have L

N% <BdU,nE, <V, nBdB, = &.
Thus % is compact.

Case 3. BdU, €%, E ¢ % for any ke M, and ¥nBd4%,, = O.
In this case we have i

%—{BdU,} e [Bdef U{BAU;: je M with j<p}U{E: keN—M,}]",
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Thus we have (}(¥—{BdU,}) = H,es# for some ieN. Since (H,nClV,)
~U# < F,=c0<ClO<V,, we have

H,nBdO= H,n(Cl10~0)
e Hin(V,,—~((H,nC1V,)— #Y)
= (HnV,n UB)O(H " V,)-(H,nCIV,))
el @
On the other hand, by (f), we have
H,0Bd(U #)=Cl(U #") for each j>i.
Hence we have
N% = H,ABdU,
= (H,n(Bdou U {Bd(U #)): jeN}))-U #'
= H;n U {Bd(U 8): j<i}
«H,n{{BdB: Bel {#": j<i}}.
Since ¥ NBd4,, = &, by (b), H;nBd B is compact for every Be %,. Hence (| €
is compact,

Case 4. BdU, €%, E, ¢ % for any ke M,, and ¥nBd%, # 0.
Let BdBe ¥nBd4,,. By the construction of %,

A = {Ked,: CIBnK # O}

is finite. Let 2, = {K;: i<gq}, where K;= K(B,) for. some B, e %, Then

we have
BdU,nBdB = ) A ,,nBdB

= J{K;: i<q}nBdB
< {BdB,: i<g}nBdB.

Since xg, € K; < BdB,,, we have J,nBdB, # &. Thus B, ¢%, for each i< g,
therefore

(#—{BdU,))U{BdB,}e[Bd(#UB,)u{BAU,;: je M with j<p}u
U{E: keN}I"t.

By (b), N(#—{BdU, ) "BdB,, is compact for each i< g¢. Since

% = (\(¢~{BdU,, BdB))"BdU,BdB
=€~ {BaU,)n U {BdB,: i<a},

(¥ is compact.
Hence in any case condition (5) is satisfied.
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Let us set
U = {U;: ie M},

Then we have FeU# < Cl({U#%)< U, because F;cU;cClU, = V; for every
ie M. Since ¥ is locally finite, so is %. Let J = (J {/;: ie M}. Then J is discrete
and closed in X, because each J; is closed and discrete in X, J; < ¥, and #”is locally
finite. Let o = \J {A';: ie M}. Then oA is locally finite, because each £ is locally
finite, Y o, = BdU;c V; and ¥ is locally finite. Thus the collection

# = {BedB, BIBnJ =@ and {Ke A': CIBnK # @} is finite}

is a base for X. By the construction of &,, we have &' =(\{4%,: ie M}. Hence,
by (5), k-ord Bd(«f U#' L U) < n.
Lemma 2.2 is proved.

The following lemma is needed to prove Lemmas 2.4 and 2.5 below; the proof
is similar to that of Lemma 2.2.

2.3. LEMMA. Let o be a locally finite collection of open subsets of a space X,
4% a base for X with k-ord Bd(&f U &) € n, F a closed subset of X and V an intersection
of finite members of o O{X—ClA: Ae sl} containing F. Then there are an open
subset U of X, a closed discrete subset J of X and a locally finite collection A of closed
subsets of X such that

) FeUcClUcV,

2 BdU= U A

B)YJ<V, and

(4) k-ordBd(sf 0B U{UY) <n, where #' = {Be %: BABnJ = & and

{KeA: CIBNK # O} is finite}.

Note that the above %’ is a base for X.

2.4. LEMMA. Let &f be a locally finite collection of open subsets of a space X,
% a base for X with k-ordBd(# UB)<n, F = {F;: ieN} a collection of closed
subsets of X and " = {V;: ie N} a subcollection of o€ with each V; containing F,.
Then there are a collection % = {U;: i€ N} of open subsets of X and a base @' for
X such that F;c U, c ClU, =V, for every ie N and k-ordBd(of OB O%) < n.

Proof. By Lemma 2.3, inductively, we can construct 4,;, U;, A, and J; sa-
tisfying conditions (1) to (5) in Lemma 2.2 as regarding M = N. Let % = {U,: ie N}
and %' = {Be®: BIBnJ =0 and {KeA': ClBNK # @} is finite}, where
J=U{J;:ieN}and A = U {A;: ie N}. Then, similarly to the proof of Lemma
2.2, #' is a base for X and k-ordBd (s U B’ V%) < n. This completes the proof of
Lemma 2.4.

2.5. LeMMA. Let o be a locally finite collection of open subsets of a space X, B
a base for X with k-ordBd(of/ WB)<n and 4 = {G;: i<s} a finite open cover
of X such that each G, is an intersection of finite members of o V{X—ClAd: deof}.
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Then there are a finite open star-refinement U of 9 and a base &' for X such that
k-ord Bd (& W #' V)< n.

Proof. Let # = {F,-: i< s} be a closed shrinking of . By Lemma 2.3, there
arc a collection &’ = {H;: i< s} of open subsets of X and a base %" for X such
that F;< H,=ClH; =G, for every i<s and k-ordBd(«/UB’ U#)<n. Let
S = {i: i<s}. Let us set

Wy = N{G;: ieT}~U {ClH;: ie §~T}
W o= Wy Te S, and
= {WnH: We¥ and He #)}
{Or; T<S and i<s}, where Op, = Wpn H;

for each T S,

i

!

Ii

Then @ covers X. Let & = {E;;: T< S and i<s} be a closed shrinking of 0. By
Lemma 2.3, we take an open cover % = {Uyy: Te Sand i< s} of X and a base &’
for X such that Ep,cUpcClUpncOp for every TS and i<s and
k-ord Bd (/L #' vy <n. It suffices to prove that % is a star-refincment of #.
For every Uy, e we have

St(Uy, U) = 8t(0gy, 0) = St(Wyn H,y, 0).< St(CLH,, #).

Then CLH; ~ Wy # @ implies that i e T, thercfore Wy < G,;. Hence % is a star-re-
finement of ‘9. This completes the proof of Lemma 2.5.

3. The equality Ski X = def X. For every space X, by a uniformity of X agreeing
with the topology, we mean a countable collection & = {%;: ie N} of countable
open covers of X satisfying the following conditions:

(a) ¥,.¢ is a star-refinement of &, for every i e N,
(b) {St(x, ¥): ieN} is a neighborhood base at each point x € X.

Let & be the completion of X with respect to @. Then we set
V* = X —Clg(X~V)

for every open subset V of X.
We need the following lemma, which was proved by K. Morita [7, Theorem 2].

3.1 LemmA. Let X be a space with a uniformity & = {#,: ie N} agreeing with
the topology, and ¥ a collection of open subsets of X. Suppose that for any ie N
there is some jeN such that 9; is a refinement of the cover W'y, where

W= vu{Ge¥;: Gn(X-U¥) # J}.
Then the equality (J #)* = | {V*: Ve ¥} holds.
We are now in a position to prove our main theorem.

3.2. THEOREM. The equality Sk1X = def X holds for every space X.
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Proof. It suffices to prove that Skl.X > def X. Supposc that SkI.X = n. Let &,
be a base for X with k-ordBd #, <n, and {(C;, D;): ie N} a collection of pairs
of open subsets of X satisfying the following conditions:

(a) CIC; = D; for every i€N,

(b) for every x e X and for any neighborhood U of x there is ie N such that
xeC;and D;cU.

By Lemmas 2.2, 2.4 and 2.5, inductively, for every /e N we can construct a base
4, for X, a finite open cover %, of X, two locally finite collections %, = {U};: i< j}
and 77, = {V;;: i<j} of open subscts of X, and a finite collection

= {Wi<j<m}

of finite open covers of X satisfying the following conditions (1) to (6) below:
() ClVy;e Uy for i, jeN with i</,
@ Cc,clU?,cU%c D,
(3) ¢, is a star-refinement of ¥;_,,
4) k-ordBd(#,0 U {%;: j<itoU (v i<itulU {9, i<iP<n,
(5) I is the collection of all finite open covers of X of the form
W = {Gy, Gy, ..., G,, X—ClGy, X-ClGy, ..., X~CIG,, Hy, Hy, ...
where
{Go, Gy, ..., Gy e [U {9, j< i)"Y, Hyy Hy, oo, Hye U {90 j<i}
with (Y {BdG;: 0<j<n} U {H;: 0<j<m} and # ¢ U {I';: j<i},
(6) for each j<i %, is a refinement of %}, and of {Uj;, X—ClV;}.
Note that, by (b) and (2), U {#;: i€ N} is a base for X. Then @ = {%;: ieN}
is a uniformity of X agreeing with the toplogy and each ¥, is finite. Thus the com-
pletion of X with respect to & is a compactification of X and it is denoted by a X.
Then {G*: Ge ¥} is a base for aX, where ¥ = ) {%,: ieN}. We show that
dim(e X—X) <n By [8, Theorem 12.13], it suffices to prove that

ord{Bd,x G*n (@ X~ X): Ge ¥} <n.

To this end, let {Gy, Gy ..., G,} € [¢]""*. By (4), we have k-ord Bd¥ < n, therefore
N {BdxG,: 0<i<n}is compaci Thus for every x € ¢ X~ X there is a finite sub-
collection {Hy, Hy, ..., H,,} of ¥ suchthat () {BdxG;: 0<i<n}c {H}:0<i<m}
and x ¢ HY for any i, 0<<i<m. Thus, by (5),

W = {Go: Gh crey G,,, X"“CIGo, X'—CIG.I, ey X—ClGHOII -Ho:f{'ia sevy }Im}eri

for some ie N. So %" = #",; for some i <j<my. By (6), ¥, refines #". Thus, by
Lemma 3.1, we have U {W*: We#} =( #)* = X*=aX. Since x¢H
for any 0<i<m, we have xeGf or xe(X—ClG)* = a X~ ClxGf for some
0<i<n. This implies that x ¢ (| {BdxGy: 0<i<n}, therefore

ﬂ {BduXG*

L Hm} ’

gign}c X,

icm

Solution to a compactification problem of Sklyarenko 33

Thus ord{BdxG*n@@X—X): Ge ¥} <n.
Theorem 3.2 is now completely proved.

Hence dim(eX—X)<n, and our

3.3. THroreM. A non-compact space X has a compactification oX with
dim(eX—X) = n if and only if SK1X<n.

Proof. It suffices to prove the “if” part. Let § X be a compactification of X
with dim (8 X' — X) = def ¥ = SkIX. Takeapointy e  X¥— Xandset ¥ = § X—{y}.
Then Y is a locally compact, non-compact space. By [1], ¥ has a compactification Z
such that Z- Y is homeomorphic to 1", where T = [0, 1]. Let ¢ X = Z. Then a X
is a compactification of X, Since 1" is cmbedded in ¢ X — X, we have dim(a X — X) = n.
On the other hand, for every closed subsct F ol o X=X with FAI" = @ we have
dimF<n, because J'c § X~ X, Hence, by [8, Theorem 9.11], dim(@X—X) = n.
Theorem 3.3 is proved.
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