

J. F. Davis and W. T. Ingram

- [4] An atriodic tree-like continuum with positive span, Fund, Math. 77 (1972), 99-107.
- [5] An uncountable collection of mutually exclusive planar atriodic tree-like continua with positive. span. Fund. Math. 85 (1974), 73-78.
- [6] K. Kuratowski, Topology, Vol. II. Academic Press (1968).
- [7] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199-214.
- [8] W. Lewis, The pseudo-arc of pseudo-arcs is unique, Houston J. Math., 10 (1984), 227-234.
- [9] —, Continuum theory problems, The Proceedings of the 1983 Topology Conference (Univ. Houston, Texas), Topology Proc. 8 (1983), 361-394.

DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE UNIVERSITY OF RICHMOND Virginia 23173

DEPARTMENT OF MATHEMATICS UNIVERSITY OF HOUSTON Houston, Texas 77004

Received 2 October 1986

Solution to a compactification problem of Sklyarenko

bv

Takashi Kimura (Ibaraki)

Dedicated to Professor Yukihiro Kodama
On his 60th birthday

Abstract. Concerning a function SkI originally introduced by SkIyarenko to study compactness deficiency def, we establish a theorem that SkIX = defX for every separable metrizable space X. This answers a problem of SkIyarenko affirmatively.

1. Introduction. All spaces considered in this paper are assumed to be separable and metrizable. By a compactification of a space X, we mean a compact metrizable space containing X as a dense subspace. For undefined notion see [3] and [5].

The compactness deficiency def X of a space X is the least integer n for which X has a compactification αX with $\dim(\alpha X - X) = n$.

J. de Groot [4] proved that a space X has a compactification αX with $\dim(\alpha X - X) \le 0$ if and only if X is rim-compact. Motivated by this result, to study further def he introduced the *small* (resp. large) inductive compactness degree cmp X (resp. Cmp X) of a space X. In general, the inequality cmp $X \le \operatorname{Cmp} X \le \operatorname{def} X$ holds [5]. The well-known conjecture of de Groot that cmp $X = \operatorname{def} X$ has been negatively solved by R. Pol [9]; the space X of Pol's example has cmp X = 1 and Cmp $X = \operatorname{def} X = 2$. It is unknown whether there is a space X with Cmp $X < \operatorname{def} X$.

Another condition to study def is due to E. Sklyarenko [10], [11], which is denoted by $\operatorname{Skl} X \leqslant n$ as in Isbell's book [6]; a space X has $\operatorname{Skl} X \leqslant n$ if X has a base $\mathscr B$ such that $\operatorname{Bd} B_0 \cap \operatorname{Bd} B_1 \cap \ldots \cap \operatorname{Bd} B_n$ is compact for any n+1 distinct members of $\mathscr B$. Sklyarenko proved that $\operatorname{Skl} X \leqslant \operatorname{def} X$ [10] and asked whether $\operatorname{Skl} X = \operatorname{def} X$ for every space X [11]. Recently, J. M. Aarts, J. Bruijning and J. van Mill [2] proved that $\operatorname{Cmp} X \leqslant \operatorname{Skl} X$. In this paper we give an affirmative answer to Sklyarenko's problem above. Namely, we shall establish a theorem that $\operatorname{Skl} X = \operatorname{def} X$ for every space X. As an application it will be shown that a non-compact space X has a compactification αX with $\operatorname{dim}(\alpha X - X) = n$ if and only if $\operatorname{Skl} X \leqslant n$.

2. Preliminaries and lemmas. Let $\mathscr S$ be a collection of subsets of a space X. We shall write $[\mathscr S]^n$ for $\{\mathscr F:\mathscr F \text{ is a subcollection of }\mathscr S \text{ with } |\mathscr F|=n\}, \cap \mathscr S$

Added in proof. Recently the author has constructed such a space.

for $\bigcap \{S: S \in \mathcal{S}\}$, $\bigcup \mathcal{S}$ for $\bigcup \{S: S \in \mathcal{S}\}$, $\operatorname{Bd} \mathcal{S}$ for $\{\operatorname{Bd} S: S \in \mathcal{S}\}$ and $\operatorname{Cl} \mathcal{S}$ for $\{\operatorname{Cl} S: S \in \mathcal{S}\}$.

2.1. DEFINITION. Let \mathscr{A} be a collection of closed subsets of a space X. The k-order of \mathscr{A} is defined as follows: k-ord $\mathscr{A} \leq n$ if $\bigcap \mathscr{A}'$ is compact for every $\mathscr{A}' \in [\mathscr{A}]^{n+1}$.

With this terminology, $\operatorname{Skl} X \leq n$ if and only if X has a base $\mathscr B$ such that k-ord $\operatorname{Bd} \mathscr B \leq n$. Skl is a general notion of the covering dimension dim, indeed $\operatorname{Skl} X \leq \dim X$ for every space X, since $\dim X \leq n$ if and only if X has a base $\mathscr B$ such that $\operatorname{ord} \operatorname{Bd} \mathscr B \leq n$ [8, Theorem 12.13] and in general k-ord $\operatorname{Bd} \mathscr B \leq \operatorname{ord} \operatorname{Bd} \mathscr B$.

2.2 Lemma. Let $\mathscr A$ be a locally finite collection of open subsets of a space X, $\mathscr B$ a base for X with k-ord $\mathrm{Bd}(\mathscr A \cup \mathscr B) \leqslant n$, F a closed subset of X and U an open subset of X containing F. Then there are a locally finite collection $\mathscr U$ of open subsets of X and a base $\mathscr B'$ for X such that $F \subset \bigcup \mathscr U \subset \mathrm{Cl}(\bigcup \mathscr V) \subset U$ and k-ord $\mathrm{Bd}(\mathscr A \cup \mathscr B' \cup \mathscr V) \leqslant n$.

Proof. We may assume that $\mathscr B$ is countable. Enumerate $\mathscr B$ as $\mathscr B=\{B_i\colon i\in N\}$. Consider the collection $\{(C_i,D_i)\colon i\in N\}$ of all pairs of elements of $\mathscr B$ such that $\operatorname{Cl} C_i\subset D_i$ and either $\operatorname{Cl} D_i\subset U$ or $D_i\cap F=\mathscr B$. Let us set

$$\begin{split} &V_i = D_i - \bigcup \left\{ \operatorname{Cl} C_j \colon j < i \right\} \quad \text{for every } i \in N, \\ &M = \left\{ i \in N \colon \operatorname{Cl} V_i \subset U \right\}, \quad \mathscr{V} = \left\{ V_i \colon i \in M \right\}. \end{split}$$

Then $\mathscr V$ is a locally finite collection of open subsets of X and we have $F \subset \bigcup \mathscr V \subset \operatorname{Cl}(\bigcup \mathscr V) \subset U$. Let $\mathscr F = \{F_i \colon i \in M\}$ be a closed cover of F such that $F_i \subset V_i$ for every $i \in M$. Since $\{C_1, \ldots, C_{i-1}, D_i\} \subset \mathscr B$, we can express

$${C_1, ..., C_{i-1}, D_i} = {B_{i(1)}, ..., B_{i(i-1)}, B_{i(i)}}$$

by using the original indexing of \mathscr{B} . From $\operatorname{Bd} V_i \subset \bigcup \{\operatorname{Bd} B_{i(j)} \colon 1 \leqslant j \leqslant i\}$, we can take a closed subset E^i_j of $\operatorname{Bd} B_{i(j)}$ for each $j, 1 \leqslant j \leqslant i$ such that $\operatorname{Bd} V_i = \bigcup \{E^i_j \colon 1 \leqslant j \leqslant i\}$. Let us set

$$\begin{split} \mathscr{E}_i &= \{E_j^i \colon 1 \leqslant j \leqslant i\}, \quad M_i = \{i(j) \colon 1 \leqslant j \leqslant i\}, \\ E_k &= \bigcup \{E_j^i \colon i(j) = k, \ 1 \leqslant j \leqslant i \text{ and } i \in M\} \quad \text{for every } k \in \mathbb{N}. \end{split}$$

Then we have

(a) E_k is closed in $\operatorname{Bd} B_k$ for every $k \in N$ and $V_i \cap \operatorname{Bd} B_k = \emptyset$ for every $k \in M_i$. Since $\mathscr V$ is locally finite, so is $\{E_k \colon k \in N\}$. If $E_k \neq \emptyset$, then pick up a point $x_k \in E_k$ and set $J_0 = \{x_k \colon k \in N \text{ with } E_k \neq \emptyset\}$. Then J_0 is discrete and closed in X, because $\{E_k \colon k \in N\}$ is locally finite. Thus $\mathscr B_0 = \{B \in \mathscr B \colon \operatorname{Bd} B \cap J_0 = \emptyset\}$ is a base for X. For every $i \in M$, inductively, we shall construct $\mathscr B_i$, U_i , $\mathscr K_i$ and J_i satisfying the following conditions (1) to (5) below;

(1) U_i is open in X such that $F_i \subset U_i \subset \operatorname{Cl} U_i \subset V_i$,

- (2) \mathcal{K}_i is a locally finite collection of closed subsets of X such that $\operatorname{Bd} U_i = \bigcup_{i \in I} \mathcal{K}_i$,
 - (3) J_i is discrete and closed in X such that $J_i \subset V_i$,
- (4) \mathscr{D}_i is a base for X such that $\mathscr{D}_i = \{B \in \mathscr{D}_p : \operatorname{Bd} B \cap J_i = \emptyset \text{ and } \{K \in \mathscr{K}_i : \operatorname{Cl} B \cap K \neq \emptyset\}$ is finite}, where $p = \max\{j \in M : j < i\}$,
 - (5) k-ord(Bd($\mathcal{A} \cup \mathcal{B}_i$) \cup {Bd U_i : $j \in M$ with $j \leq i$ } \cup { E_k : $k \in N$ }) $\leq n$.

Suppose that $m \in M$. Assume that we can construct \mathcal{B}_i , U_i , \mathcal{K}_i and J_i satisfying conditions (1) to (5) for each $i \in M$ with i < m. Let $p = \max\{i \in M: i < m\}$. By the induction hypothesis, in particular, the following property (b) is satisfied.

(b) k-ord $(\mathrm{Bd}(\mathcal{A} \cup \mathcal{B}_n) \cup \{\mathrm{Bd}\,U_j : j \in M \text{ with } j \leq p\} \cup \{E_k : k \in N\}) \leq n$.

To construct \mathcal{B}_m , U_m , \mathcal{K}_m and J_m we only need the property

(b) and that \mathscr{B}_p is a base for X. Thus in case $m = \min M$, let p = 0. Since $\mathscr{B}_0 \cap \{B_k \colon k \in \mathbb{N} \text{ with } E_k \neq \emptyset\} = \emptyset$, by (a), the property (b) is satisfied. Let us set

$$\begin{split} \mathscr{H} &= \big\{ \bigcap \mathscr{H}' \colon \, \mathscr{H}' \in [\operatorname{Bd} \mathscr{A} \cup \{\operatorname{Bd} U_j \colon j \in M \, \text{ with } \, j \leqslant p \big\} \cup \\ &\qquad \qquad \cup \big\{ E_k \colon \, k \in N - M_m \big\} \big|^n \big\}. \end{split}$$

Since \mathscr{A} is locally finite, \mathscr{A} is countable. Thus \mathscr{H} is also countable. Enumerate \mathscr{H} as $\mathscr{H} = \{H_i \colon i \in N\}$. Since \mathscr{A} and $\{E_k \colon k \in N\}$ are locally finite, so is \mathscr{H} . Since $\operatorname{Bd} V_m = \bigcup \mathscr{E}_m$, by (b), $H \cap \operatorname{Bd} V_m$ is compact for every $H \in \mathscr{H}$. Thus there is a finite subcollection \mathscr{B}^i of \mathscr{B}_n for every $i \in N$ such that

- (c) $H_i \cap \operatorname{Bd} V_m \subset \bigcup \mathscr{B}^i$,
- (d) $\{\bigcup \mathcal{B}^i : i \in \mathbb{N}\}$ is locally finite,
- (e) $Cl(\bigcup \mathscr{B}^i) \cap F_m = \emptyset$, and
- (f) $Cl(\bigcup \mathcal{B}^i) \cap (H_i \bigcup \mathcal{B}^j) = \emptyset$ for every j < i.

Let $F'_m = F_m \cup \bigcup \{(H_i \cap \operatorname{Cl} V_m) - \bigcup \mathscr{B}^i \colon i \in N\}$. Then, by (c), we have $F_m \subset F'_m \subset V_m$. Since \mathscr{H} is locally finite, F'_m is closed in X. Consider the collection $\{(C'_i, D'_i) \colon i \in N\}$ of all pairs of elements of \mathscr{B}_p such that $\operatorname{Cl} C'_i \subset D'_i$ and either $\operatorname{Cl} D'_i \subset V_m$ or $\operatorname{Cl} D'_i \cap F'_m = \emptyset$. Let us set

$$\begin{aligned} O_i &= D_i' - \bigcup \left\{ \operatorname{Cl} C_j' \colon j < i \right\} &\quad \text{for every } i \in N, \\ L &= \left\{ i \in N \colon \operatorname{Cl} O_i \subset V_m \right\}, &\quad \text{and} &\quad \emptyset &= \left\{ O_i \colon i \in L \right\}. \end{aligned}$$

Then \mathcal{O} is locally finite and $F'_m \subset O \subset \operatorname{Cl} O \subset V_m$, where $O = \bigcup \mathcal{O}$. Let us set

$$U_{m} = O - \bigcup \{ \operatorname{Cl}(\bigcup \mathscr{B}^{i}) \colon i \in \mathbb{N} \}.$$

By (d) and (e), U_m is open in X and $F_m \subset U_m \subset \operatorname{Cl} U_m \subset V_m$. Thus condition (1) is satisfied. By the construction of O_i , we take a finite subcollection \mathscr{C}_i of \mathscr{B}_p such that $\operatorname{Bd} O_i \subset \bigcup (\operatorname{Bd} \mathscr{C}_i)$. Let us set

$$K_i(B) = \begin{cases} \operatorname{Bd} O_i \cap \operatorname{Bd} B & \text{if } B \in \mathscr{C}_i \\ \emptyset & \text{otherwise,} \end{cases} \text{ and }$$

$$K'(B) = \bigcup \{K_i(B): i \in L\} \text{ for every } B \in \mathscr{B}_p.$$

Since \emptyset is locally finite, so is $\{K'(B): B \in \mathcal{B}_p\}$. By (d), $\{\operatorname{Bd} B: B \in \mathcal{B}''\}$ is locally finite, where $\mathcal{B}'' = \bigcup \{\mathcal{B}^i: i \in N\}$. Let us set

$$K(B) = \begin{cases} \operatorname{Bd} U_m \cap \operatorname{Bd} B & \text{if } B \in \mathcal{B}'' \\ \operatorname{Bd} U_m \cap K'(B) & \text{otherwise,} \end{cases} \text{ and }$$

$$\mathcal{K}_m = \{K(B) \colon B \in \mathcal{B}_p\}.$$

Then we have $K(B) \subset \operatorname{Bd} B$ and \mathscr{K}_m is a locally finite collection of closed subsets of X. Obviously, we have $\bigcup \mathscr{K}_m \subset \operatorname{Bd} U_m$. Since

$$\begin{split} \operatorname{Bd} U_m &\subset \operatorname{Bd} O \cup \operatorname{Bd} (\bigcup \left\{\operatorname{Cl}(\bigcup \mathscr{B}^i) \colon i \in N\right\}) \\ &= \bigcup \left\{\operatorname{Bd} O_i \colon i \in L\right\} \cup \bigcup \left\{\operatorname{Bd} B \colon B \in \mathscr{B}''\right\} \\ &= \bigcup \left\{\bigcup \left\{K_i(B) \colon B \in \mathscr{B}_p\right\} \colon i \in L\right\} \cup \bigcup \left\{\operatorname{Bd} B \colon B \in \mathscr{B}''\right\} \\ &= \bigcup \left\{K'(B) \colon B \in \mathscr{B}_p\right\} \cup \bigcup \left\{\operatorname{Bd} B \colon B \in \mathscr{B}''\right\}, \end{split}$$

we have $\operatorname{Bd} U_m \subset \bigcup \mathscr{K}_m$. Thus condition (2) is satisfied. For each $K \in \mathscr{K}_m$ with $K \neq \emptyset$ select a point $x_K \in K$. Then the set

$$J_m = \{x_K : K \in \mathcal{K}_m \text{ with } K \neq \emptyset\}$$

is discrete and closed in X, because \mathscr{K}_m is locally finite. Since $x_K \in K \subset \operatorname{Bd} U_m \subset V_m$, we have $J_m \subset V_m$. Thus condition (3) is satisfied. Let us set

$$\mathscr{B}_m = \{B \in \mathscr{B}_p \colon \operatorname{Bd} B \cap J_m = \emptyset \text{ and } \{K \in \mathscr{K}_m \colon \operatorname{Cl} B \cap K \neq \emptyset\} \text{ is finite}\}.$$

Then, by (2) and (3), \mathcal{B}_m is a base for X. Thus condition (4) is satisfied.

Next, we shall prove that condition (5) is satisfied. To this end, let $\mathscr{C} \in [\mathrm{Bd}(\mathscr{A} \cup \mathscr{B}_m) \cup \{\mathrm{Bd}\,U_j\colon j \in M \text{ with } j \leqslant m\} \cup \{E_k\colon k \in N\}]^{n+1}$. We shall show that $\bigcap \mathscr{C}$ is compact. We distinguish four cases.

Case 1. Bd $U_m \notin \mathscr{C}$.

In this case we have $\mathscr{C} \in [\operatorname{Bd}(\mathscr{A} \cup \mathscr{B}_p) \cup \{\operatorname{Bd} U_j \colon j \in M \text{ with } j \leqslant p\} \cup \{E_k \colon k \in N\}]^{n+1}$. Thus, by (b), $\bigcap \mathscr{C}$ is compact.

Case 2. Bd $U_m \in \mathcal{C}$ and $E_k \in \mathcal{C}$ for some $k \in M_m$. By (a), we have

$$\bigcap \mathscr{C} \subset \operatorname{Bd} U_m \cap E_k \subset V_m \cap \operatorname{Bd} B_k = \emptyset.$$

Thus $\bigcap \mathscr{C}$ is compact.

Case 3. Bd $U_m \in \mathscr{C}$, $E_k \notin \mathscr{C}$ for any $k \in M_m$ and $\mathscr{C} \cap \operatorname{Bd} \mathscr{B}_m = \varnothing$. In this case we have

$$\mathscr{C} - \{ \operatorname{Bd} U_m \} \in [\operatorname{Bd} \mathscr{A} \cup \{ \operatorname{Bd} U_j \colon j \in M \text{ with } j \leq p \} \cup \{ E_k \colon k \in N - M_m \}]^n,$$

Thus we have $\bigcap (\mathscr{C} - \{ \operatorname{Bd} U_m \}) = H_i \in \mathscr{H}$ for some $i \in \mathbb{N}$. Since $(H_i \cap \operatorname{Cl} V_m) = \bigcup \mathscr{D}^i \subset F'_m \subset O \subset \operatorname{Cl} O \subset V_m$, we have

$$\begin{split} H_i \cap \operatorname{Bd} O &= H_i \cap (\operatorname{Cl} O - O) \\ &\subset H_i \cap \left(V_m - ((H_i \cap \operatorname{Cl} V_m) - \bigcup \mathscr{B}^i) \right) \\ &= (H_i \cap V_m \cap \bigcup \mathscr{B}^i) \cup \left((H_i \cap V_m) - (H_i \cap \operatorname{Cl} V_m) \right) \\ &\subset \bigcup \mathscr{B}^i. \end{split}$$

On the other hand, by (f), we have

$$H_i \cap \operatorname{Bd}(\bigcup \mathscr{B}^j) \subset \operatorname{Cl}(\bigcup \mathscr{B}^i)$$
 for each $i \ge i$.

Hence we have

$$\bigcap \mathscr{C} = H_i \cap \operatorname{Bd} U_m
= (H_i \cap (\operatorname{Bd} O \cup \bigcup \{\operatorname{Bd} (\bigcup \mathscr{B}^j) : j \in N\})) - \bigcup \mathscr{B}^i
= H_i \cap \bigcup \{\operatorname{Bd} (\bigcup \mathscr{B}^j) : j \leqslant i\}
= H_i \cap \bigcup \{\operatorname{Bd} B : B \in \bigcup \{\mathscr{B}^j : j \leqslant i\}\}.$$

Since $\mathscr{C} \cap \operatorname{Bd}\mathscr{B}_m = \emptyset$, by (b), $H_i \cap \operatorname{Bd}B$ is compact for every $B \in \mathscr{B}_p$. Hence $\bigcap \mathscr{C}$ is compact.

Case 4. Bd $U_m \in \mathscr{C}$, $E_k \notin \mathscr{C}$ for any $k \in M_m$ and $\mathscr{C} \cap \operatorname{Bd} \mathscr{B}_m \neq \emptyset$. Let Bd $B \in \mathscr{C} \cap \operatorname{Bd} \mathscr{B}_m$. By the construction of \mathscr{B}_m ,

$$\mathcal{K}'_m = \{ K \in \mathcal{K}_m \colon \operatorname{Cl} B \cap K \neq \emptyset \}$$

is finite. Let $\mathscr{K}_m'=\{K_i\colon i\leqslant q\}$, where $K_i=K(B_{n_i})$ for some $B_{n_i}\in\mathscr{B}_p$. Then we have

$$\begin{split} \operatorname{Bd} U_m \cap \operatorname{Bd} B &= \bigcup \, \mathscr{K}_m \cap \operatorname{Bd} B \\ &= \bigcup \, \{K_i \colon i \leqslant q\} \cap \operatorname{Bd} B \\ &\subset \bigcup \, \{\operatorname{Bd} B_m \colon i \leqslant q\} \cap \operatorname{Bd} B \end{split}$$

Since $x_{K_l} \in K_l \subset \operatorname{Bd} B_{n_l}$, we have $J_m \cap \operatorname{Bd} B_{n_l} \neq \emptyset$. Thus $B_{n_l} \notin \mathscr{D}_m$ for each $i \leq q$, therefore

$$(\mathscr{C} - \{\operatorname{Bd} U_m\}) \cup \{\operatorname{Bd} B_{n_i}\} \in [\operatorname{Bd} (\mathscr{A} \cup \mathscr{B}_p) \cup \{\operatorname{Bd} U_j \colon j \in M \text{ with } j \leq p\} \cup \\ \cup \{E_k \colon k \in N\}\}^{n+1}.$$

By (b), $\bigcap (\mathscr{C} - \{ \operatorname{Bd} U_m \}) \cap \operatorname{Bd} B_m$ is compact for each $i \leq q$. Since

$$\bigcap \mathscr{C} = \bigcap (\mathscr{C} - \{ \operatorname{Bd} U_m, \operatorname{Bd} B \}) \cap \operatorname{Bd} U_m \cap \operatorname{Bd} B$$
$$\subset \bigcap (\mathscr{C} - \{ \operatorname{Bd} U_m \}) \cap \bigcup \{ \operatorname{Bd} B_n \colon i \leq q \},$$

 $\bigcap \mathscr{C}$ is compact.

Hence in any case condition (5) is satisfied.

Let us set

$$\mathscr{U} = \{U_i \colon i \in M\}.$$

Then we have $F \subset \bigcup \mathscr{U} \subset \operatorname{Cl}(\bigcup \mathscr{U}) \subset U$, because $F_i \subset U_i \subset \operatorname{Cl} U_i \subset V_i$ for every $i \in M$. Since \mathscr{V} is locally finite, so is \mathscr{U} . Let $J = \bigcup \{J_i \colon i \in M\}$. Then J is discrete and closed in X, because each J_i is closed and discrete in X, $J_i \subset V_i$ and \mathscr{V} is locally finite. Let $\mathscr{H} = \bigcup \{\mathscr{H}_i \colon i \in M\}$. Then \mathscr{H} is locally finite, because each \mathscr{H}_i is locally finite, $\bigcup \mathscr{H}_i = \operatorname{Bd} U_i \subset V_i$ and \mathscr{V} is locally finite. Thus the collection

$$\mathscr{B}' = \{B \in \mathscr{B}_0 : \operatorname{Bd} B \cap J = \emptyset \text{ and } \{K \in \mathscr{K} : \operatorname{Cl} B \cap K \neq \emptyset\} \text{ is finite}\}$$

is a base for X. By the construction of \mathscr{B}_i , we have $\mathscr{B}' \subset \bigcap \{\mathscr{B}_i \colon i \in M\}$. Hence, by (5), k-ord $\operatorname{Bd}(\mathscr{A} \cup \mathscr{B}' \cup \mathscr{U}) \leq n$.

Lemma 2.2 is proved.

The following lemma is needed to prove Lemmas 2.4 and 2.5 below; the proof is similar to that of Lemma 2.2.

- 2.3. Lemma. Let $\mathscr A$ be a locally finite collection of open subsets of a space X, $\mathscr B$ a base for X with k-ord $Bd(\mathscr A \cup \mathscr B) \leqslant n$, F a closed subset of X and Y an intersection of finite members of $\mathscr A \cup \{X-\operatorname{Cl} A\colon A\in \mathscr A\}$ containing F. Then there are an open subset U of X, a closed discrete subset J of X and a locally finite collection $\mathscr K$ of closed subsets of X such that
 - (1) $F \subset U \subset \operatorname{Cl} U \subset V$,
 - (2) Bd $U = \bigcup \mathcal{K}$
 - (3) $J \subset V$, and
 - (4) k-ord $\operatorname{Bd}(\mathscr{A} \cup \mathscr{B}' \cup \{U\}) \leq n$, where $\mathscr{B}' = \{B \in \mathscr{B} : \operatorname{Bd}B \cap J = \emptyset \text{ and } \{K \in \mathscr{K} : \operatorname{Cl}B \cap K \neq \emptyset\}$ is finite $\}$.

Note that the above \mathcal{B}' is a base for X.

- 2.4. Lemma. Let \mathscr{A} be a locally finite collection of open subsets of a space X, \mathscr{B} a base for X with k-ord $Bd(\mathscr{A} \cup \mathscr{B}) \leq n$, $\mathscr{F} = \{F_i : i \in N\}$ a collection of closed subsets of X and $\mathscr{V} = \{V_i : i \in N\}$ a subcollection of \mathscr{A} with each V_i containing F_i . Then there are a collection $\mathscr{U} = \{U_i : i \in N\}$ of open subsets of X and a base \mathscr{B}' for X such that $F_i \subset U_i \subset Cl\ U_i \subset V_i$ for every $i \in N$ and k-ord $Bd(\mathscr{A} \cup \mathscr{B}' \cup \mathscr{U}) \leq n$.
- Proof. By Lemma 2.3, inductively, we can construct \mathcal{B}_i , U_i , \mathcal{K}_i and J_i satisfying conditions (1) to (5) in Lemma 2.2 as regarding M=N. Let $\mathcal{U}=\{U_i\colon i\in N\}$ and $\mathcal{B}'=\{B\in\mathcal{B}\colon \operatorname{Bd} B\cap J=\varnothing \text{ and } \{K\in\mathcal{K}\colon\operatorname{Cl} B\cap K\neq\varnothing\} \text{ is finite}\}$, where $J=\bigcup\{J_i\colon i\in N\}$ and $\mathcal{K}=\bigcup\{\mathcal{K}_i\colon i\in N\}$. Then, similarly to the proof of Lemma 2.2, \mathcal{B}' is a base for X and k-ord $\operatorname{Bd}(\mathcal{A}\cup\mathcal{B}'\cup\mathcal{U})\leqslant n$. This completes the proof of Lemma 2.4.
- 2.5. LEMMA. Let \mathscr{A} be a locally finite collection of open subsets of a space X, \mathscr{B} a base for X with k-ord $\mathrm{Bd}(\mathscr{A} \cup \mathscr{B}) \leq n$ and $\mathscr{G} = \{G_i : i \leq s\}$ a finite open cover of X such that each G_i is an intersection of finite members of $\mathscr{A} \cup \{X \mathrm{Cl} A : A \in \mathscr{A}\}$.

Then there are a finite open star-refinement $\mathcal U$ of $\mathcal G$ and a base $\mathcal B'$ for X such that $k\text{-ord}\,\mathrm{Bd}(\mathcal A\cup\mathcal B'\cup\mathcal U)\leqslant n$.

Proof. Let $\mathscr{F} = \{F_i \colon i \leq s\}$ be a closed shrinking of \mathscr{G} . By Lemma 2.3, there are a collection $\mathscr{H} = \{H_i \colon i \leq s\}$ of open subsets of X and a base \mathscr{B}'' for X such that $F_i \subset H_i \subset \operatorname{Cl} H_i \subset G_i$ for every $i \leq s$ and k-ord $\operatorname{Bd}(\mathscr{A} \cup \mathscr{B}'' \cup \mathscr{H}) \leq n$. Let $S = \{i \colon i \leq s\}$. Let us set

$$\begin{split} \mathcal{W}_T &= \bigcap \left\{ G_i \colon i \in T \right\} - \bigcup \left\{ \operatorname{Cl} H_i \colon i \in S - T \right\} & \text{ for each } T \subset S, \\ \mathcal{W} &= \left\{ \mathcal{W}_T \colon T \subset S \right\}, & \text{ and } \\ \mathcal{O} &= \left\{ \mathcal{W} \cap H \colon \mathcal{W} \in \mathcal{W} \text{ and } H \in \mathcal{H} \right\} \\ &= \left\{ O_{T_i} \colon T \subset S \text{ and } i \leqslant s \right\}, & \text{ where } O_{T_i} = \mathcal{W}_T \cap H_i \end{split}$$

Then \emptyset covers X. Let $\mathscr{E} = \{E_{Ti} \colon T \subset S \text{ and } i \leqslant s\}$ be a closed shrinking of \emptyset . By Lemma 2.3, we take an open cover $\mathscr{U} = \{U_{Ti} \colon T \subset S \text{ and } i \leqslant s\}$ of X and a base \mathscr{B}' for X such that $E_{Ti} \subset U_{Ti} \subset \operatorname{Cl} U_{Ti} \subset O_{Ti}$ for every $T \subset S$ and $i \leqslant s$ and k-ord $\operatorname{Bd}(\mathscr{A} \cup \mathscr{B}' \cup \mathscr{U}) \leqslant n$. It suffices to prove that \mathscr{U} is a star-refinement of \mathscr{G} . For every $U_{Ti} \in \mathscr{U}$ we have

$$\operatorname{St}(U_{Ti}, \mathcal{U}) \subset \operatorname{St}(O_{Ti}, \mathcal{O}) = \operatorname{St}(W_T \cap H_i, \mathcal{O}) \subset \operatorname{St}(\operatorname{Cl} H_i, \mathcal{W}).$$

Then $\operatorname{Cl} H_i \cap W_T \neq \emptyset$ implies that $i \in T$, therefore $W_T \subset G_i$. Hence $\mathscr U$ is a star-refinement of $\mathscr G$. This completes the proof of Lemma 2.5.

- 3. The equality Skl X = def X. For every space X, by a uniformity of X agreeing with the topology, we mean a countable collection $\Phi = \{\mathscr{G}_i : i \in N\}$ of countable open covers of X satisfying the following conditions:
 - (a) \mathcal{G}_{i+1} is a star-refinement of \mathcal{G}_i , for every $i \in \mathbb{N}$,
 - (b) $\{\operatorname{St}(x,\mathscr{G}_i): i \in N\}$ is a neighborhood base at each point $x \in X$.

Let \hat{X} be the completion of X with respect to Φ . Then we set

$$V^* = \hat{X} - \operatorname{Cl}_{\hat{X}}(X - V)$$

for every open subset V of X.

We need the following lemma, which was proved by K. Morita [7, Theorem 2].

3.1. Lemma. Let X be a space with a uniformity $\Phi = \{\mathcal{G}_i: i \in \mathbb{N}\}$ agreeing with the topology, and \mathscr{C} a collection of open subsets of X. Suppose that for any $i \in \mathbb{N}$ there is some $j \in \mathbb{N}$ such that \mathscr{G}_i is a refinement of the cover \mathscr{W}_i , where

$$\mathscr{W}_i = \mathscr{V} \cup \{G \in \mathscr{G}_i \colon G \cap (X - \bigcup \mathscr{V}) \neq \emptyset\}.$$

Then the equality $(\bigcup \mathscr{V})^* = \bigcup \{V^* \colon V \in \mathscr{V}\}$ holds.

We are now in a position to prove our main theorem.

3.2. THEOREM. The equality Skl X = def X holds for every space X.

Proof. It suffices to prove that $Skl X \ge def X$. Suppose that Skl X = n. Let \mathcal{B}_0 be a base for X with k-ord $Bd \mathcal{B}_0 \le n$, and $\{(C_i, D_i): i \in N\}$ a collection of pairs of open subsets of X satisfying the following conditions:

- (a) $Cl C_i \subset D_i$ for every $i \in N$,
- (b) for every $x \in X$ and for any neighborhood U of x there is $i \in N$ such that $x \in C_i$ and $D_i \subset U$.

By Lemmas 2.2, 2.4 and 2.5, inductively, for every $i \in N$ we can construct a base \mathcal{B}_i for X, a finite open cover \mathcal{G}_i of X, two locally finite collections $\mathcal{U}_i = \{U_{ij} : i \leq j\}$ and $\mathcal{V}_i = \{V_{ij} : i \leq j\}$ of open subsets of X, and a finite collection

$$\Gamma_i = \{ \mathcal{W}_{i,i} \colon i \leqslant j \leqslant m_i \}$$

of finite open covers of X satisfying the following conditions (1) to (6) below:

- (1) Cl $V_{i,i} \subset U_{i,i}$ for $i, j \in N$ with $i \leq j$,
- (2) Cl $C_i \subset \bigcup \mathcal{V}_i \subset \bigcup \mathcal{U}_i \subset D_i$,
- (3) \mathcal{G}_i is a star-refinement of \mathcal{G}_{i-1} ,
- (4) k-ord $\operatorname{Bd}(\mathcal{B}_i \cup \bigcup \{\mathcal{U}_i : j \leq i\} \cup \bigcup \{\mathcal{V}_i : j \leq i\} \cup \bigcup \{\mathcal{G}_i : j \leq i\}) \leq n$,
- (5) Γ_i is the collection of all finite open covers of X of the form

$$\mathscr{W} = \{G_0, G_1, ..., G_n, X - \operatorname{Cl} G_0, X - \operatorname{Cl} G_1, ..., X - \operatorname{Cl} G_n, H_0, H_1, ..., H_m\},\$$

where

$$\{G_0, G_1, \dots, G_n\} \in [\bigcup \{\mathcal{G}_j : j < i\}]^{n+1}, H_0, H_1, \dots, H_m \in \bigcup \{\mathcal{G}_j : j < i\}$$

 $\text{with } \bigcap \left\{ \operatorname{Bd} G_j \colon 0 \leqslant j \leqslant n \right\} \subset \bigcup \left\{ H_j \colon 0 \leqslant j \leqslant m \right\} \text{ and } \mathscr{W} \notin \bigcup \left\{ \varGamma_j \colon j < i \right\},$

(6) for each $j \le i \mathscr{G}_i$ is a refinement of \mathscr{W}_{ii} and of $\{U_{ii}, X - \operatorname{Cl} V_{ii}\}$.

Note that, by (b) and (2), $\bigcup \{ \mathscr{Q}_i \colon i \in N \}$ is a base for X. Then $\Phi = \{ \mathscr{G}_i \colon i \in N \}$ is a uniformity of X agreeing with the toplogy and each \mathscr{G}_i is finite. Thus the completion of X with respect to Φ is a compactification of X and it is denoted by αX . Then $\{G^* \colon G \in \mathscr{G}\}$ is a base for αX , where $\mathscr{G} = \bigcup \{\mathscr{G}_i \colon i \in N \}$. We show that $\dim(\alpha X - X) \leq n$. By [8, Theorem 12.13], it suffices to prove that

ord
$$\{\operatorname{Bd}_{\alpha X} G^* \cap (\alpha X - X): G \in \mathcal{G}\} \leq n$$
.

To this end, let $\{G_0, G_1 \dots, G_n\} \in [\mathcal{G}]^{m+1}$. By (4), we have k-ord $\mathrm{Bd} \mathcal{G} \leqslant n$, therefore $\bigcap \{\mathrm{Bd}_X G_i \colon 0 \leqslant i \leqslant n\}$ is compact. Thus for every $x \in \alpha X - X$ there is a finite subcollection $\{H_0, H_1, \dots, H_m\}$ of \mathcal{G} such that $\bigcap \{\mathrm{Bd}_X G_i \colon 0 \leqslant i \leqslant n\} \subset \bigcup \{H_i^* \colon 0 \leqslant i \leqslant m\}$ and $x \notin H_i^*$ for any $i, 0 \leqslant i \leqslant m$. Thus, by (5),

$$\mathcal{W} = \{G_0, G_1, ..., G_n, X - \text{Cl} G_0, X - \text{Cl} G_1, ..., X - \text{Cl} G_{n0}, H_0, H_1, ..., H_m\} \in \Gamma_i$$

for some $i \in N$. So $\mathscr{W} = \mathscr{W}_{ij}$ for some $i \leq j \leq m_i$. By (6), \mathscr{G}_j refines \mathscr{W} . Thus, by Lemma 3.1, we have $\bigcup \{W^* \colon W \in \mathscr{W}\} = (\bigcup \mathscr{W})^* = X^* = \alpha X$. Since $x \notin H_i^*$ for any $0 \leq i \leq m$, we have $x \in G_i^*$ or $x \in (X - \operatorname{Cl} G_i)^* = \alpha X - \operatorname{Cl}_{\alpha X} G_i^*$ for some $0 \leq i \leq n$. This implies that $x \notin \bigcap \{\operatorname{Bd}_{\alpha X} G_i^* \colon 0 \leq i \leq n\}$, therefore

$$\bigcap \{\mathrm{Bd}_{\alpha X}G_i^*\colon 0\leqslant i\leqslant n\}\subset X.$$

Thus ord $\{\operatorname{Bd}_{\alpha X}G^* \cap (\alpha X - X) \colon G \in \mathcal{G}\} \leq n$. Hence $\dim(\alpha X - X) \leq n$, and our Theorem 3.2 is now completely proved.

3.3. THEOREM. A non-compact space X has a compactification αX with $\dim(\alpha X - X) = n$ if and only if $Skl X \leq n$.

Proof. It suffices to prove the "if" part. Let δX be a compactification of X with $\dim(\delta X - X) = \det X = \operatorname{Skl} X$. Take a point $y \in \delta X - X$ and set $Y = \delta X - \{y\}$. Then Y is a locally compact, non-compact space. By [1], Y has a compactification Z such that Z - Y is homeomorphic to I^n , where I = [0, 1]. Let $\alpha X = Z$. Then αX is a compactification of X. Since I^n is embedded in $\alpha X - X$, we have $\dim(\alpha X - X) \geqslant n$. On the other hand, for every closed subset F of $\alpha X - X$ with $F \cap I^n = \emptyset$ we have $\dim F \leqslant n$, because $F \subset \delta X - X$. Hence, by [8, Theorem 9.11], $\dim(\alpha X - X) = n$. Theorem 3.3 is proved.

References

- [1] J. M. Aarts and P. van E. Boas, Continua as remainders in compact extensions, Nieuw Arch. Wisk. (3) 15 (1967), 34-37.
- [2] J. M. Aarts, J. Bruijning and J. van Mill, A compactification problem of J. de Groot, Top. Appl. 21 (1985), 217-222.
- [3] R. Engelking, General Topology, PWN, Warszawa 1977.
- [4] J. de Groot, Topologische studen, Thesis, Groningen 1942.
- [5] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactness, Fund. Math. 58 (1966), 201-218.
- [6] J. R. Isbell, Uniform Spaces, Mathematical Surveys No. 12, Amer. Math. Soc., Providence, 1964.
- [7] K. Morita, On the simple extension of a space with respect to a uniformity, II, Proc. Japan Acad. 27 (1951), 130-137.
- [8] K. Nagami, Dimension Theory, Academic Press, New York 1970.
- [9] R. Pol, A counterexample to J. de Groot's conjecture cmp = def, Bull. Acad. Polon. Sci. 30 (1982), 461-464.
- [10] E. Sklyarenko, Bicompact extensions and dimension, Trudy Tbilis. Mat. Inst. 27 (1960), 113-114 (in Russian).
- [11] Some questions in the theory of bicompactifications, Amer. Math. Soc. Transl. (2) 58 (1966), 216-244.

INSTITUTE OF MATHEMATICS UNIVERSITY OF TSUKUBA Sakura-mura Niihari-gun Ibaraki 305 Japan

> Received 27 October 1986; in revised form 6 April 1987