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Diamond and A-systems
by

Alan M. Mekler? (Burnaby) and Saharon Shelah? (Jerusalem)

Abstract. The notion of a A-system generalizes that of a stationary set. In this paper variants
of diamond for A-systems are considered. In particular, a form of the weak diamond principle is
defined and shown to be consistent with the strong negation of the continuum hypothesis. An
application of these principles is given to the Whitehead problem in abelian group theory.

§ 0. Introduction. In [S2] Shelah introduced the notion of a A-system in order
to analyze cxactly how a non-free abelian group (or other structure) fails to be free.
A J-system is a generalization of a stationary set. In this paper we will consider
variants of < for -systems. In Section 1 we will define what is meant by a A-system
and remark that <> for all A-systems is equivalent to < for all stationary sets, We
will then introduce a new variant of ¢, a definable version of the weak diamond
principle. (The weak diamond principle was introduced in [DS]) We will show
this principle for 2 <2 is consistent with 2% = 2™, In fact it is true whenever
we add 2% Cohen reals to the ground model.

In section 2 we will give an application of the definable weak diamond principle
to the Whitehcad problem for abelian groups. We will show that it is consistent
with 2% = 2%t {hat every Whitehead group is free. That this result is largely of
technical interest secems in part a reflection on the psychology of mathematics.
Although wé are interested in knowing when statements are independent of CH,
there is little inferest in knowing when things are independent of "1CH. Of course
there is reason behind this view since CH has strong consequences while experience
has shown that -1CH has few consequences. However some mathematicians, in~
cluding Woodin [W ], have studicd the independence of statements from "1CH.

§ 1. l-systems. After reading the definition of a A-system, the reader may -find
it hc]pl‘ul to turn to Section 2 and sec how A-systems naturally arise.

DEFINITION. Assume 4 is & Legulau uncountable cardinal. A A-system is a labeled
subtree (S, (B,,, Syt €S> of “UA satisfying:
(O) B< > = 0;

: Resemch partially supported by NSERC of Cnnada Grant $A8%48.
# Research partially supported by NSERC of Canada Grant +: AS5403.


Artur


46 A. H. Mekler and 8. Shelah

M 2=y
(2) for all nes, 4, is regular;
(3) 7€ Sy (the terminal nodes of S) iff 4, = w;
(4) suppose 7 is not terminal then
(a) E, = {i: " (i) € S} is stationary in A,;
(b) for all i€ Ey, Ayngy < | Bymgis| <Ay
(o) if i<jeE, then By S Byrgyy s
(d) if je E, and j is a limit point of E,, then

.B,fx(.’v) = U {_B"A«): i<j, ie E,'} .

A set § satisfying (1)~(4a) above is called a A-set.
To simplify notation we let B, = U B,y (1<I<I(y)). Here /(1) denotes
the length of ».

Remark. The notion of a A-system was introduced in [S2]. Here we have
used the definition from the appendix of that paper which differs inessentially from
the definition in the main body. If we assume that the B,’s are disjoinl except as
demanded in the definition above, then any A-system is essentially determined by
the associated A-set.

Although our main interest in this paper is in A-systems as we have defined
them, we can replace N, by any regular cardinal p and define for regular cardinals
A>p a (4, p)-system. In the definition above the following changes must be made.
First 2 is required to be a regular cardinal > p. In clause (2), each A, is required
to be a regular cardinal > u. Finally in clavse (3), replace @ by u. In particular,
a (4, No)-system is just a A-system. The treatment of (4, p)-systems is parallel to
that of A-systems.

DERINITION. Suppose & = S, (B,, Ay ne SY> is a A-system; by <>() we
denote the following principle:

There is a collection (C,: 5 & S such that forany ¥ < |J B, thereisa A-set TS S
satisfying, for all neT, X n B, = C,. nes

1.1. PROPOSITION. For any regular cardinal J, (&) holds for every A-system &
iff for every regular cardinal » <)\ and E a Stationary subset of » {>(E) holds.

In order to avoid the apparent contradiction of having the weak diamond
principle together with 2% = 2% we will use definable maps.

DEFNITION. Suppose & = (S, (B,, 4,: € 8)) is a A-system, and let $(S),
definable weak diamond, denote the following principle:

Suppose 4 is a set, x is a regular uncountable cardinal, and |4] < 2%, If ¥:

{9:9: B,~ y,ne Sy} - {0, 1} is definable from 4 and & and ordinal para~

meters then there is a g: Sy — {0, 1} such that for every y: | B, - x there
is n €S, such that ¥(y}B,) = a(n). nes
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1.2, THEOREM. It is consistent with 2% = 2% that for every regular uncountable
A< 2% and A-system &, P(SF) holds. Further this combinatorial principle is true if 2%
Cohen reals are added to the ground model.

Proof. Assume that we have added 2% Cohen reals to ¥ in order to obtain
V[G]. Working now in V]G], we consider 4 and & as above. By considering the
forcing as a two stage iteration we can assume that 4 and & e V. Choose |S,| Cohen
reals and index them as r, for e S;. Define ¢ by o(n) = 0iff O e Iy Let ry, il
index the Cohen reals where I 2 S,

Suppose ¥: U B, — x. We now claim that there is a A-set T'= S such that

nas

for all n e Ty there is a set 1, &I with r, ¢ I, but W} B, e V[{r;: i€ I}]. (The set I,
will be in the ground model, so there is no hidden subtlety in this

intermediate model.) To define the I, first assign (in ¥) to each be |J B,
nes
a countable index sct J, </ such that the value of Y(b) is determined by

{r;: jeJy}. Note that J, cxists since we are using a c.c.c. forcing. We then
define 7, to be UJ, (beB,). We define T to be

{neS:if v<,n, beB, and n<y €Sy, then 1 ¢J,}.

Here the < denotes the lexicographic order and < the tree order. Now let T'be the
subtree of S generated by those elements # of Ty S such that for all /< /() 4} Ie T,
We must check that T'is a A-system. Note that { » e T. So it suffices to show that if
neT then {u: n"(a) e T} is stationary in A, For « such that n"(z)eS let
f(o) = sup{y: for some vz#"(a) and be B, there is v’ = (v> such that v’ & Jj.
Since 4, is a regular cardinal, fis a function from 4, to A,. For definiteness let f () = 0
if it is not defined by the condition above. Let C < 4, be the closed unbounded set,
{B: for all w <, /(o) <f and f is a limit point of E,}. Then for any o & C N E,,
ROXEE

To complete the proof, we have to appeal to a consequence of the weak
homogeneity of Cohen Forcing (compare, for example, Exercise 25.9, p. 271 [J]).
If we add Cohen reals then any statement about elements of the ground model is
decided by the trivial condition. That is, either it or its negation is forced by the
empty function. Let / be the name for 1 which was used implicitly in the paragraph
above. Consider any condition, p. We need to establish that the set of conditions,
g 2p which force for some #n that o(n) = W(y } B,) is dense below p, Obviously
it is enough to show that one such condition exists. But this is easy: we can first
choose 7 & T such that p contains no information about r,. Then, by adding t‘o P
information about some r; where i € I, we can get a condition p’ such that p’ decides
¥(ir+ B,). Finally we choose ¢ so that gl- Oer, iff ¥(y}B,) = 0.

Although the above principle is consistent with 2% = 2%, it is not a theorem
of ZFC. The argument in [DS] that the uniformization principles true under
MA + ~1CH contradict ®(w,) also shows MA+ ~1CH contradicts $,(w,). In any
case we will see in the next section that $,(w,) implies that groups, which assuming
MA + "1CH would be Whitehead groups, are not. e
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- 1.3. COROLLARY. It is consistent with 2%° = 2% that for all A < 2%° and A-system &,
P(S) holds and that for all regular » = 2% and E a stationary subset of » (E)
holds. .

Proof. If we begin in the proof of Theorem 1.2 with a model where > ()
holds for all regular uncountable cardinals then it will still hold in. the final model
for all x = 2.

For (1, j)-systems we modify the definition of @,(%) by allowing 4 to have
any cardinality <?2*. With this modified definition, we can prove an analogue of
Theorem. 1.2 for (4, p)-systems.

1.4 Theorem. Suppose Ny <<y, p*=p and y** = y. There is a notion of
forcing P, such that |P|= x and Ip“MA() and $(F) for any (4, w-system of
cardinality <x”, where @, is redefined as above.

Proof. First force to make 2% = p and MA () hold. Now if we add y Cohen
generic subsets of p, &%) holds for all (4, p)-systems of cardinality <y. The
verification of this is just as in the proof of Theorem 1.2. Since we have added no
subsets of u of cardinality <y, MA(u) still holds.

Suppose we want to improve the theorem above and have 2% = y. It scems as
though we have to sacrifice some of the power of @,(&). If we weaken the definition
of @,() to restrict to ¥ which are not only definable but absolute, then we can have
2% = . Rather than stating a theorem we will only indicate the changes in the proof.
The forcing is just doing a finite support iteration of ¢.c.¢. posets of cardinality p.
The rest of the proof is much the same.

§ 2. Whitehead groups and 71CH. In this section we will explain how the principle
defined in the previous section can be used to prove that every Whitehead group of
power < 2% is free. We arc glad to have the chance to again explain the connection
between A-systems and non-free abelian groups, We will use the word “group” to
mean “abelian group”.

We first recall a definition and some of the basic facts about x-free groups.

DEFINITION. Suppose 4 is a »-free group of cardinality x, i.c. every subgroup
of cardinality < x is free. A w-filtration of 4 is a scquence (4, o <x) of pure
subgroups such that: for all «, |4,] <x; if o< B, 4,5 4p; if B is a limit ordinal,
then 4, = 0,9,,’4“; and for all o if A/4, is not x-free. then A,4./d, is not free.

Suppose A4 is x-free and |d| = ». If » is singular then A is free [S1]. Further
if % is regular and (A,: o<x) is a x-filiration of A4, then A is free iff

E = {u: dyy/d, is not free}

is not stationary (see for example [E]).
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Fix now a A-free group 4 of cardinality 1. We will now define an augmented
J-system associated to 4. We will define the A-system (S, (B, A,: ne SH) by
induction. As well we shall choose for neS, 4,4 such that: [4,] =1,
A"+z<‘§‘(1’) B, rl/zgz% )B,, p is Apfree and mot free. To begin we let Ay = 4, and

<i(n n

Ayy= A, Supposc mow that neS and everything has been defined for .
Choose (B, oA,y so that A, = B,; and (By+ Y Byl ) Byt o<y
1<i(y)

1<)
is a Afiltration of 4,4+ 3 Byl 3 By Let
1€ 1T

E, = {o: Byyy+ ), Byu/B,+ J, By is not free}
1<) 14T0n
For « e By, let Byngy = B, Choose A~y S B,rq 80 that for some Ayecs,
Aycay+ Byt Y, Bl Byt Y By
1€10n) 1€70)

is Aya¢y-free but mot free. Here we identify w-free with torsion-free.
The following proposition will be used later.

2.1. ProposimioN. Let A be a A-free group of cardinality A and use the notation

above, For all ne S there is a set of free generators, X, < B,, for & )B,, p-
<y

Proof. We show X, exists by induction on I(n). For I(n) = 1, B, is a free group,
so we can choose X, a set of free generators of B,. In general suppose we have

chosen Y < B,y-1 @ set of free gencrators for Y, B,y Since
1<7a)

B B
ts%) 1 ”/zz‘cn) T

is free, we can choose Z < B, whose images freely generate this group. Then we
let X, =Y Z

Our treatment of Whitehead groups will follow that of [E]. Recall that a group 4
is a Whitehead group iff Ext(4, Z) = 0. There are various ways to deal with
Ext we will use factor scts and transformations, A factor set from 4 to G is
a function f: Ax A4 — G satisfying:

Fu,v) = F (0, )5 [, o)+ k0, w) = f (@, v-w) = 1 (u, 0+ W) £ (0, 9);
and f(u,0) = f(0,u) = 0 for all u,v,weA. Let Fact(4,G) denote the set of
factor sets from A to G. Given h: A — G such that #(0) = 0, define o4 A+d4 — G
to be the map 8h(a,b) = h(a)+h(b)—h{a+Db). The set of such maps denoted
Trans(d, G) is the sct of transformation sets. It is standard that

Ext(4, G) = Fact(d4, G)/ Trans(4, G).
Further if 8 = &g, then h—g is a homomorphism. Suppose that A i§ afree. group-
and X is a sct of free generators of 4. Then if fis a factor set there is a unique h,
which we denote Jix ; such that Ai(x) = 0 for all xe X and 0k = f.

4 - Fundamentn Mathematicae 1851
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To apply the definable weak diamond principle we will need the following
“killing lemma”.

2.2. LeMMA. Suppose K < F where F is a fiee group and X is a set of free generators
Sor K. Further suppose that 0: K — Z is a homomorphism which does not extend
to F. Then for any g: X—Z either (i) for all factor sets fe Fact(K, Z),
if hyy Sh: F— Z then for all g=g: F— Z 6k # 87 or (ii) for all fe Fact(K, 2),
if hyp+0 Sh: F— Z then for all g <§: F— Z 5k # 67.

Proof. Suppose not. Let g, 1y, go, f1g, /1, 95 and hy form a counterexample.
Then fiy—gy = 0y and /i, —g; = 0, are homomorphisms from F 1o Z. For any
x€X, 0;—00(x) = 0(x). Since X generates K, (0,~0,) = 0. But 0 docs not
extend to F, so we have a contradiction.

2.3. THEOREM. It is consistent with 25° = 2% that every Whitehead group is free.

Proof. We assume that the set theoretic principles of Corollary 1.3 holds.
Since for all regular % 2" and stationary set E< »x (E) holds, it is enough to
verify that any Whitehead group of cardinality <2 is free. Once we have
this the proof can be completed as Shelah did it originally [E]. Suppose that
[4] = A, A is regular, 4 is Afree and A4 is not free.

Let (S, (A 4, B,: n€S)) be an augmented J-system associated with A.
We will define a group structure on Zx .4, So that the extension

0—>Z—‘—>ZxA—7-l>A—->0

is exact, where ¢(n) = (n, 0) and =({n, a)) = a. For each neSy choose X,<B,
a set of free generators for Y Byyand 0,0 > B,y - Z a homomorphism
1<10p) Iy
which does not extend to A+ ¥ Byu. The sequence (X, 0,:ne Sy and the
!

<l
augmented A-system are used in the definition of ¥. For neSyand g: B, -y,
let ¥(g) = 0 iff (i) of Lemma 2.2 holds with respect to X, 0,, 3 B,y and
0]

Au+ Z Br, M-

1<£10n

We now define f'e Fact(4, 2) by induction on the lexicographic order
of S. Before we do note that for all <0, 4, B,. For any ne S let £ be any

4
element of Fact( Z)B,,r,,z) which extends U £, (o<, ). If n ¢Sy, then let
I=<i(y

Ju=1ry. Suppose ne S, if o(n) =0 choose hys,Sh: dy+ Y B,y - Z and if
Isi(y)
o(n) = 1 choose hy,, +0sh: 4+ ¥ Byj— Z. The rest of the verification is

1<10p)
exactly the same as the proof in [E].

Remark. It is also possible to give a definable weak diamond which makes
no mention of A-systems. This principle would also suffice to prove the theorem above,
We have avoided doing this for two reasons. First we wanted to show how to use
the definable weak diamond for 2-systems. In L where we have O for every A-system
the method above gives a non-inductive proof that every Whitehead group is free.
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