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Flows on one-dimensional spaces
by

J. M. Aarts and M. Martens (Delft)

Abstract. A separable and metrizable space X is called a matchbox manifold if each point
x of X has an open neighborhood which is homeomorphic to Sy x R for some zero-dimensional
space Sx. The following special cases have been studied before. In [4] for cach x the space Sy is
the Cantor discontinuum and in [1] for each x the space Sy is a copy of the rationals Q. Each path
component of a matchbox space admits a parametrization by the reals R in a natural way. This
is the main tool in defining the orientability of matchbox spaces. It is shown that a one-dimensional,
separable and metrizable space X is an orientable matchbox space if and only if X is the phase
space of some flow without rest points. The continuous dynamical systems without rest points on
one-dimensional spaces coincide with the suspensions Z(S,f) of homeomorphisms f: §— S
for some zero-dimensional space S.

All spaces under consideration are separable and metrizable.

0. Introduction. The central question discussed in this paper is: on what one-di-
mensional spaces can there be defined a flow? Of course, we must say flow without
rest points. Indeed, on any space there can be defined the trivial flow with no motion
at all.

Typical examples of one-dimensional flows without rest points are suspensions
2(S,f) of homeomorphisms f: S~ S on zero-dimensional spaces ([7]). It is the
main result of this paper that the converse is also true.

STRUCTURE THEOREM. Let n: XX R X be a dynamical system without rest
points on a one-dimensional space X. Then there exists a zero-dimensional space §
and « homeomorphism f: S = S such that m: X x R — X is fopologically equivalent
to the suspension Z(S, f).

The theorem is proved in Section 5.2. For compact spaces the result can be
found in [8]. In [1] the theorem has been proved for the case where X is a single
orbit. The structure theorem is proved by extension and generalization of the methods
of the latter paper. Our paper can indeed be seen as a continuation of [1]. The
main idea is to recover the phase space of a flow from its local structure. In view
of the section theorem, first proved by Whitney [12]; the local structure of a one-
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dimensional flow without rest points is rather simple. In such a system each point x
has a neighbourhood which is homeomorphic to S, x R for some zero-dimensional
space S,. It must be emphasized that S, may vary with x. Spaces in which each point x
has a neighbourhood of the form S, x R for some zero-dimensional space S, are
called matchbox manifolds in this paper. Apart from [1] they have also been studied
in [4] and [5] in the setting of compact spaces.

This paper is organised as follows. We first develop some basic geometry of
matchbox manifolds in Section 1. In Section 2 we prove the existence of so-called
long and wide matchboxes. After discussing the orientability of matchbox manifolds
in Section 3 we examine the return map in Section 4. Fxnally, in Section 5 the structure
theorem is proved.

The proof of the structure theorem can as well be given within the framework
of flows. In that way a somewhat shorter proof can be obtained, mainly because
the discussion of orientability becomes redundani. However, by the approacn
made in this paper, a better insight in de geometrical structure of one-dimensional
flows and their sections can be obtained. It should be observed that facts about
sections and mappings between them, e.g. the continuity of the first return map,
are by no means easy to prove in the absence of an implicit function theorem.
As a by-product of our approach we get the following theorem.

CHARACTERIZATION THEOREM. A space X is the phase space of some one-di-
mensional flow without rest points if and only if X is an orientable matchbox manifold.

This theorem is proved in Section 5.1.

Standing notation. Throughout the paper the following notation is used.
S denotes any zero-dimensional subspace of R;

Fg={(x,»)eR* xe8, -1<y<l},
Eg={(x,y)eR*| xe8, —1<y<l1}.

The set Fy is called a standard matchbox. For each xe S the set {x} x[—1,1] is
called a match in F.

If no confusion is likely to arise we simply write F and E instead of Fg and Ej.
The natural projections ‘of the space Fg onto S and [—1,1] are denoted by pr, and
pry respectively. Both pry and pr, are open. As [—1,1] is compact, pry is closed
as ‘well.

1. Geometry of matchbox manifolds.

1.1. DEEINITION. A space X is called a matchbox manifold if for cach xe X
there is a zero-dimensional space S, such that S, x R is homeomorphic to an open
neighborhood of x.

THEOREM. Let n: Xx R — X be any flow on a one-dimensional space X. If w
has no rest points, then X is a matchbox manifold.
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Proof. Because there arc no rest points, for each x & X there is a closed subset
Sy of X ~- called a local section at x — and a real number 7 > 0 such that

xely,  m Syx[=n,0] = n(Syx[-n, ) is a homeomorphism
and

n(Sy % [=n,n]) is a neighborhood of x.

See [6] for a proof.

Now let N be an open neighborhood of 7(x, 0) == x in S, such that for some
¢ with 0 <& < we have n(Nx (¢, &)) < intn(S % [—n, 5]). Then =: Nx(—¢,8—
—(Nx (-t &) is 2 homeomorphism and n(Nx(~e, &) is open in intm(Sx

% [=n., n]), whenee in X2 It {ollows from [2], 1.9.E, that dimsS, as well as dimN
is zero.

1.2, DurNimions. Let X be a topological space. Supposc that h: Fg — X is
a topological embedding such that h(Fy) is closed and A(Eg) is open in X. Then
the set V= A(l%) is called a matchbox in X. The induced map h: Fy—V is

called a parametrization of V. The sets h({x}x[~1, 1]), xS, are called matches

of V. We also say that ¥ is a matchbox neighborhood of h(x,0), x € S.

In [1] various properties of matchboxes have been discussed for the special
case that each section is homeomorphic to Q. Many of these results can be
generalized in a straightforward manner and are only briefly discussed here.

PROPOSITION. Suppose that W is a neighborhood of x in a matchbox manifold X,
Then there is a matchbox neighborhood V of x such that xe Ve W.

Proof. Let 4: S, x R — W, be a homeomorphism onto an open neighborhood
W, of x. As R is homogeneous, we may assume that x = A(y, 0) for some y € S,.
The rest of the proof is as in [1], 2.3.

Remark. It is very useful to note that if W is a matchbox neighborhood of
x = h(0,0) in X with parametrization h: Fg— X, then for all clopen subsets T
of § with OeT and for all & with 0<s<1 also h(Tx[—e,¢l) is a matchbox
neighborhood of x.

1.3, Here we present two examples of matchbox manifolds which might clarify
the discussion.
(@) X is the subsct of R? defined by

1
= {(x,y)l ¥ m sin;, x>0} u {0, )] -1<y<l},
(i) X is the subset of R? which in polar coordinates is given by

X={l,0) 0€p<2n}u{(r,p) r=1+expp,peR}.

From both examples it is clear that the homeomorphism type of the matchbox
neighborhood may vary with x.
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1.4. PROPOSITION, Suppose that {V,| o A} is a discrete collection of matchboxes
in a matchbox manifold X. Then ) {V,| ae d} is a matchhox in X,

Proof. Let 4, Fy, =V, be a parametrization, e A, As {#(Fy)] aed} s
a disjoint collection of open. scts in the separable space X, the index set A is co‘u,ntzl:ble.
We then may assume without loss of gencrality that the collection {8, aed)is
discrete. In an obvious way the map /it U {Fy,| w6 A} - (J1V,] wc A} is delined,
which for cach o on Fy, agrees with B, Because {V,|a ¢ 4} is diserete, it {ollows
that /1 is a topological embedding. The rest of the proof is obvious.

The proofs of the following two propositions are omitted as they are casy,

PROPOSITION. 4 maichbox manifold is atriodic,
PROPOSITION. An open subset of a marchbox manifold is a matehbox manifold,

PROPOSITION. Suppose that X is a matchbox manifold and that 'Y is an are
component of X, Then Y is also a matchbox manifold.

' Proof. Let ye ¥ and let ¥ be a matchbox neighborhood in X with parametri-
zation h: F—V. Write C = pr;(hA"YV' n ¥)) and £ig = Cx[~1, 1], a standard
matchbox. Because ¥ is maximal with respect to arcwise connectedness,

Fo=h"YVnY),

It follows that y has a matchbox neighborbood in Y.

1.5. LEMMA. Let X be a matchbox manifold. Suppose that V is a matchbox in X
and that J is an arc in X, Then the intersection V oy J consisis of finitely many ares
only. Each such arc with the exception of at most two is a match of V.

Proof. Cf. Lemma 2.4 of [1],

] DErINITION.  Let Fg be any standard matchbox. Let K be a clopen subset
(l)'V S and let #,b: K= [—1,1] be coniinuous functions such that b <r, The set
= {(r, )] xe K, b(x) Su<t(x)} is called o simple matchbox in Fy with base K.

Observe that W is a matchbox in Fy indewd,

_ FLE]Y‘IMA' Let thcr.a l”i given a standard matchbox ¥y, Suppose that V' is a matehbox
in Fg with parametrization h: Fp~s V. Suppose that for some x ¢l we have

h{x}x[~1,1) = V'~ pr;‘(pr,‘(h(x))).

T/?en there is a clopen neighborhood K of xin S and u simple matehbox W in Fy
with basa K such that W=V n pry(K),

Proof. Cf. [1], Lemma 2.5,
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1.6. DrrNITION. Let X be a matchbox manifold. Suppose that J is an arc with.
parametrization ¢: [0, 11— X and that V is a matchbox in X with parametrization
h: Fg— V. Then V is called a matchbox along J if for some xe §

@ JnV=n{x}x[~1,1]), and

(ii) the map ¢~ g~ *(h(x,t)) is increasing.

As in [1], 3.4, it can be shown that if J is an arc in a matchbox manifold and
ifx eJ, but x is not an endpoint of J, then x has arbitrarily small neighborhoods ¥
such that ¥ is a box along J.

2. Long and wide matchboxes.

2.1, The following theorem is crucial for the development of the theory of
sections. Very roughly stated the theorem is as follows, If ¥, and V, are matchboxes
along an arc L and if L 0 ¥, N V, is an arc, then there is a matchbox V' along L
such that V ¢V, uV, and LNV =Ln(F; uV,). By this theorem we are
able to produce long matchboxes along an arc L covering subarcs of L of arbitrary
length. The theorem is a generalization of the pasting theorem in [1], 3.4, In order
to avoid confusion we present a precise reformulation. The proof though is an
almost verbatim copy of the proof in [{] with obvious changes only.

THE PASTING THEOREM. Let X be a matchbox manifold and let L be an arc
in X. For i = 1,2 let V|, be a matchbox along L andlet h;: Fg, — V, be a parametri-
zation. Let q; be the point in 8; such that L V= h({g}x[—1,1D, i=1,2.
Suppose that for some $q,5,€(—1,1),

LaVynVy=h{g}xs 1D = (g} x[-1,5).

Then there are clopen neighborhoods A, of ¢, n Sy, i=1,2, and a matchbox V
along L with parametrization h: Fg — V such that
Vo= Ay x [=1, 1) W hy(dy X [ 1, 1]),
AU ) { =1}y = dyx{=1},  h3'A(Sx{1}) = 4, x{1}.

2.2. As a corollary we get a result about a finite sequence of matchboxes along
an arc with the property that any two consecutive matchboxes intersect like ¥/,
and ¥, in the pasting theorem, Then there is a matchboxes ¥ along L which covers
as much of L as the union of the sequence does. See [L] for a more precise statement.
We are going to use this result in the following lemma.

and

LEMMA OF THE LONG BOX. Let J be an arc in « matchbox manifold X with start
xy and endpoint x,. Suppose that Vy and Vy are disjoint matchbox neighborhoods
of x, and x, respectively, For i = 1,2 let 2 Fg, = V) be a parametrization of V;
and write h(S;x {0}) = Z,.

Then there is a matchbox V with parametrization k: Fs— V such that

¥ ek(Sx{-1NcZ, xekSx{+1})c2

Ie(S % {—=1}) is clopen in Zy and  k(Sx{1}) is clopen in Z,.
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Stated less accurately the lemma says that therc is a long box k(Fy) = ¥ with
boitom in Z, and top in Z,. It is to be noted that k0Sx {--1}) and k(Sx {1}) are
homeomorphic.

Proof. After having replaced 8 by S;n T for some suitable clopen subset
T of §;, we may assume that V; n J is precisely one arc J, i = 1, 2. We also may
assume without loss of generality that

o= g ({0F %[0, 1) and Ty = hp({0) x [~ 1, 0]).

This can be achieved by shifting S; and replacing 2,(x, t) by J(x, £ if necessary,
Now we define a sequence of matchboxes along the arce

T = (O} x =1, 1) U T O ({0} x [ 1, 1),

The first box of the sequence is 2,(S; [0, 1]) and the last box is Jig(Syx[~1,00).
For each point z of J* = cl(J\(/; U J3)) & matchbox ncighborhood V, along J
Is selected such that ze ¥, « X\(Z; U Z;). The collection {int ¥,|z ¢ J*} is an open
cover of J*. Hence there is a finite subcollection {int ¥,,, .., int ¥, }, the union
of which contains J*, We may assume that this collection is minimal. Because of
minimality after possible rearrangement we get a sequence

/ZI(SJ. X [O! ”): Vns ooy V,", /lz(Sz X [““‘ | 4 O]),

any two clements of which intersect (nicely) if and only if they are consecutive.
The lemma now follows from the above-mentioned corollary,

2.3. We are now going to show that in every matchbox manifold ¥ there exists
a so-called wide matchbox, i.c. a matchbox which has a non-empty intersection
with every arc component of X, We need the following lemma,

LEMMA. In a standard matchbox Fs let G and U be a closed and an open subset
respectively of Eg. If G U, then there is a simple matehbox V' in Fy such that
priGepryVand Ve U,

-Proof. As pry is an open as well as a closed continuous mapping, the closed set
pry G is contained in the open set pr,U. Let K be u clopen subset of ' such that
pryG < K pry U. In cach point x & K there is u clopen subset Uy of § and. a closed
i11tervg11 [ey, d,] such that xe U, < K and Uy % [egr ] e UL

Since the spaces under consideration are separable and metrizable, there is
asequence (x;) in X such that K = |J {Ugli=0,1,..}. Write

K, =UNU{U,) i=0, wo =1}, n=0,1,..
It is to be observed that {K|n = 0, 1, .-} Is a disjoint clopen cover of K. The

continuous functions b, t: K~ [~1,1] are defined by 5(x) = €y, and #(x) = dy,
for xe K. Put V= {(x, )] xck, b(x) S u < t(Ww)},
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2.4, TUROREM. In cach mulchbox manifold there exists u wide matchbox.

Proof. Let X be a matchbox manifold.

Tn the proof the following ad hoc notation is used. For any matchbox Win X
by B(W) — the bundle of W ~- is denoted the union of all arc components of X
which have a non-empty intersection with W. By using the lemma of the long box
one can easily see that B(W) is open. As X is separable and metrizable, there is
a couniable collcction of matchboxes W, with parametrizations &;: Fg, — W,
i=0,1, .., such that {#(fig)] i=0,1,..} covers X, Since X is paracompact,
this open cover has a locally finite open. refinement, which may be supposed vt'o”be
countable, {Uj] i = 0, 1, ..}, Let {G}} i =0,1,...} be a closed shrinking, that is to
say, {6y 1=10,1,..} is a closed cover of X and Gy= Uy, i==0,1,.. Applying
Lemma 2.3 we can construct a matchbox Vy such that Vo < Uy and Gy < B(V,).
Inductively on n a matchbox ¥, is defined in X such that ‘

@ VyeU,n=10,1,..;

) Gy . U Gy =B(V)uU oo W BV, n=0,1,..5

© {V,| n=0,1,..} is discrete. ‘
Assuming that the ¥, have been defined for i = 0, ..., n—1 satisfying (a) and (b), let

Gll\(‘B(VO) o W H(Vn-).))
UNFo v e O Vg

Then obviously G is closed and G, < Uy, B

Now U, is a subset of some A(Es). Let G = k7 *(G}) and U= U. By
applying Lemma 2.3 a simple matchbox V* in Fg, is ol?tamcd such .that
pr,Gepr V* and V* < U. Let ¥, = Jy(V*). It follows that ¥, is a matchbox in X
such that (a) and (b) are satisfied. Because {V}] i= 0, ..., n} is'disjoint, n=0,1,..,
and {U,| n=0,1,..} is locally finite, the resulting collection -{V,I i=0,1,.}
is discrete. By Proposition 1.4, V= {J {V|| i=0,1,..} is a wide matchbox.

G and

It

[

’
n

3. Orientation of matchbox manifolds. In this section we show how to define
orientability of matchbox manifolds. We have already observed in 1.4 that an arc
component of a matchbox manifold is itself also a matchbox manifold.

3.1, TuroreM. Let X be an arcwise connected ma(chbox manifold. Let V be any
matchbox in' X with paramefrization hi Fg - V. Then S 1s countable.

Proof. If X happens to be a circle, then it is easily scen that in view 'of’ .Lemma
1.5 § must be finite. So we may assume that X is not a circle. As X is atriodic (1.4),
it cannot contain a circle, It follows that X is uniquely arcwise conncct‘ccl. Let
p e h(Es). As in [1], 3.1, we write X = R, UL, such that R, and L, are atewise con-
nected and R, L, = {p}. Moreover, for x, y & R,\{p} (or %, ‘eL,,\{p}), }f X #
cither xepp or ye px. Here pp denotes the (unique) arc which begins in p and
ends in y. We shall show now that S is countable. Write Z = #(S'x {0}) and assume
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that Zn R, is uncountable. Let D be a countable and dense subset of Z R,. Let
D* = (J {px|xe D}. Tn view of Lemma 1.5 we have D*~Z is countable, Let
ge(ZNRIND*. As pgnZ is closed in Z, there is a point ze Dpg. But then we
must have ge pz and ge D*. This is a contradiction. Tt follows that 2 NR, is
countable. Similarly ZnL, is countable,

3.2. Arcwise connected spaces which are locally homeomorphic to QxR are
called P-manifolds in [1]. There is the following corollary to the preceding theorem,

COROLLARY. Let X be an arcwise connected matchbox manifold. Then X iy either
a circle, a topological copy of R or a P-manifold.

Proof. We continue the discussion of the proof of 3.1.

If x and p are any distinct points in Z, then by the lemma of the long box there
exist homeomorphic neighborhoods of x and p in 2. 1 follows that Z s cither
discrete or dense in itself. In the former case X is a topological copy of R, In the
latter case Z is homeomorphic to Q ([10]). The coroltary easily follows,

3.3. Let X be a matchbox manifold. As we have Just scen any arc component
of X is either a circle, a copy of R or a p-manifold. In each case we define the
parametrization of the arc component C of X.

Tt has been shown in [1], 3.1, that if C'is a P-manifold, then there exists a con-
tinuous bijection p: R — C. Such a mapping is called a parametrization. 1t has been
observed in [1] that the parametrizations fall into two classes, the directions, 1f C
is a topological copy of R, then any homeomorphism p: R - ¢ is called a para-
metrization. Also in this case in a very natural way there are two directions. As
is well-known R is the universal covering space of S with covering map
t - exp(2nit), see e.g. [9].

In case Cis a circle, let 4: §* — C be any homeomorphism. The composition
of the covering map and % is called a parameltrization of C'. Also in this case para-
metrizations fall into two classes. For any arc J in C there is a countably infinite
collection of arcs which by the parametrization is mapped onto J,

3.4. Let X be a matchbox manifold. Let {Clae d) be the collection of arc
components of X. If for cach o ¢ 4 a parametrization Dot Ry B8 given, we shall
call the collection {nlee 4} a parametrization of X. Now let ¥ be a matchbox
in X with parametrization /;: T = V. We shall say (hat W is coherently dirceted
by k if for each xe.§ and for any closed interval J in R such that

I’m(‘,) = ]7({x} x[~1, 1)
for some o the composition praeh™lop, is increasing.
Some comment s in order. For cach xe§ there is a unique o such that
h(x, 0ye C,. In case C. is a circle there are countably many intervals in R which by

Po are mapped onto h({x} x [-1, 1]). Any two such intervals however can be mapped
onto each other by a translation. So for deciding whether pry o h™4 o P I8 increasing

icm®

Flows on one-dimensional spaces 61

it is irrelevant which interval is chosen. In the other cases there is a unigue interval
which is mapped onto A({x} x [~1, 1]). Sec [1] for more details.

DEFNITION. A matchbox manifold X is said to be orientable if there is a parame-
trization {p,loce A} of X such that each point has a matchbox neighborhood which
is coherently directed. In that case the parametrization is called proper.

3.5, Examrres. In 1.3 we have presented two examples of matchbox manifolds.
As may be verified (i) is not orientable, but (ii) is, In [1] 3.3 an example is presented
of a P-manifold which is not orientable,

We now show that one-dimensional flows are defined on orientable matchbox
manifolds.

TuEOREM. Let n: XX R —+ X be a flow without rest points on o one-dimensional
space. Then X is un orientable matchbox manifold,

Proof. The notation of [.1 will be used. Let {C,ja & A} be the set of irf com-
ponents, Letae A, Pick y € C,. Obviously I'(y) = n({y} x R) = C,. The set p, '(I'( J.!))
is open in R. This can be scen by considering nmtch‘boxe:s a}ong I'(y). As the OITJ]tS
form a partition of the space it follows that I'(y) and C, coincide. Now a parametrlz.a-
tion for C, is defined by p(t) = n(y, t). This is done for each o. We shall verify
that the matchbox n(Nx [—e,¢]) (see 1.1) is coherently directed by {p,Jae A}.

If xe& N and x = p,(u), then for any ve[—e, 8] we have

Paltib0) = 7(y, u+v) = n(nly, w), v) = n(p,), v) = nlx, v).
It follows that
pryon™ o plu+v) = prye n™t o m(x, v) = prylx, v) = v.
The matchbox n(N x [~ ¢, ¢]) is coherently directed by =.

3.6. Of several theorems of the previous paragraphs there are versions for
the case that the matchbox manifold is orientable. ‘
e If, Li"or example, in the pasting theorem the matchbox V% (or V) 1s: col'lerently
directed by /1y (or hiy), then ¥ is coherently directed by /. This obscr}'atlon is madﬁ
at the end of the proof of the pasting theorem in [1], 2.1 and can with some sma
modifications be carricd over 1o the general situation. Similarly there exist in an
oriented matchbox manifold coherently directed long boxes. Th:erc also exist
coherently directed wide matchboxes in an orientable matchbox manifold. ’I‘o' prqve
the existence one starts the proof of 2.4 with a collection of coherently directed
matehboxes i Ky~ Wy, 1= 0,1, .. such that {i(Eg)| 1 =0,1,..} covers X
and continus as in that same proof,

4. The return map. In this section we imitate the we11~knovfn definition of the
Poincaré return map in the abstract setting of matchbox manifolds.
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4.1. Standing notation. Throughout Section 4 the following notation 15
fixed. X is an orientable matchbox manifold. {Cla e 4} is the collection of arc
components and {p,lu € 4} is a proper parameirization; p,: R = C,, ae 4. It is
to be noticed that for any x € X there exists o€ 4 and ¢ € R such that x = p,(p).
V always denotes a coherently directed matchbox in X with parametrization
h: Fg— V. All matchboxes are assumed to be coherently directed. The zero-level
of Vis Z = {h(x,0)] xeS}.

4.2. LEMMA. For every o€ A, p; \(Z) is a countable and discrete subset of R.

Proof. In case C, is a circle the intersection C,nV consists of a finite and
disjoint collection. of arcs (Lemma 1.5). Each of these arcs is covered by a disjoint
collection of arcs in R under the parametrization. So in this case the lemma is easily
seen to be true. If C, is not a circle, then p, is bijective, In view of Theorem 3.1
P2 MC,AV) is a countable and disjoint collection of arcs. In view of Lemma 1.5
the collection is discrete too. The lemma follows.

DEFINITIONS. A point x = p (1) from Z is called escaping in the positive
(negative) direction if for no s >t (s < t) the point p,(s) belongs to Z. If there exists
an s>t (s <t) such that p,(s) € Z, then x = p,(t) is called positively (negatively)
returning. In the case that x = p,(1) is positively returning we write

¥(x) = min{s e R|s>1 and p,(s) e Z}.

The set of positively returning points of Z is denoted by R(Z). The map p: R(Z) -+ Z,
defined by p(x) = p,(r(x)) is called the (Poincaré) return map.

PROPOSITION. The set R(Z) of positively returning points of Z is an open subset
of Z. The map p: R(Z) — Z is an injective, continuous and open mapping.

Proof. This is another application of the lemma of the long box.

4.3. The following theorem deals with the enlarging of a wide matchbox.
The goal, we have in mind, is the reduction of the portion of escaping points. We
first prove the next lemma.

LemMA. Assume thar the standard matchbox Fy is endowed with a totally bounded
melric. Let &> 0 be given. Then there exists a finite partition {Kj|j = 0, .., n} of S
into clopen sets and there are continuous functions by: Ky~ (=1,1), f =1, u,n,
such that each simple matchbox V; = {(x, )| x € Ky, b;(x) S u< 1} has diameter < s,
J=1,..,n

Proof. Let ¥ be an open finite collection in Fy of mesh < &, the union of
which covers S {1}. Let %" be the trace of ¥ on Sx{1}. Because § is zero-di-
mensional, there is a partition {Kj| 7 = 0, ..., n} of § into clopen subsets such that
{Kix{1}] i = 0, ..., n} is a refinement of %"". Now fix j & {0, ..., n}. For cach xek;
there is a clopen neighborhood U, of x in K; (whence in §) and a ¢, e (—1, 1) such
that U, x(e,; 1] is contained in some element of %"
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Now U {U,] xye K;} = Kj. Let (x;) be countable sequence in K; such that
U {U.\'ll i=0,1, } s KI" Write Kjk = ka\U {lel i=0, ---ak""l} and define
byi Ky = (=1,1) by by(x) = ¢, for xeK;,.

TueoreM. Let V' obe a coherently directed and wide matchbox. Assume that
ZNR(Z) # & Let U be an open subset of X such that UnV = @ and for any
x = pl1) € Z\NR(Z) for some u>1t we have p,(u) € U. Then there is a matchbox V'
with zero-level 7' such that V' < U and Z = RZ WZ').

Proof, Let x = p,(r) be any point in Z\R(Z) and p,(u) & U, u> 1. We apply
the lemma of the long box with ¥y = ¥, ¥, is a suitable matchbox neighborhood
of p,(u), which. is contained in U, and J is the arc {p()|#<s<u}. We then get
a matchbox ¥, with parametrization k,: Fg - V, such that

y=p)ek(Six{~1DeZ, and p@ek(S,x{1P=U.

After having replaced S, by a suitable clopen subset of itself we may assume that
there exists ¢, <1 such that k(S, % [¢,, 1) = U. In this way we get a collection
{E(Syx { I x e Z\R(Z)} of clopen subsets of Z, the union of which contains
ZNR(Z). Because the spaces involved are separable and metrizable, there is a sequence
(x;) in ZN\R(Z) such that

ZNREY ) ey (S x {=~1D] i=0,1,..}.
We now write
K, o kg Sp % = IDNU {ky (S % {—=1D] i = 0, ..., n—=1},
Su = ]"1'17(«;"‘(1(,,) and I'Vu = kxu(Sn x [cxm 1])’ o= 0’ 13 e

In this way we have obtained a disjoint family of matchboxes {W,| n = 0,1, ..}
in U such that for any x = p,(f) € Z\R(Z) for some u > and for some n we have
PlB)EW,, ®. .y

We may as well assume that limdiam(W,) = 0. This can be achieved as follows.

n=r e
First X is endowed with a totally bounded metric. Then by applying the preceding
lemuma each W, can be replaced by o finite disjoint collection of matchboxes of

| ,
diameter < .- such that ® still holds true. From {W,] n=0,1, ..} we delete
n

o+ 1
all W, sucl that K, e R(Z). In this way it is garanteed that for each W, there exists
an escaping point p,(1) & K, such that for some u>t, p,(#) € W,.

In view of Proposition 1.4 it only remains to show that {W,| n= 0,1, v}
is locally finite, This is done by deriving & contradiction. from the hypothesis that
{W,| n=0,1,..} is not locally finite at some point x. We consider two cases,

Case [, x = py(v) and for some w>uv we have py(w)eZ. By applying the
lemma of the long box it can be seen that there is a coberently directed matchbox. V3
with paramctrization /1,2 Fy, - V, such that x € i, (Er,) and hy(Ty x {1})is a clopen
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neighborhood of py(w) in Z. As limdiam W, = 0, for some n we must have
W, < hi(Er,). e

Then for some x; = p,,(¢,) € Z\R(Z) and some uy > 11, p,,(u;) € W,,. Following
the matches in ¥, we find #, > w, such that p,(u,) € Z. A contradiction.

Case 2. x = py(v) and Casc 1 does not hold. As V' is a wide matchbox for
some w < v we must have py(w)eZ. Without loss of generality we may assume
that w is the largest value for which this holds true. But then py(w) & Z\R(Z) and
pu(w) € K;, for some m. As in Case 1 we get a coherently directed matchbox ¥,
with parametrization fy: Fy, = V, such that x & hy(Ep,) and hy(Ty x {=1}) a clopen
neighborhood of p,(w) in K. As lim diam W, = 0 for some W, we must have
W, < hy(Ep,) and n>m. As X is atriodic, from this we get K, n K, % @. A con-
tradiction.

4.4. We are going to show that there exists a wide matchbox ¥ such that every
point of Z is positively returning, i.e. R(Z) = Z. We first mimic the definition of
limit sets in an abstract setting.

DreriNiTioN, Suppose that the orientable matchbox manifold X is a subset
of some compact space Y. Suppose that Z is a wide matchbox in X. Assume
ZNR(Z) # @. Let B = {u e d|p,(t) e Z\R(Z) for some te R}.

We define

QB) = {xlx = lim py(t,), 1, > w0}, feB,
and
o* = dyu{Q(f)|fe B).
LBMMA. P*nX=60.
‘ Proof. We assume that y € Q% X for some y e ¥ and derive a contradiction.

By applying the lemma of the long box we can find a coherently directed matchbox
V in X with parametrization J: Fy — ¥ such that y e A(Eg) and

MSx{-1}<=Z or H(Sx{lD=2Z.

Let U be an open set in ¥ such that Un X = h(Eg). Then there exists ffe B and
x& U such that x e Q(f). Write x = lim p,(2,), 1, = co. Then for some N for all
n=reoH

n>N, py(t,) € U and consequently py(t,) € h(Eg). By applying Lemma 1.5 we casily
obtain a sequence (s,) such that s, — o and py(s,) & Z. By the definition of B however

there exists #o such that py(1,) e Z\R(Z). But then s,< 1, for all neN. This is
a contradiction.

THEOREM. Let X be an orientable matchbox manifold. Then there exists a wide

matchbox V such that every point of Z is positively returning and the map p: Z - Z is
a homeomorphism.
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Proof. Let Y be any compactification of X. Let ¥, be any wide matchbox
in X with zero-level Z. If Zy\R(Z) # @, we continuc as follows. Inductively on 7
we shall define matchboxes V,, n == 0,1, ... such that

@) {Vor ¥y oy Vb is o disjoint collection, n = 1,2, ...,

(i) ZoV W ZpycRZy W .. UZ), n=1,2,..,

(iii) {Vy, Vi .o} is locally finite.

Suppose that % is as in the above definition.

Let (U,) be any decreasing scquence of open, neighborlioods such that Q* is
the intersection of {ely U} n=0,1,..}. Let neN. Assuming that ¥y, ..., ¥,_,
have been defined satisfying (i) und (i) we define V* = ¥, 0 .. U V-1, In view of
() and Lemma 1.4 P* is a coherently directed and wide matchbox, We write Z*
for the zero-level of V¥, We may assume Z% = Zj U .., U Z,_(. Let

Ut = (U,n X)\V*

It is 1o be observed that Z*™R(Z*) 5 @, Let x = p,(t) € ZXR(Z*). Because Y
is compact, Q) # &, As Q) Q% for some u>¢ we must have Py e U*,
By Theorem 4.3 it follows that there exists a matchbox V, with zero-level Z,
such that R(Z*WZ,) = Z* Tt follows that {V,, .., V,} satisfies (i) and (ii).
Asn{clyUyln == 0,1, ..} = 0% it is casily seen that (i) holds true also.

In this way we get a matehbox Vo= (J{V,|n=0,1,..} with zero-level
Z={2Z,) n=0,1,..} such that Z\R(Z) = @. Then in view of Proposition
4.2 p: Z - Z is a topological embedding. By a similar procedure we can extend Z
to make sure that every point of Z is negatively returning also. But then p is an onto
map and a homeomorphisn,

5. The structure theorem.

5.1, We first prove the characterization theorem which has been stated in
Section 0.

Proof. The “only if"-part is Theorem 3.5. To prove the “if”-part let Z and
P2 - Zbe asin Theorem 4.4, Z s the zero-set of the coherently directed matchbox
V' with parametrization At Fy -» V. The pattern of this part of the proof is very
similar to that in [[], 4.3, Using the lemma of the long box and the fact that Z is
separable, we get o countable cover { W, Wy, ..} of Z and a collection of matchboxes
{Vor Vi oo} with purametvizations iy: Fy, - Vi, i =0, 1, ..., such that

(i) W, is a closed subsel of X and an open subset of Z,

({0) WSy {13y o Blpry « 27 W ) % {4]) and

h(Syx {1}) == hpry o A (p(W)) % {~%D, 1= 0,1, ..

It is to be moticed that §, is homeomorphic to Wy, i = 0, 1, ... We may assume
that the cover {W,, W, ...} is disjoint, whence locally finite, It then follows that
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{Vo, V1, ...} is a disjoint and clopen cover of XNA(S % (—4, 4)). Also it is easily scen
that {h(Sx[—%, 2D}u{¥i| i=0,1,..} is a locally finite closed cover of X.

Now let Y =2Zx[0,1]. The map n: ¥~ X is dcfined as follows. For
(2, 1) € Zx[0, §] we let n(z, t) = h(pr; o i~ *(z), t) and for (z, ) e Zx [+, 1] we let
n(z, 1) = h(pry o k™ (p(2)), 1~ 1). For each i > 0 the parametrization A,: Fg, — ¥, is
used to glue W,;x [}, §] into X in such a way that n(W, x {4}) = /,(S;x {~1}, and
(W, x{3)) = h(S;x{1}). This can be done in view of (ii). Tt is not hard to see
that the map = is continuous and closed. It follows that = is a quotient map, X is
homeomorphic to ¥/~, where y~y' iff a(y) = n(p’). This is the same as
Iz 1) ~ (p(2), 0) for all zeZ and the theorem casily follows.

5.2. We now prove the structure theorem. Recall that the flows : X x R =
and @1 ¥x R ~ Yare said to be topologically equivalent if there is a homeomorphism
h: X — Y which maps each orbit of 7 onto an orbit of the system ¢ and preserves
the orientation. Sec [7]. Now let z: Xx R — X be a flow. By Theorem 3.5 X is an
orientable matchbox manifold. We may assume that the proper parametrization
is induced by the motion. By the preceding theorem X is the phase space of a flow
2(S,f). As in both flows orbits and arc components coincide, it follows that =
and X(S, ) are equivalent.

5.3. There is the following corollary.

CorOLLARY. Let n: XX R~ X be a dynamical system without rest points on
a one-dimensional space X. Then the flow = is embeddable in a flow #: Xx R -+ &
with X o one-dimensional compactification of X.

Proof. Sce e.g. [11] for information about extension of actions of systems,
Write (X, ) = 2(S, ). It is well-known [3] that there is a zero-dimensional com-
pactification § and a homeomorphism f: § — § which is an extension of /. Define #
the suspension 2(S, /).
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