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On derivatives of functions defined
on disconnected sets, I

by

A, C. M. van Rooij and W. H. Schikhof (Nijmegen)

Abstract. Let X be a subset of R without isolated points, let Z(X) be the first class of Baire
on X and let 2'(X) be the set of all fanctions X -+ R that have primitives on X. Then C(X)<= 9'(X)
—%B'(X). For a Lebesgue measurable set X it is shown that 2'(X) = #*(X) if and only if X is
negligible.

1. Introduction. Let X be a subset of R. Differentiation of a function f: X - R
usually is considered only in case X is a (closed or open) interval of R. The definition,
however, makes very good sense in more general situations. Whenever a is a non-
isolated point of X ome can define f(a) to be lim (x—a)”*(f(x)—f (@), if only

x—*a

the limit exists. Thus one obtains a function s/, the “derivative” of f, defined on
a subset of X.

The purpose of the present paper is to study, for a given set X, the space of
all functions on X that are derivatives. In particular we investigate the relations
between 9'(X), the space of all derivatives on X, and B(X), the first class of Baire
on X. (A function X — R belongs to #*(X) if it is the pointwise limit of a sequence
of continuous functions X — R.) If X is an interval, it is elementary that 2'(X)
is a proper subset of #(X). It is not overly difficult to éhow that the inclusion
D(X) = BY(X) is valid for every set X < R that has no isolated points (Th. 2.1),
but there are non-trivial cases in which the inclusion is not proper. (E.g., it follows
from our Th. 3.4 that 9/(Q) contains all functions on @). Our basic question is:
for what sets X do we have 9'(X) = #'(X)?

If X< R and if a is an interior point of X, then the characteristic function of
{a} is an obvious example of a function belonging to #(X) but not to' 2'(X); as
a consequence, we are mainly interested in sets X that have no interior points, For
such an X our question is mon-trivial. For Lebesgue measurable sets we give an
answer in Th. 4.4,

Our techniques and results are similar to the ones of G. Petruska and M. Lacz-
kovich in [5]; there, however, the basic problem is how to determine the sets X
for which 2'(R) and #*(R) have the same restrictions to X, :

In Part II of this paper we study the structure of @'(X). (See [71.)

1 - Fundamenta Mathematicac 181.2
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Historical remark. It may be worth observing that our central question
has been answered first in p-adic analysis. In fact, the following theorem is proved
in [8]. Let X be a subset of the field Q, of the p-adic numbers. Suppose that X has
no isolated points. Let 9'(X) be the set of all derivative functions X — Q, and let
BY(X) be the set of all pointwise limits of sequences of continuous functions X — 0,
Then 9'(X) = #'(X).

This result has been one of the starting points for the investigations laid down
in the present paper.

Notations and elementary facts. Let X< R. The closure, the interior
and the complement of X relative to- R are denoted X, X and X°, respectively.
(Instead of ¥ X*° we also write Y\ X.) X* is the set of all non-isolated points of X.

C(X) is the space of all continuous functions X — R, #(X) is the first class
of Baire on X.

o, Let X be thetdomam of a function g; let ae X*. If

i I —0(@)
x-a X—a
xeX :

exists, we say that g is dzﬂerentiable at a and denote by g'(a) the value of the limit.
Thus we get a function g’ whose domain is a subset of X*, If 4 < X* and if f 1s:

a function defined on a set that contains 4, then by

g =f on4d
we mean that g'(a) = f(a) for all ae 4.-In a similar way we use expréssi01ms like
‘ lg'=fI<1 on 4.

If.g: X~ Ryae X* and ¢ is differentiable at @, and if Y X and ae ¥
then the restriction function g| ¥ is differentiable at a and (g| Y) (a) = g'(a) o Keep
in mind the difference between ¢'|¥ and (g]Y).)

If X is the domain of g and g is dlﬁewn‘clable at all pomts of X*, then y is
continuous.

> By 2'(X) we denote the set of all functlons S X — R for which there exists

ag: X - Rwith ¢’ = f on X* Thus, if X is dlscreie, then every functlon on X

belongs to 2'(X).
Forf X — R we define a function &f on {(x,y)e XxX: x ¢ y} by

1076,

—X

d’f(x) =

f is‘a Lipschitz function 1f dif is boundcd The Llpschltz fllllCthllS on’ X form a set
called Lip(X).

For f: X> R we put ||f]}= sup{lf(x)] xe X}. (Possxbly, HfII = oo)
Similarly, ||€f|: = sup{|®f (x, )|: x, ye X; x # y}.
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"~ The characteristic function’ of a set 4 is denoted 1,. We will not keep track
of the domain of definition of such a function: 1y, ;1 may have as its domain R or
[0, o0) or, indeed, any subset of R.

Our measure-theoretic terms (such as “negligible”, “outer measure™) always
refer to the Lebesgue ‘measure, which is called A.

2. We prove C(X) < 2'(X) =& (X) for all X< R.
THEOREM 2.1. Let X < R. Then 9'(X) < B'(X).

Proof. (The theorem is an elementary extension of Lemma 5.5.1 of [5], which
is the special case X = X* [0, 1].)

Without restriction, let X < [0, 1]. There exists a countable ¥ = X such that
X\ Y is closed in X and dense in itself. Let ¥ = {yy, 3, ...}. By [5], Lemma 5.5.1,
the restriction of fto X\Y is the pointwise limit of a sequence g5, gz, ... in C(X\Y).
By the Tietze Bxtension Theorem each g, has an extension f, in C(X Ywith f, = f
on {¥y. .., Vot. Then f= 11m T polnthse on X. B

~ THEOREM 2.2. Let X < R let fe C(X) be bounded. Then t/zere e}vzsts age C(R)
such that g’ = f on X and ||®gl] = If]].

Proof. For aeX define
o) = infsup{f(x): xe Xn(a—s, a+e)}.
2>0

Then #: X — R is upper semicontinuous. Let J;, J,, ... be the components of R\X.
Extend % to a function j: R — R by interpolating linearly on each bounded J, and
making j constant on J, if J, is unbounded. Then j is upper semicontinuous and
bounded, hence locally Lebesgue integrable. Let g: R — R be an infinite Lebesgue
integral of j. Then ||®gl| = |Ijll = [14ll = If||. If a € X, then  and j are continuous
at a, so g is differentiable at a and g'(a) = j(@) = a) = f(a). B

THEOREM 2.3. Let X < R. Then C(X)<c 2'(X).

Proof. Let fe C(X). Put U= {xeR: there exists a positive § such that
Xn(x—8,x+08) # & and fis bounded on X (x—4, x+5)} This U is an open
subset of R containing X.

Let J be a component of U. Choose a family (@,)sez of elements of J such that
a,<a,., neZ)andJ = | [a,, 4,+,]). For each n, the restriction of fto [a,, @, +1]

. neZ

is bounded. By applying the previous theorem to each of these restrictions one
easily finds 2 function g; :J — R with g; = f on JnX.

Carrying out this construction for every component of U one obtains a function
gu: U—-R with g, = f on X. Let g be the restriction of gy to X. Then g’ = f
on X* M

Unless Xis discrete, 2'(X) always contains discontinuous fanctions. The classical
example for X = R'is f: x ~ sinx ™" (x % 0), f(0) = 0. From this, by translations
1*
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and restrictions one obtains examples for every X that comtains an interval, For
an X with empty interior we have:

THEOREM 2.4. Let X< R, X = @. Then lig € D'(X) for every ae X.
Proof. Take ae X. For every neN choose p,, g, € X° such that

a—n"t<p,<a—(n+1)"! and a+(m+D)" 1< g, <a+n"L
Define

a if xe{a}u(—ow,p,)u(g, ),
g(x) =Py if nGN, xG(PnaPHl),
qy if nGN, xe(qn+17 qn)'

Then g'(x) = 14 (x) for every x in X. &

3. Our main theorem. In this section we show that 2'(X) = #'(X) if X is
Lebesgue negligible. Recall that 1 is the Lebesgue measure

For 4,Bc R, dist(d, B): = inf{la—b|: ae 4,be B}.

Lemma 3.1, Let A < R be closed, let X< A° be negligible and let &> 0, Then
there exists an open set U< R such that

XcUec4A°,
AUNs, 1) < e(t—5)?
AU, sD < e(s—1)?

if sed, tels, ),
ifsed,te(—o0,s].
Proof. Choose open intervals J,, J,, ... such that J, = 4° for all n whereas

U J, = 4°. For each n, dist(4,J,) > 0, so we can choose an open set U, = R with
neN

XnJ, U, =,
AU, < e-27"(dist(4, J,))?.
Put U= (J U,. Of course, U is open and X< U< 4°.
Takcneszfs 4, tels,0). If neN and U,n[s, 1] # @, then J,N[s, 1] # &, so
dist(4, J,) < dist({s}, J,) < t—s. Thus,

AU, ) <Z{A(U,): neN, U,nls, 1] # &}
< Z{e-27".(dist(4, J,))*: neN, U,nls, 1] # &}
<Z{e'27"(t—5)*: neN} = s(t—s)>.
In the same way one shows that A(Un[t, s]) < e(s—1)* for se A and
te(—o0,s]. B

LemMA 3.2. Let X< R, A(X) = 0. Let Ay, Ay,... be closed subsets of R,
O =docAd <. and let ¢y, ¢y, ...€ R. Then there exists an absolutely continuous
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Sunction g: R — R such that
g(x)=c¢c, ifneNandxeXnd,nd;_;,
li@gll < sup{le,l: neN}.
In addition, if ¢, >0 for every n, then for g one can choose an increasing function.

Proof. Put y, = sup{lc|: k<n} (neN).
The preceding lemma enables us to choose open subsets Uy, U,, ... of R such
that for each n

XAl icU,cdiy,
29, MU, A s, 1]) < 277t ~5)*
29, AU O, sy < 27 s —1)2
As each XN A, is negligible, we can choose the U, in such a way that
le-A(U) <27 (neN).
For neN, let V, = U,‘\IE) Uy. As Z|c,|*A(V,) is finite, the function ¢, 1y, is
>n

if sed,.y and t=s,
if sed,~; and £<5s.

Lebesgue integrable, hence has an indefinite integral, g, that is absolutely continuous.
If {c,: neN} is bounded, then g is Lipschitz and [|®g]| <sup{le,l: neN}. If
¢, >0 for each m, then g is increasing.

TakekeN,ae X4, N A4f_;:weprove g'(a) = ¢,. We have ae Xnd;. < Uy,
so there is a positive number § with (a—&, a+9) = U,. We are done if we can
show that

19()—9(d) — cr(x—a)| < (x—a)?
for all xe(a—4, a+d).

Thus, let x € [a, a+8). (The case x € (a—3, a] can be handled similarly.) As
[a, x] = [a, a+6) = U, = V, for all n<k, we have

1969 — 90— (el = 1% arly, =]

= | f(ckl,,,‘—ck)dzwjlgc e, 1,,d2

< le| A(VEn[a, x])+n§k|c"|.,1(ym[a, X))

= led- 2 o la XD+ 3 le, [ A(Van [ 20)
< la2Y Tinla, D+ T lel AU [a )
< ;k(lckl+lcnl)-/1(Unn[a, x])

< %2 MU0 [a XD

< Y2 ' (x—a)? < (x—a)*. W
n>k
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Lemma 3.3. Let X < R be negligible, fe BYX), ||f|| <2. Then there exists an
absolutely continuous function g: R — R for which
f-9'l<1 onX,
l8gli<1
Proof. Put X_; = {xeX: f(x) <0}, X, ={xeX: -1<f(x)<1} and
X; = {xe X: f(x)>0}. Bach X is an F,-subset of X ([1], Th. 4, p. 142); hence is
the intersection of X with an F,-subset ¥; of R. Choose closed subsets By, By, ... of
R with Y_; = B,uB,nB;u.., Yy = B,uBsu... and Y, = BuBsu.. For
each n, choose ¢,e{—1,0,1} such that B, = Y.
By Lemma 3.2, applied to 4,: = B;u.. UB,, there exists an absolutely
continuous function g on R with

g(x)=¢c, ifneNand xeXnB,Nn(BV..UB,_1),
lPgll <1
Take x& X. Let n.=min{meN: xe B,}. Then g'(x) = - As
xeXnB,cXnY, = X,
1, whence |f(x)—g' (x)| <1
Now we have enough machinery to prove our theorem.

THEOREM 3.4. Let X = R be negligible Then 9'(X) = B'(X).
Even stronger: for every fe BYX) there exists an absolutely continuous g:
R — R with

we have |f(x)—c,| <

g =f onkX
li@gll = IIF1l-
(Partial converses are obtained in Theorems 4.2 and 4.4.)
Proof. I. We already knoﬁ that @' (X) c #Y(X). (Theorem 2.1.)
IL Let fe BYX), ||f1l < 1. Applying Lemma 3.3 to 2f we obtain a g; € C(R)

with | f—gil <% on X and ||®g,|| <%. Observe that gy € #'(X) (not by Th. 2.1

but because gy (x) = lim &g,(x--n"%, x) for x in X). Thus, f—(g}lx)e B'(X)
n-+ oo

and |[f—(91l)l| <3, so there is a g, e C(R) with |f—g1—g%] < + on X and

[|®@g,l| <%. Continuing in this fashion we find gy, g5, ... € C(R) such that for all n

1) -2 A< (e X),

1®gull < 27"

We may assume g,(0) = 0 for all n. The series g, then converges locally uniformly
on R; let g e C(R) be its sum. Thcn llegll<1. (In particular, g is absolutely
continuous.)
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Let aeX. We prove g'(d) = f(a). Take NeN. Choose >0 such that, if
|x—a] <8, then Zlg,,(x) 9. (@ —gp@) (x—a)| <27 "|x—a|. For |x—a] <6 we
then have: <N

Iy(x) g(a)—f (@) (x—a)|
Zlg,.(x) gu(@)—g,,(a) (x—a)| + Zlg,,(x) 9@ — g, (@) (x—a)]|

<2 ¥x— al+ Z(le@gnll lx— al)

<3'2“N]x-al

The formula g'(a) = f(a) follows.

II. It is an immediate consequence that for every bounded fe .%1(X ) there
is 2 g € C(R) with g'|x = f and {|®gl| = [If]l.

IV. Now let f'e BLX) be arbitrary. It is clear that we are done if we can find
an absolutely continuous g € C(R) with |f~g’| <1 on X. This is not difficult to
do along the lines of the proof of Lemma 3.3:

For ke Z, put X, ="{xe X: k=1 <f(x)<k+1}. Bvery X, is the intersection
of X with an F,-subset Y, of R. Choose a bijection w: N — ZxN and closed-subsets
By, B,, ... of Rsuch that ¥, = U Bm(k yforevery ke Z. Let cupy = k (keZ,ieN).

By Lemma 3.2, applied to A,, = B;U..UB,, there is an absolutely continuous
: R—> R with .

g'(x) = c,," if neN’ and xe XnB,‘,n(Blu...uB'_ 1)‘.'
For every x € X there is an ne N with g'(x) = ¢, and x€B,. If k and i are such
that n = w(k, i), then ¢, =k and xe X0 Byg,p < XnY,c Xy, so

fx)—-g'x)<1. W

Comments. Let- Xe R be negligible, fe ﬂl(X) As an addendum to the
previous theorem one can show: if f(x) =0 (or f(x)>0) for every x in X, then f
has- an-increasing (strictly increasing) primitive. The proof is a refinement of the
above, relying on the final part of Lemma 3.2, However, only if all bounded subsets
of X are finite there exists a linear map P: 2'(X) — C(X), assigning to. each
FED'(X) a primitive of f and such that P(f) is increasing as soon as /0.

4. The converse problem. f X = R and 2'(X), must X be Lebesgue negligible?
We do not know the answer in general, but we can prove that it is positive for
Lebesgue measurable sets. (Th. 4.4.)

- For X< R we denote by X, the set of all outer density points of X. (A pomt
a of R is an outer density point of X if, for every positive g, the outer measure- of
X~ (a—36, a+06)is at least (1 — £)- 25, provided that § be small enough.) The Lebesgue
Density Theorem ([2], Th. 18.2) says that alinost every point of X'is an outer density
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point of X. In particular, if X is not negligible, then Xn X, # @. Evidently, one
always has X;<X and ¥nX;c X*

LemMMA 4.1. Let X < R, fe Lip(X), and suppose that f' =0 a.e. on X, Then
=00 XnX,.

Proof, Take ae XN X;. Put K: = ||Bf]|.

fextends to a function g: R — R with ||&g]| = K. (Extend f to X by uniform
continuity; then interpolate linearly on the bounded components of R\X and
make g constant on the unbounded components.) The sets ¥: = {xe R: g is not
differentiable at x} and Z: = {x e X: either fis not differentiable at x or f'(x) # 0}
are negligible. Define 4 = YUZu{x e R: g'(x) = 0}. Then 4 is Lebesgue measur-
able, g’ = 0 a.e. on 4, and X< 4.

For be (a, 00) we have ([2], Th. 18.16):

b
lg®)—g@| = |fg’ddl < [ lg'ldr< K-A(la, BINA)
a [a, BINA

4

N |29(a, B)| < K-(b—a)*4(la, BNA).
Now a€ Xn X, < An A,; therefore, lim ®g(a, b) = 0.

Similarly, lim ®g(a, b) = 0, whgrtcae g'(@) = 0. As ae X*, we infer that f is
differentiable atb :zu and that f'(d) = 0. W

This lemma yields a partial converse to Theorem 3.4.

THEOREM 4.2. The following conditions on a set X — R are equivalent.
(@) X is negligible. :
(B) For every bounded fe #*(X) there exists a g € Lip(X) with g’ = f on X*.

Proof. For (o) = (f), see Theorem 3.4.

(8) = () Suppose X is not negligible. Choose a in X X,. By the lemma,
¢ cannot have a Lipschitz primitive. B

If X R and X = @, then for every ae X we know 1y, € 9'(X) (Th. 2.4)
Thus, if X = @, then (&) and (B) are equivalent to:

() For every bounded fe D'(X) there exists a g € Lip(X) with g’ = f on X*.

Theorem 4.2 leaves the possibility that on a non—negligi‘bic set X every

(bounded) #*-function has a primitive. For many sets this possibility is ruled out
by the following lemma.

LeMMA 4.3, Let X< R. Suppose that X is a Baire space and that X<Xy. Let
{e1, ¢35 ...} be a countable dense subset of X X,. Then

n; 27" ey € D' (X).
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]
Proof. Suppose we have an f'in C(X) withf* = Y. 27", on X*. For p e N, put
n=1

A, ={xeX:if ye X and lx—y| <p~t, then |f(»)—f Gl < ly—xl}.

0 <f'(x) <1 for every x € X* Hence, the sets 4, form a countable relatively closed
cover of X. Therefore, we can choose a p such that the interior of 4, in X is
non-empty. There exist a,be R with g +#(@bnXcd, and |b—d <p~l. Put
J = (a;b)nX. If x,yel, then LfO)—f (@) € ly—x]; so fly e Lip(J).

Furthermore, (f|;)' = 0 a.e. on J. By Lemma 4.1, (f], =0 on JnJy, so
fl=0o0nJnJ,. .

However, (¢, )nX # @ and X <X, so (a, )N X; # @. Then (¢, b)n X is
not negligible, whence @ % ((a, BaX)n{(@ bnX), =@ b)nXnX,; Then
(a, )N XN X, (which is JnJ, ) contains a ¢,. Contradiction. B

This gives us the converse to Theorem 3.4 for measurable sets:

TrmoreM 4.4. For a Lebesgue measurable subset X of R the conditions (o)~(y)
are equivalent.

(®) X is negligible.

B 2'(X) = BX).

() X has empty interior. D'(X) is uniformly closed (in R%).

Proof. (o)) = (): Theorem 3.4.

(B) = (7). #*(X) is uniformly closed. ([1], Th. 1, p. 138.) Further, suppose X’
contains an interval («, b) of R. Choose ce(a, b). Then 1y, € BHXND'(X).

(7) = (%). Suppose X is not negligible. By the regularity_(zf the Lebesgue measure,
X contains a compact set ¥ of positive measure. Put Z = Y. Then Zc Yo X, Z'is

compact (and therefore a Baire space) and Z<Z,. By Lemma 4.3 there exist ¢4, €2, .-
o0 o0

in Z such that ¥ 27", ¢2'(2). A fortiori, 212"‘1(0") ¢ 2'(X).
n=1

On the other hand, by Theorem 2.4, for each N €N we have that
N
Y27, € D'(X)-
n=1

Thus, 2'(X) is not uniformly closed. M

Comment on Condition (y). It is known that if X is an interval, then
@'(X) is uniformly closed. ([3], p. 92; [6], Th. 14.2.)

Further we observe that our Theorem 4.4 closely resembles Theorem 4.19 of
[5] which says (without any measurability assumptions) that {f|X: e 2'(R)}
= {f|X: fe AR} if and only if X is negligible.

4.5. The proof of the implication (v) = («) is applicable to any fet X R, that
contains a compact set of positive measure. Thus, if X< R and if # (X ) = 2'(X),
then the inner measure of X is 0. It would be more interesting to know if the outer
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measure of X has to be 0, i.e., if the measurability condition of Theorem 4.4 is
redundant. We do not have an answer to this question. All we can offer is-an example
to show that the condition that X have inner measure 0 does not imply

B(X) = 9'(X).

ExAMPLE 4.6. By [2], p. 146, there exists a set X < R such that neither X nor
X¢ contains an uncountable closed subset of R. For this X, both X and X°
have inner measure 0. (Regularity of the Lebesgue measure.) Then X, = R.
We show that X is a Baire space, so that (by Lemma 4.3)-#'(X) 5 9'(X).
Let Uy, U,, ... be open subsets of R such that every U,n X is densc in X. Then
each U, is densein R, so () U, is a densé Gjs-subset of R. For every interval J of R,
neN

Jn () U, is an uncountable Borel set, therefore contains an uncountable closed
neN

subset of R ([4], p 151.) and therefore is not contained in X°. It follows that

N (U,n X) is dense in X.
neN. . . .
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On derivatives of functions defined
on disconnected sets, II?

by’

A. .C. M. van Rooij (Nijmegen)

Abstract. Let X be a totally discormected subset-of R without isolated points, let .@‘(X) be
the first class of Baire on X and let 2’(X) be the set of all functions X — R that have prlmxtlYes
on X. Then &'(X)= B (X). We show that D'(X) isa “Jarge” subset of Z(X). Thus, &'(X) contains
all approximately continuous functions on X; and if 1, 9eB(X) are such tha§ f®)< g(x) for all x
in-X, then between f and ¢ there is an element of Z(X). -

5. How large is 2'(X)? We now know that, at least for certain se'tg X with
empty interiors, @'( X) is a proper subset ‘of BUX). Qur present purpose is to-show
that it has to be a large subset. (Th. 5.6, Th. 6.1.) ‘

Let Y< X< R. We call ¥ a clopen subset of X if it is both relatively closed

latively open. . .
o \r;eav\‘f,illymalice “use -of the following observation. If X< R, X = [%] and- if ’01/
is an opeh cover of X, then there exists a cover of X by countal.ﬂy m.any palrWlsé
disjoint subsets Xy, Xy, ..., €ach of which is clopen in X a:lld contained in an element
of %. (As X¢is densc in R, % has a refinement ¥ consisting of clopen subsets of X.
By using the Lindelsf property of X one obtains a countable subcover (V)yen of ¥

Now set X, = V\(Viu...uV,_() (meN).) o
LemMa 5.1, Let X< R, X =‘!3. ‘Let. A be a relatively closed subset of X. Let

Ve C(X), Yi(x) = Q.for all xed, 1/1(xn).>0 for a]l x€ X\Ai Let he C(X). Then

there exists ar jin C(X) with ‘

JJ"'h] < ‘ﬁz
J=0 on X*\A4.

Proof. For x€&X\4, let U(x) = {ye X\4: h(x)—?'h_(y.)l <y (»)}. By Th}{
above remark, there exist a family (¥,)pen of pairwise d‘.S.J'Olm, clopen subsets?
X\A, covering XN\4, and a family (%,),y of clements of X\d, such that ¥, = U(x,)

* This paper is a continuatior; of [7], using-the saie notatibns. - .. o
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