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On duality and interpolation for spaces
of polyharmonic functions

by
EWA LIGOCKA (Warszawa)

Abstract. We extend the results from our previous works on duality and interpolation to
the case of m-polyharmonic functions, i.e. functions u for which A™u = 0. We give an explicit
characterization of Sobolev and Besov spaces of such functions for 1< p< <o, —00 <5< 0
and study the duality and interpolation relations between them. We also apply the results
obtained to the study of the 8-Neumann problem and the Bergman projection.

1. Introduction. The present paper is the final part of a long series of
papers ([18]-[247) devoted to various aspects of duality and interpolation’ in
spaces of harmonic functions. We generalize the results proved in [18]-[24]
to the case of spaces of polyharmonic functions of finite order m, ie.
functions # for which 4™h = 0. We call these functions m-polyharmonic. (For
information about polyharmonic functions isee [2]).

We make extended use of the fact,that Sobolev and Besov norms
restricted to the space of all m-polyharmonic functions on a smooth bounded
domain are equivalent. In particular, we use it to get new: estimates and
duality results in the limit cases p=1 and p = co which will be proved in
Appendix 2. This also permits us to get an explicit description of the Sobolev
spaces Harm (m)(D) of m-polyharmonic functlons for all —o0 <s
<o0,1<p< . The equality Harmj(m)(D) = B}, Harm(m)(D), —o0 <s.
< o, 1 < p <o, also explains the slightly astomshmg interpolation results,
which were proved for the spaces of harmonic functions in [22} and [24]
and are here generalized to the spaces of m-polyharmonic functions. We hope
that the estimates concerning the polyharmonic functions can be useful in the
study of the #-Neumann problem. In fact, this was. the main motivation to
do the present work. We also discuss the poss1ble generahzatlons of the
above results.

Before we shall state our results more precisely we need to- recall some
definitions, notation and facts. We always denote by D a bounded domain. in
R" with boundary of class C*, and by g its defining function, i.e. oe C2(R"),
D = {xeR" g(x) <0}, gradg 50 on 8D.'By Wj(D), 1 <p <, ~o0 <5
< o0, we denote the Sobolev spaces on D, defined as follows. If s=0is an
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integer then W;(D) is the usual space of functions whose sth derivatives
belong to L?(D), with

1 = 1Moy + 2 10F/2 iy

We then denote by Wf(D) the closure of Cg’(D) in W;(D). By W, *(D), 1 <p
< o0, we denote the dual space to W;(D) with respect to the usual L? scalar
product -, >, on D, g = p/(p—1). It consists of distributions g on D such
that

g= Y D*g,+4o,

la|=s

where go, g, L*(D) (see [25]). We shall need the following important
properties of the above-defined spaces:

(a) The mapping f — f/lol* maps continuously Wy (D) into L*(D).

- s((lg) The mapping . f — 4°f is an isomorphism between W,,‘(D) and
A .

Property (a) follows from Muckenhoupt’s inequalities [27] (see [25],
Theorem 1.3.1/2]). Property (b) follows from [26, Theorem 5.4] (it could also
be proved by using the Holder estimates from [1] and interpolation).
For p =2, property (b) is elementary (see [18]).

If 5 is not an integer we define

W; (D) = [W (D), WEI* (D))

—thcj .value of the complex interpolation functor at 6 =s—[s] (for the
definitions of the complex interpolation functor [, “Jie; and the real interpo-

lation functor (-, *)y,, see [7], [14] and [31]). If s > O then the space W, (D)
is the dual of -

W/‘:(D) £ [:Vv;lm (D)7 pf/qh]*‘l (D)][s—[sll’ 9= -P%_i

It follows from [31], 3.4.3, that W;’(D) is equal to the closure of CZ(D) in
W;(D) for s#k+1/g, k=0,1,... If s=k+1/g there is a continuous
inclusion W,f(D) = Cg (D) = W (D). A simple duality and interpolation argu-
ment shows that the mapping f — f/|o* maps continuously Vf/,f(D) into
L7(D). The results from [31] also imply that the spaces W, (D) defined as
above are the spaces of the restrictions of functions (distributions) from
W, (R"), the Sobolev spaces on R". (If s is not an integer W;(R" is often
called “the space of Bessel potentials”. Note that W (R") = F’; 2(R™ in the
notation of [31].) We can thus extend the above definition to tﬁé case p < |,
by putting W;(D) = the restriction of W5 (R") to D, —0 <5 < o0.
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If s>0 is not an integer then the Besov space can be defined for
1< p<oo as follows: .

B}, (D) = {feLP(D): 1710 = 11150
a D= 1p\1/p
. ( ID°f () =D/ ) ) - m}‘
laf=[s] \D xD Jx—yl o
If s> 0 is an integer then we put
- B}, (D) = [B3; %, By Iy
For s % 1/p+k and 1 <p < oo we define B;,(D) as the closure of C§ (D)

in B}, (D), and B;*(D), ¢ = p/(p—1), as the dual of B;,(D) as in the case of
Sobolev spaces. If s =1/p+k we put

B:,(D) = [B5° (D), Byt *(DVlyz:  Bi'(D) = (B3, (D))"

Again the results from [31] imply that the spaces defined above are the
spaces of the restrictions of functions (distributions) from B3, (RY).

A,(D) denotes the usual Holder space and LP(D, [g") the L? space with
respect to the measure [of"dV on D if p<co. L*(D, loI) is the space of
functions f such that f|g|"e L*(D), with norm ||f||wa.lm =11 lelll ooy, -

Harm (m) (D) will denote the space of all m-polyharmonic functions on D.
Then

L? Harm (m)(D; |el") = L*(D, lel") ~ Harm (m)(D),
A A, Harm (m) (D) = A, (D) N Harm (m) (D),
B, Harm (m) (D) = B, (D) ~ Harm (m) (D),
Harms, (m) (D) = W; (D) " Harm (m) (D).

We shall also need the space of Bloch m-polyharmonic functions
Bl Harm (m) (D), defined as the space of m-polyharmonic functions h such that

Il = sug(lg(x)h(x)l +]e(x) grad h(x)]) < oo.

Now, let T be a differential operator of order 2m with C® cogfﬁcients on
R" such that oy, the principal symbol of T, does not vanish on D x(R"\{0}).
We also assume that the Dirichlet problem T = v, u vanishes on D up to
order m—1, is uniquely solvable. Denote the operator solving this problem
by Gy. Let T* denote the formal adjoint of T Note that T* and TT* must
have the same properties as T. )

Let P, denote the orthogonal projection from L2?(D) onto .the space
I2(D)nKer T. We have ‘

Pru=u— T* GTT"‘ Tu = T*(Grtu—GTTn- Tu) .
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If T = 4™ then Ker T is the space of m-polyharmonic functions. In this
case we write Pr =P, and Gy = G,,.

The estimates from [1] and [26] imply that for every strongly elliptic
T, Pr maps continuously Wy (D) into W (D), s > 0, and 4, (D) into A, (D). By
using the real interpolation functor one can easily check that P also maps
By, (D) into B, (D), s > 0. Let us now define the family of Bell’s operators Ly
in the following manner:

r—1
L'Tu =y — T*(z 0k0k+2m)’
k=0
do 0
Y i__t?)g Ox,

__ 9 -1 __a__ ( -
b = amy o7 (70) (ﬁﬂ) TS g

1., * 2m __1_,____...._(Pu
Lru=u—T*0,0*), 0= @m)l o (Fa)’

where @ is an arbitrarily chosen C*® function equal to 1 in a neighborhood
of @D and to 0 in a neighborhood of the set [Fp = 0}. .

It follows directly from the definition of L; that if ue C ©(D) then Ppu
= Py Lyu and L7 u vanishes on D up to order r—1. The operators L were
defined for T =4 by S. Bell in [5]. Earlier S. Bell defined similar operators
for 8 and the Bergman projection B onto the L2 space of holomorphic
functions in [4]. These operators were used . to study the duality relations
between spaces of holomorphic functions in [4], [6], [13] and [3], and
between spaces of harmonic and pluriharmonic functions in [5], [18], [19],
[20], [21], [22] and [24]. E. Straube in [28] and [29] constructed a single
operator L, which maps continuously W;(D) into W3(D), 0 < s < o0, such
that P, u = P, Lu. However, the construction of L is more complicated than
the explicit construction of Bell's operators

We denote by <, -3 ;. the sesquilinear pairing defined as follows:
w031 = <u, Lyvdg, where (-, ) is the usual L?(D) scalar product,

If T=4" then we denote Ly by L, and (-, e By D me We
shall show that L, maps L>Harm(m)(D) into L*(D), and thus if
u, ve L Harm (m) (D) then <u, 03, = <u, 0.

IL. Statement of the results.
ProposiTioN 1. For every integer m > O the projection P,, maps conti-
nuously: )
(@) L*(D, |o|™) into A, Harm(m)(D), a > 0;
(b) L*(D, |ol*) into L* Harm(m)(D, [glf), 0<f <1;
(c) L*(D) into Bl Harm (m)(D);
(d) LP(D, |o|~") into Harm}(m)(D), ~1+41/p <s <o, 1 <p<o.
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PropoSITION 2. (a) For any integers m> 1 and k >0 the mapping
T,u = ¢*u maps continuously: ‘
1) Harms,(m)(D) into Wit*¥(D), —oo <s<oo, 1 <p<oo;

2) A,Harm(m)(D) into Ay, (D);
3) L*Harm(m)(D, |olf) into 4,_4(D), 0<p<1;
4) BlHarm(m)(D) into A, (D).

(b) For any integers m =1 and r > 1 the operator L, maps conrinuous_ly:

1) Harmj, (m)(D) into W; (D) and Harm;, (m)(D) into W;‘(D) <= L*(D, lo|™™)
ifsz0and rzs, 1 <p<oo;

2) A,Harm(m)(D) into L*(D, |¢|™®) if r>a;

3) BlHarm(m)(D) into L®(D). !

Propositions 1 and 2 imply the following duality theorem.

TueoreM 1. (a) Harmj (m)(D) and Harm, ’(m)(ll)) are mutually dual via
iri S m fOEs<<roand 1/p+ljg=1,1<p <.
e p/tllzrltlngrni(m)il’)"i ];epresents the dual of the space L'Harm(m)(D, ]QJ“),
which is the closure of L?Harm(m)(D, lo|*)..in L*(D, |e|*), via the pairing
Co orm i r >0 . ) .
B'lHarm(m)(D) represents the dual of L'Harm(m)(D) via the pairing
Codm P21

(b) If s < 1/p, then Harms, (m)(D) is equal to L* Harm (m)(D, Jo|™ "), with
equivalent norms.

Propositions 1 and 2 and duality arguments permit us to get{ the
following. : # ‘ -
TaeoreM 2. For any —oo <s <o, 1 <p<oo and any integer m > 1

BS, Harm (m) (D) = Harmg, (m) (D)
with equivalent norms. )

Remark 1. Theorem 2 is of some interest only for small s, namely for

s < max ((m—1)(1—-2/p), m(2/p——’1)).
i ‘ s (1 s(D) have the same

Note that if s > m— 1+ 1/p, then the spaces B, (D) and W ( .
traces on oD equal to []'., Bjp’™ "7(2D) (see [31]). Thus, roughly speaking,
the m-polyharmonic exterjxsion of these traces must be the same. Interpolation
with L*Harm(m)(D) will prove our theorem for s> max ((m=—1Q1

—2/p), m(2/p—1)). (See also the proof ‘of Remark 3 below)

Remark 2. Theorem 2 together with part (b) of Theorf:m 1 g@ves us
an explicit description of all Sobolev spaces of m-polyharmonic func’tno‘ns.‘ It
s> 0 is an integer, Harm}, (m)(D) is the classical Sobolev space. If s > 0-is not
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an integer then the equivalent Besov norm is given by an explicit formula
(see Introduction). If s <1/p then the norm in Harm}(m)(D) is the
L*(D, g/~ ) norm. Note that if 0 <s < 1/p then the Besov and L?(D, ||~ ")
norms are equivalent on m-polyharmonic functions for every m. Thus we get
the following

CoroLLARY 1. Let f be a polyharmonic function of finite order on D, For
any 0 <f <1 and 1 <p < oo the following conditions are equivalent:

(@) fIf17lalfdV < 0.
b

b) If ) =f Sy)l"
D xD lx_.Vl" ¢

We now state the following

dV < .

Tueorem 3. Let 4}, be equal to Harmj(m)(D) for 1 <p < oo, —o0 <s
<o, to A;Harm(m)(D) for s >0, p= o0, to BlHarm(m)(D) for s=0,
p =0, and to L>Harm(D, |gf*) for 0 > s> —o0, p= 0. Then

(45> Al =45 if min(py, p)) <0, [A}, 425 = 4%,
(Apys Ao = 43,
where

1 1-6 6
e —p—

P P
and [A, B, denotes the completion of [A, Blig with respect to A+ B.
Theorem 3 extends the results of [22] and [24].

s=(1—0)s,+0s;, 0<0<1

Remark'3. .Theorem 2 and some interpolation results similar to Theo-
rem 3 are v.ahd in a more general case. Let T be a differential operator of
order 2m with C*(D) coefficients such that

KTp, @)l > clllell5)*  on Wy(D).
Then

(@) (Harmq);(D) = B}, Harmy (D),
where
(Harmyp), (D) = W;(D)nKer T,
B}, Harmy (D) = B, (D) nKer T, —oo <s <00, 1 <p < oo.
(b) If Tis.in addition selfadjoint then the spaces A, = B}, Harmy (D),

—® <s<o, 1<p< o, hae the same interpolation properties as in
Theorem 3. :
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Remark 3 will be proved later, :

Since B%,,, Harmy (D) = A,(D) nKer T; and BS, Harmg (D) = L Harmy (D)
by (a), we see that (b) gives the possibility of interpolation between Holder
and L? spaces of functions from Ker T as in the case of m-polyharmonic
functions. However, we have no explicit characterization of the spaces
B, Harmy (D) for s <0 (see Problem 4 at the end of this paper).

We can also consider the more general scale of spaces F3, (D) described
in [31]. Note that FS,(D) = W3 (D) and F5,(D) = B, (D). It turns out that if
T is such as in Remark 3 then F$, Harmy (D) = (Harmg); (D) for all —oo <s
<o, 0<p<oo, 0<g<o0. i )

It is also possible to use Theorem 1 to get an explicit characterization of
the spaces B, Harm(m)(D) for s <0, We deal with those general Triebel-
Lizorkin spaces and Besov spaces in Appendix 1 in the final part of this
paper.

The duality theorem cannot be extended to the case p <1 since Sobolev
and Besov spaces are only quasi-Banach for p < 1. However, the recent
results of Franke [10], [11] (also mentioned in the Russian edition of [31])
permit us to show that P; maps continuously Bj, into B, for p<1,
s>n{l/p—1), and that one can adjoin the spaces B, Harmy (D)
= (Harmy)} (D), —o0 <5 <0, p<1, to the interpolation scale described in
Remark 3. We deal with this case in Appendix 2. In particular, we show
there that BjfHarm(m)(D)= LYHarm(m)(D, |of) and By, Harm(m)(D)
= L* Harm(m) (D, |g|") for s> 0.

Putting aside these generalizations, we return to our polyharmonic
functions.

. TueoreM 4. Let k > m >0 be integers. The projection P, restricted to
Harm(k)(D) is bounded in every LP(D, |gl'). norm, 0 <t <o, 1<p<ao,
min(1/t, p) < 0. L

Let now D be a strictly pseudoconvex domain in C", We denote by B
the orthogonal projection from I*(D) onto the space of square-integrable
holomorphic functions (the Bergman projection). We proved in [21] and [22]
‘that B restricted to the space of harmonic functions is bounded in L?(D, |l
norms if 1 < p < oo, t > 0. Thus Theorem 4 yields immediately

THEOREM 5. For every integer m >0, the projection B restricted to
Harm (m)(D) is bounded in every L¥(D, lel) norm for 0 <t < o0, 1 S p<co.

Much information about Sobolev spaces of holomorphic functions on
the unit ball can be found in [3] (see also [8]). It should also be mentioned
that Theorem 5 remains valid if we replace the Bergman projection B by the
orthogonal projection @ onto the space of pluribarmonic functions or the
projection S, onto the space of the real parts of holomorphic functions
(see [20]). ) ’
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Let D be a strictly pseudoconvex domain, and let ¢ be a defining
function of D which is strictly plurisubbarmonic in a neighborhood of aD.
Let

be the Ké#hler metric on D induced by the potential ¢. Denote by (', >, the
scalar product induced by L.

Let [, = 0%+ 0¥ @ (the adjoint is taken with respect to ¢-, ->,). Let N,
be the operator solving the &-Neumann problem [, =&, w, ¢ (0, g)-
differential forms, we Dom [, (see [9] for details). Lieb and Range in [15]-
[17] constructed an integral representation for the operator ¢f N, and
obtained the Holder estimates for the operators & N and N,. They proved
that & N, maps 4, (0, g+ 1)(D) into Ay ;,2(0, 9)(D) and N maps 4,(0, g)(D)
into 4,44 (0, ¢)(D) (4,(0, ¢)(D) denotes here the space of (0, g)-forms. with
coefficients from A,(D)),

Remark 3 permits us to show that the Lieb-Range results imply the
following

TueoreM 6. The operator Nj maps continuously W:(0, g)(D) into
W10, )(D) for 0<s<oo, 1 <p<oc, and the operator OFN, maps
continuously W30, g+ 1)(D) into W20, q)(D), 0<s <0, 1 <p <.

W; (0, q)(D) denotes here the space of (0, g)-forms with coefficients from
W (D). |

If D is equal to the unit ball then the usual Euclidean metric on D is
equal to L since ¢ = |z|*—1. Thus we have [, = —44 and we get the
following application of Theorem 1:

CoRrOLLARY 2. If D = B(0, 1) then N extends to a continuous mapping
from the space of (0, g)-forms with coefficients in LP Harm (m)(D, |of) into the
space of (0, g)-forms with coefficients in L” Harm(m+1)(D, |o]'~?) if t > p—1
and in Harm,""*'(m+ )(D) if t < p~1, 1 <p <c0. -

The operator 3* N extends to a mapping from the space of (0, g+ 1)-forms
with coefficients in LPHarm(m)(D, o) into the space of (0. ¢)-forms with

coefficients in I Harm(m+1)(D, |of'~#?) if t > p/2—1 and in Harm;"r*/?

(m+1)(D) if t<p/2—1. Here 1<p<ow. [For p=1 we take
LY Harm (m)(D, |of'), which is the closure of L? Harm (m)(D) in L'(D, |o.]

The last corollary justifies our conjecture from [22] that the operators N
and * N should “behave better” on forms with harmonic coefficients. For

(0, 1)-forms the Holder and W; estimates were first proved by Greiner and

Stein [12].
We end the present paper with a list of open problems.
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L. Proofs.
1. Proof of Proposition 1. We begin with two lemmas:
Lemma 1. (a) For he A, Harm(m)(D) we have

|1l
lo(x}-=*
(b) For heBlHarm(m)(D) we have

ID“R(x)| < ¢

if k>[a].

I1Allaxoy
lo ()
(¢) For he L* Harm(m)(D, |o|') we have

ID*h(x)| < ¢

(1Al cop, g1
le (+
Proof. Let xeD, & =dist(x, D). We can assume that x =0. Let

\D* (%) < ¢

" ue A, Harm (m)(D). We have for m >k >0

5’ (|x|2—~% 52)2m— 2k Am—k u(x)dvx
B(0.5/2)
=[l(” =87

82
+ j‘ e 1 (rz__%(sz)zm—zk
0

| A =69 u () Y, =
B(0,8/2)
A" u(0).
m—k+1 .
[

bl <r Y Y

The above formula permits. us to show after elementary calculations
that 4™~ u(x)| < clull Au/é(x)z""z'“ and next, by induction on k, that
4™ u(x)| < cflul] o /0 (x)?™~2=2 In particular, [Au(x)| s,cllluu,‘n/&(x)z"’.

We now proceed as in the lemma in the proof of Theorem 2 in [19] and
write u|p,52) = 43 +h, where h is harmonic, u; = 0 on 9B(0, §/2). We use
the mean value theorem for h and the fact that
§ Glx, du(y)dv,

B(0,4/2)
where G(x, y) is the Green function of B(0, §/2) to get the desired estimates

for all derivatives of . The same procedure permits us to prove parts (b) and
(c) of the lemma. ) .
Similar estimates of the derivatives of a polyharmonic function can also

be found in [2].

LeMMA 2. Assume that Proposition 2(al) holds for ~(m—1)-polyharmonic
functions, i.e. for each k >0, T, f = o*f'maps continuously 'Harm;(rrf-ul)(D)
into Witk(D) for —oo <s' < 00,1 &p <. Then:

L1(D)

ug (x) =
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(i) For all peC*(D) and — o0 <s < o0, u— A*(¢* up) maps continuous-
ly Harms (m)(D) into W;~*(D). :
(i) T, maps continuously Harm$ (m)(D) into W;**(D) for s = 0.

Proof. (i) Let ue Harmg(m)(D). For k=1 we have

d(op) ou
. 6x,~ Ox, ’

A(qug) = A(0g) u+opdu+2y.
i

Now, odueW: (D) since Adu is
4(oup)e Wy~ (D) and [|4(euo)ll;™* < cllull;.
Assume now that (i) holds for all I <k. Then

A (@ P ug) = A% (1 pdu) Ao Ao -u)+(k+1) 4* (0" Ao~ ou)
+2 Z[A" (g"“—e—(e—?i)-f—(k+ 1) {A“ (g“ rpfg——a—l—‘—)

0x; 0x; Ox; 0x;
‘ do \?
1 k=1 k-1
+3kd (A (Q (6x,> (pu))
g 9y .
K & s—k=1
+4 (g %, B, u)}}e W, (D)

by the assumptions of the lemma and the inductive assumption on k. We
have again

(m—1)-polyharmonic. ~ Thus

4571 (@ ugll;™* < cllull;.

(i) If s> 0 then ¢*u = G,(4*¢*u). The estimates from [26] (Theorem
5.4) yield that

lle*ull;™ < clid* gt ully™  (cf. [18], [22]).
We now prove parts (a) and (b) of Proposition 1. We proceed in exactly
the same manner as in [19] and [22]. We have
Ppu=u—4"G,, 4™ u = 4™ (G,,u— Gy, 47 G,, u).

Note that the function in parentheses on the right is the 2m-polyhar-
monic extension of TrG,u from 8D to D. (Trf is equal here to
(f18D, ..., &f/on¥ap, ..., "= 11/0n*"1,). We bave

- Gpu(x) = [Gu(x, Y)u(y)dV, =1j)Vm(x, Nu@)dV,~ [ Gy (x, y)dV,,
D D

where G, (x, y) is a Green function for the Dirichlet problem 4™f =g, f
vanishes on 0D up to order m—1, V,,(x, y) is a fundamental solution of the
equation 4™f =0 and G,(x, y) is m-polyharmonic with respect to x

icm
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(G (x, ¥) = Gy (y, x)) and such that for every yeD, G, (x, y) vanishes on aD
up to order m—1.

The fundamental solution V,,(x, y) is

(1) Vyl(x, y) =cm)x—y*"~" if nis odd or if n is even and n > 2m,

(V)] Vi (x, ¥) = c(@|x—y* "In|x—y| if 2m>n and n is even.
Let
w(x) = [Vo(x, y)u(y)av,.
D
Then

Ppu =A™ (w(x) =G 4™ w(x))

is a 2m-polyharmonic extension of Trw(x) on éD in view of the estimates
from [1] (Th. 12.10 and what follows). It remains to prove:

(a) If u=|g/*m, meL®(D), 0 <a < co, then

dw
W(x)IGDE A2m+u(aD)s 'a—';}‘(x)

€ AZm—j+a (aD)3
éD

0<j<2m—1.

() If u=m/jgf’, 0 <B <1, meL®(D), then

¥
WRlaoe Aam-s (D), 57 ()

€ Azm-j-4(2D),
oD

0gj<2m—1.

If xe 0D then

w(x) = ) | (x— 312+ () e W)™ "2u(3) AV, = wo ()
D

or

w(x) =c@) [(x—y>+e()e)" " u()In(x—y>+0(x) 0)) 4, = wo ().
D -

If u=|g*m we differentiate wo(x) k = 2m+[a]+1 times in order to
get gradient estimates and use the Hardy—Littlewooc} _lemr.na. The standard
calculations show that [D?we(¥) < clmll=/lo@e)l' ™ if =k Thus
Wo (X) € Agm s (D) and w(x)|ap € Azm+a (D).

’ Ifu ::rrf/lgv’ we proceed as in [24], assuming first that suppm € D and
differentiating wq(x) 2m times. We then have

1
y . . d
1D"wo (9] < ellmilue | e o e
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if |y| = 2m. The last integral can be written as
2%/ ty)* o () dV, (1=2(2/%yY') o (n) Y,
1 + 13
zj,(lx—y|2+g(x)g(y))”’2Ig(y)l" g(lx—ylz+g(x)9(y))"’zIe(y)!"

where @ (y) = Y (3>, (80/ )2 Y e CF(R", ¥ =0 in a neighborhood of the

set {grad ¢ = 0}, and ¢ = 1 in a neighborhood of @D. The second integral is
a bounded function. We can now integrate by parts in the first integral and
prove that it is bounded by ¢/|o(x)|®. Thus |D?wq(x)] < c¢||mll =/le(x} and
thus wg|ap € Az (OD).

For every me L™ (D) there exists a sequence m,—m in every LF(D),
p <0, such that ||m,|,  <|lm||, . Thus we can extend the above estimates
to arbitrary me L™ (D). The same procedure can be applied to the functions
w; = @ w/an, which ends the proof of Proposition 1(a), (b).

Proposition 1(c} follows from interpolation. For all i and m the mapping
(&/0x;) P,, maps continuously L* (D, |g|~% into. L*(D, |g|*™%) and L*(D, |g|*
into L*(D, |g|**%) by Lemma 1 (0 <« <1). Thus (&/éx,) P, maps conti-
nuously

L* (D) = [L™(D, ||, L*(D, o]z
into
L=(D, lal) = [L*(D, lo]' =), L*(D, lol* ** 12

(see [24]). This means that P,, maps continuously L* (D) into Bl Harm (m)(D).

We now prove part (d) of Proposition 1 under the assumptions of
Lemma 3.

As was said in the introduction, the projection P, maps continuously
L?(D) into LF(D) for 1 < p < c0. It follows from Lemma 2 that for every f,
|8] =k, the mapping (#1/dx’) P,, maps continuously L?(D) into L”(D, |o|™)
since @' P,ueW}(D) for each I<k and wuel’(D) and thus
¢*(0'1/0x*) P,,ue L”(D). Lemma 1 implies that if k > [o]+1 then (A*/ax) P,,
maps continuously L*(D, ||™%) into L*(D, |o|™*~%). In [22, Proposition 2]
we have proved that

LL7 (D, lgl), L=(D, [el)]e = L*(D, lol), ¢ = r_’%g t= s+-1£q%‘

Putting s =0, r= —a or =0, r =k—a we prove by interpolation that
(61/ox?) P,, maps continuously

L”/“"B)(D, ,Ql-uvp/(l*o)) into Lp/(l—ﬁ)(D’ |Q‘0(k—a)p/(l~0)+pk)_

Let s; = 00, p; = p/(1—6). We have L' (D, |o"**™*) = W, *"*! (D). Hence
P, maps L'(D, |o| ™" into W,1 (D).
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Thus we have proved Proposition 1(d) for m-polyharmonic functions
under the condition that Proposition 2(al) is valid for (m— 1)-polyharmonic
functions. Proposition 1(d) for —1/p+1 <5 <0 follows immediately from
Proposition 1(c) and interpolation.

2. Proof of Proposition 2 and Theorem 1. Parts (a2)-(ad) of
Proposition 2 follow immediately from Lemma 1. Parts (b2) and (b3) also
follow from Lemma 1 and the construction of L},, since L', u consists of
terms of the type ¢* D*u-(smooth function), where k > r and |o| < k. Thus the
fact that (L Harm (m)(D, |o|)* = A, Harm (m)(D) can be proved in the same
manner as in [19], namely for every ueA,Harm(m)(D), ¢, L,u) is a
continuous functional on £! Harm(m) (D, |¢/%), and every continuous functio-
nal @ on L' Harm(m)(D, |o|*) can be extended to a continuous functional on
L*(D, |of*) and hence represented by a function ue L® (D, |o|~%. The function
u = P, pe A, Harm (m) (D) represents ¢ on L! Harm(m)(D, lo) via (-, *Drm-
Analogously we can prove that BlHarm(m)(D) represents the dual of
L! Harm (m) (D).

Hence it remains to prove Proposition 2(al), (bl) and Theorem 1 for
1 <p<ow. We do it by induction on m. }

In the case of m =1, i.e. in the case of harmonic functions the needed
facts were proved in [22]. Let us assume that they are valid for all k <m—1.
Then Proposition 2(al) yields that Proposition 1(d) is valid for k=m.
Proposition 1(d) and the construction of L, imply that Lj maps
L?Harm (m)(D) into L?(D) and Harm,(m)(D) into W,; < LP(D, |o|™#). Thus
complex interpolation implies that Proposition 2(b1) holds for k = m.

We can now repeat the proof of the theorem from [22] in order to
prove that Harm, *(m)(D) and Harms, (m)(D), 1/g+1/p = 1, are mutually dual
via the pairing (-, *),m, r 2= s. Briefly, Proposition 2(bl) yields that every
ueHarm? (m)(D) represents a continuous functional on Harmg*(m)(D) via
¢y Opme I @ is a continuous functional on Harm, * (m)(D) then ‘it can be
extended to a continuous functional on W, (D) and then represented by
ue W,,‘(D), The function u=P,ueHarm,(m)(D) represents ¢ on
Harm, *(m) (D). If ¥ is a continuous functional on Harm,(m)(D) then it can
be extended to We(W:(D)j*. Since P, maps W3 (D) into W:(D) and is
selfadjoint, P,, extends to a continuous mapping from (W (D))* into W,*(D).
Thus P,,() represents ¥ via ¢:, .n. (The above proof is based on the ideas
from [4], [5] and [8]) ) :

On the other hand, Harmj(m)(D) represents the dual of
L8 Harm(m)(D, |o|*) via the same pairing. This implies that Harmg *(m)(D)
= [AHarm (m)(D, |0|*). Thus Proposition 2(al) holds for k =m.

In order to end the proof of Theorem 1 we must show that
Harm}, (m) (D) = L* Harm(m) (D, |g|™") for 0 <s < 1/p. By Proposition 1(b),
P,, maps L®(D, |g*) into itself if 0 <« <1. Since P, maps LP(D) into itself,
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1 <p<oo, we can use complex interpolation to show that P, maps
I2(D, |0}~ %) into itself for —1+1/q <s <0. Since P, is selfadjoint and
L*(D, |0}, 1/p+1/q = 1, represents the dual of L%(D, [g|*) via <, D, the
operator P, must map LP(D, |g/”) into itself. Thus L?Harm (m)(D, |o|™)
= Harm, *(m)(D), —1/p <5 <0, 1 <p <0, being the ranges of the same
set under the projection P,. The above duality relations show that the norms
must also be equivalent.

3. Proof of Theorem 2. Theorem 2 is obviously a special case of
Remark 3(a), but we wish to give here another proof since it can be useful in
extending our results to the case of domains with boundary of class C* (see
[19], [22]).

First, assume that s > 1/p—1. Since P, maps W; (D} into itself (for 1/p
—1 <5 < 0 this follows from W,"*(D) = W,,““(D) and from the fact that P,, is
selfadjoint) and

(W;I (D)7 W:Z(D))G,p = B;p(D): s = (1 _6) Sl +0S2$ Sl 9& SZu

P,, maps Bj,(D) into itself if s > 1/p—1. In particular, we have
(Harmj} (m) (D), Harm,? (m)(D)),,, = BS, Harm (m) (D)
if min(s,, 8,) > 1/p—1, s =(1—0)s, +0s,.
Thus L, r > max(s;, s;), maps B}, Harm(m)(D) into
(Lr (D, o™, L7 (D, IQI—"Z))o,p =IL7(D, |e|™™)
by Theorem 5.5.1 of [7]. Thus
B;, Harm (m)(D) = P,,(L” (D, |g|~#*)) = Harms (m)(D)

The Sobolev and Besov norms are both equivalent to ||L, u||L,,(D e~

Now we can use the real interpolation functor (-, ‘), , to prove that
Ly, r > s, maps By, Harm(m)(D) into B",,(D) if s+ k+1/p, and complex
interpolation to prove that L, maps Bj;,Harm(m)(D) into B (D) for s =k
+1/p. Then we use the same considerations as in the proof of Theorem 1 to
show that B, 'Harm(m)(D) and Bj,Harm(m)(D) are mutually dual via
s dems T2 S, 1/g+1/p = 1. Finally, we obtain

B, Harm(m) (D) = L Harm (m) (D, |¢|*) = Harm, *(m) (D).

4. Proof of Remark 3 and Theorem 3. We begin with a proof of
part (a) of Remark 3. We can assume that T is selfadjoint (since we can
always replace T by T* T). Thus for each integer k, the Dirichlet problem is
uniquely solvable for T*. Since T* is of order 2mk, the estimates from [26]
(Th. 57.2) show that G, maps continuously W, “"(D) onto W*™(D), 1 <p
< 00. It is well known that G, maps W; (D) into W;* ™ (D) for s > 0. Then

for s > 1/p~1.
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complex interpolation shows that G, ‘maps W (D) into W;*?"*(D) for each

s 2z —mk. If we use the real interpolation functor (-, -)g,,
G maps Bj,(D) into Bjr>™ (D) for s > —mk.
We now prove that

(Harmqx);, (D) =

we can prove that

By, Harmgx(D) for s > mk.

Let ue(Harmqu), (D). The trace Tru on the boundary belongs to
[Tt BS; i~ 1/7(8D) = V(D). It follows from [31, 2.7.2] that there exists an
extension operator S: V(8D) — W, (D) N B;,(D). We have

u = S(Tru)— Gp T* S (Tr u) e B}, Harmqx (D).

Thus (Harmy«), (D) < B, Harmg« (D). The opposite inclusion can be proved
in the same way.

Let now s be arbitrary, and choose k so large that s > —(k—1)m.
The operator G« maps (Harmp)y(D) into  (Harmg.,);" 2™ (D)
= B%} 2™ Harm, .., (D) since s+2mk > m(k+1). Thus

(Harmy)}(D) = B, Harmy (D).

Let us prove (b). For each k the projector P, maps continuously By, (D)
onto B, Harm (D) for 1 <p< a0, s> 0 (Byuw(D) =4, (D)). Thus the scale
of spaces B, HarmTk (D) has the same interpolation properties as the scale

:,(D), 1 <p< 0, 520

By Theorem 12 10 of [1] the operator G, maps continuously B}, (D)

into B 2™ (D) for s > —mk—1. If k is so large that min(sy, s;) > —km then

Gre([By, ' py Harmy (D), B, v, HArmy (D))
c [Bp 1Py Harmqk+1(D), szpz Harmyx+1(D)]yq = B}, Harmpx+1(D),
1-0 6 1
=(1-0)s;+0sy, —+—=-.
(1—0) s, +6s, ~t5 "

Thus
(B! Harmy (D), B} 3 p2m2 Harmy (D)} = B, Harmy (D),

5, pas above. On the other hand, T* maps Bj;>™ Harmp+1(D) into
(B}, Harmg (D), B,,z,,2 Harmy (D)) and onto B}, Harmy (D). Hence -

B;,Harmy (D) = [B;!, Harmy(D), B2 ,, Harmr(D)]g;.
s, p as above. In the same manner we can prove that
Harmy (D), B}2,, Harmy (D))y,, = B}, Harmy (D)

P1Py

PPy

P1Py Psz

( 1Py P2P2

where s, p are as above.
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Theorem 3 is now an immediate consequence of Remark 3. The only
thing that remains to be proved is that B%,, Harm(m)(D) = Bl Harm (m)(D)
and By, Harm(m)(D) = L® Harm(m)(D, |o[¥), s > 0. These facts will be
proved in Appendix 2.

5. Proof of Theorem 4. We prove Theorem 4 for 1 < p < 00. The
case p= oo will be considered separately in Appendix 2.
Let 1 <p <o0. We have by Theorem 1

L Harm (k)(D, |o|') = Harm; /* (k) (D).

Thus for every ueL?>Harm(k)(D) and g = p/(p—1)
1P tl| Lo, jopty = sup

veHarm;/p(k)(D)
lioll <1

Since P,, is ‘selfadjoint the last expression is bounded by

<Pyt 0.

[l 1P 0115 < € 11tll o o1t -

Since the smooth functions are dense in LF Harm (k)(D, |g['), P,, extends to a
continuous mapping of L” Harm(k)(D, [olY) into itself.
If p=1 then we must use the fact that each Banach space imbeds

isomorphically into its second dual. Thus we again bhave for
ue L* Harm (k) (D)
| P u”Ll(D,[al‘) = sup [{Ppu, v} < é”““L‘(D,IQl’)-
. ve AHarm(k)(D)
lfolf <1

Thus P, extends to a continuous map of L! Harm(k)(D, lg') into itself.

Remark. In the same manner we can prove that the operator G,
solving the Dirichlet problem extends to a continuous mapping from
L7 Harm (k) (D, {ol) into Harm}™ "7 (k+m)(D) for every 1 <p < o0.

6. Proof of Theorem 6. The operator T = [J,, is selfadjoint with

respect to the scalar product (', -}, and this scalar product is equivalent to
the Euclidean scalar product

<o, £ =§J: {onédy, o =ZdeEJ, ¢ =Zf;d21-
7 7

We can treat (0, g)-forms as vector-valued functions and we have
{w, £ = {w, A(£)>y, where A is a matrix invertible on D with Cc=(D)
coefficients. The operator [, = T is a strongly elliptic operator of order 2
such that the Dirichlet problem is uniquely solvable for 7. We shall consider
the operator Np— Gy, which maps Harmq (D) into itself.

The operator T fulfills the assumptions of Remark 3 and thus the spaces
By, Harmy (D), ~o0 <5 <0, 1 <p< o0, form an interpolation scale and
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B;, Harmy (D) = (Harmy);, (D) (B%,, = A,). Moreover, since <¢-,-)», and
-, -y, are equivalent in the above-explained sense, the spaces W,”*(0, g)(D)
and W;(O, q)(D), r = p/(p—1), are mutually dual via the pairing ¢, *>r.

Consider the map L% constructed as in the introduction with 7% = T,
Then L% maps (Harmq)$ (D) into WS(D).if 0< s < k. (Since T is of second
order, the proof of this fact is the same as in the case of T = 4; see [18],
[22]) We also have L% u—u | Harm (D) with respect to (-, *>,. Hence we
have the same situation as in Theorem 1 and obtain

() (Harmy),*(D) and (Harmg);(D) are mutually dual via the pairing
u, Lhod,, k> s.

Now the estimates from [17] yield that N, — Gy maps A; Harm; (D) into
Ay Harmz (D). On the other hand, the classical Kohn estimate [9] shows
that Ny —Gy maps [? Harmy (D) into (Harmyg)} (D). Then Remark 3 and (i)
imply by the standard interpolation and duality argument that

(i) N.—Gr maps (Harmy)} (D) into (Harmp)5"* (D) for all —o0 <s < o0
and 1 <p < 0. (Recall that N,— Gy is selfadjoint with respect to {*, ->r.)

In order to prove the needed estimates for N, we must observe that (ii)
implies that N, maps continuously (Harmp)}(D) into W:*'(0, g)(D) for
—-1gs<w, 1 <p<oo. )

Let now we W; (0, q)(D) and let Pr; be the orthogonal projection on
L?Harmy (orthogonal with respect to <, ->). We have =P o
+ [0 Gr2 Oy w. Since Gr2 O weDom [, we obtain

Npw =N Prr0+Grz,o.

Hence N, maps W;(0, g)(D) into W;*1(0, g)(D) for s > O (this can even be
proved for 0> s> —1+1/p but we shall not do it here).

The same methods applied to the operators o, N, and 3f N permit us
to prove the rest of Theorem 6.

1V. Appendix 1. We now consider the general spaces Fj, (D) and B3, (D).
The definitions of these spaces for 0 < p < o0 and 0 <g < oo can be found
in [31]. Recall that for 1 < p <o, we have Wy (D)= F;,(D) and B},(D)
= F},(D), —0 <s <o0. B )

We shall use the above notation also for 0 <p < 1. The following
interpolation formulas hold: .

1-6 6 1

——t—=oq
Pr P2 P

1-6 0 1
@ (Fl (D), Wy (Dlog =By(D), == =0, s =(1=0)s, + 053,

2p,

(1) [Bpypy (D), Wy, (D)o = Fi (D), T2-20+p,0


GUEST


156 E. Ligocka

Thus all spaces B, (D), 0 <p, g < oo, and F, (D), 0 <p < 00, 2p/(p+2) < ¢
<o, can be obtained via interpolation from the spaces B, (D) and
W;(D), 0 < p, g <oo. The formulas (1) and (2) together with the definitions
of B}, (D) and W; (D) given above for 1 < p < oo could serve as equivalent
definitions of the spaces BS, 1<p<o0, 1<g<c0o, and Fy (D), 1<p
< o0, 2p/(p+1) <q < 2p.

We now prove the following

ProrposiTioN A. Let T be a strongly elliptic operator as in Remark 3(a).
Then

F}, Harmy (D) = B}, Harmy (D)
Jor —o0o <s<oand 1 <g<ow, 1<p<ow,

Proof. The interpolation formula (1) yields that G maps Fy, (D) into
Fy 2™ (D) for s> —mk, 2p/p+1) <q <2p. We also have Tr F5, (D)
=TrW;(D) for s >mk, 1 <g < oo. Moreover, [31, 2.7.2] implies that the
extension operator § maps Tr W:(D) = V(éD) into ﬂq'F;q(D).

Thus we can now repeat word by word the proof of Remark 3(a) and
prove our proposition for 2p/(p+1) < q < 2p. In order to prove Proposition
A for all ¢, 1 <g < oo, we fix p and observe that the estimates from [31]
yield that Proposition A is valid for all 1 < g < o0, 2m <5 < o (2m is the
order of T). Thus we can use complex interpolation between the spaces
F(D), —0 <s< o0, 2p/(p+1) <q <2p, and FoD), 2m <s <o, 1<gq
< o0, and prove our proposition for all 1 < g < oo.

Remark B. It will follow from Appendix 2 (see below) that Proposition
A is in fact valid for 0 < g < o0 and 0<p<oo.

Roughly speaking, if we deal with kernels of strongly elliptic differential
operators, we . have only one interpolation scale to consider —the scale of
Besov spaces B,

Let us now describe the interpolation scale By, Harm(m)(D), 1 < p < o,
1l<g<oo. ‘

If s> 0 and s is not an integer then for ue By, (D)

Vil on =Wl iy + 32 ([ 1B 991 1071 (oo By D G A2 )
| = |3] h

where {s} =s—[s], D, =D n{xeR" x+ heD}. Thus in this case the Besov

norm has an explicit form.

To describe the spaces B}, Harm (m)(D) for other s we shall use Proposi-
tion 2, Theorem 1 and the interpolation formula (2. Let s> —1+1/p and
5=(1~0)s,+0s;, 5; <5 <85, 5, > —1+1/p. The formula (2) yields that
L, maps continuously B, Harm (m)(D) into (L (D, ol ™™, L7 (D, lo]~ "),
r 2 5,, and P, maps the last space onto B;,, Harm (m) (D). Since in addition

@ ©
lm Spaces of polyharmonic functions . 157

L;, maps continuously B}, Harm(m)(D) into B, Harm (m)(D) (defined in the
same way as for B';q), we can repeat the proof of Theorem 1 to obtain for
I/p+1i/py =1, l/g+1/q, =1

(Bs, Harm (m) (D)}* = B;%, Harm (m)(D)

P14y
= (LD, |eI"™™), L™ (D, [ol"***)).q, N Harm (m) (D).
The space on the right has the following norm (see [7, 5.7, -Ex. 10]):

o«
Il = ([P el Av ) degr)e,
(] l<'q|p1(32—-sl)
We can now change the notation and write —s=3s, p;=p, ¢ =p.
In addition we can choose s,, s, in the above formula in such a way that
s;—s$; =1/py or if s >1/q,—1/p, we can take s;—s; =1, 6§ =1/q, and
put t =1"!. After those operations we get the following

ProrositioN C. If s < 1/p, then the following norms are equivalent to the

Bj, norm on Bj, Harm(m)(D):

pq

o0

llullg = ( §2%97( | lul?lo]=®7*® dV)/» difr)e

o le| >t
for any 0 <@ <min(1, 1—ps). |
If in addition s < 1/p—1/q then the above norms are equivalent to
o
el = ([ [ [u?lgl=*?~#/2dV)%> dr)*/a.
0 lel>t

By considering the derivatives we can now get the explicit description of

the spaces By, Harm(m)(D) for all s. . o
In the case m = 1, Proposition C implies the following characterization

of the space B;,(AD), 1 <p, g <o, s>0:
CoroLLARY D. The following conditions are equivalent:
1) ueB}, (D), 1<p,q <o, s>0.
2) ueL”(8D) and for some integer k > s+1/q
) T( j [1’2]”|g|”"‘“3‘1/”"/4)dV)"/"dt < o0
0 Jel>t .
where il denotes the harmonic extension of u over D.
3) ue LP(0D) and (%) holds for every k >s+1/q.

V. Appendix 2. Let T be a strongly elliptic operator of order 2m for
which the Dirichlet problem is uniguely solvable.
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ProrosITION A. The operator Gy solving the Dirichlet problem for T maps
continuously By, (D) — Bjs*™(D) and F3,(D)— F5i™(D) for —m+(1/p—1)n<s
<00, 0 <p<1,0<g <o0.

CoroLLary B.(a) The projection Py maps continuously B, (D) and F3,(D)into
itself for (I/p—)n<s<o0,0<p<1, 0<qg<o0.

(b) F3,Harmq (D) = B}, Harmy (D) for 0<p < o0, —00 <s <00, 0 <q
<0,

(c) The scale of spaces BS,Harmy (D), 0< p < c0, —00 <§ < 00, has the
same interpolation properties as in Remark 3(b) provided that T'is selfadjoint.

Proof. In order to prove Proposition A we must use the results of
Franke [11]. His estimates imply that G, maps continuously F.(D) into
Fii*(D) and B, (D) into B3F*™(D) for s > m(1/p—1), 0 < p < 1. The esti-
mates from [11] also yield that G; maps continuously BS, (D) into B3 3m(D)
and Fy, (D) into F5r (D) if —m <s <00, 1 <p < o0, 1 <g < oo0. This can
be easily proved by using the estimates for W, (D) and the interpolation
formulas from Appendix 1.

It follows from [31, 434, Remark 1] that G, has the interpolation
property with respect to the Calderén-Torchinsky construction (see [31] for
details) and hence we can use it to interpolate between Ff,lm(D) and
Fpe, (D) for s, >(1/p—1)n, 0 < p, <1, 0<q, < oo and s3> —m, 1 <p,
<00, 1 <g, <co and get the required results for the spaces Fj (D).

In order to prove Proposition A for the spaces B;, (D) it suffices to use
the real interpolation functor (-, Vo.q-

Now, Corollary B(a) follows immediately from the definition of Py
Corollary- B(b) follows from the fact that Tr F;, (D) = BS, 1/7(dD) for
s > max(1/p, (I/p—1)#n) in the same way as in Remark 3 and in Proposition
A from Appendix 1. The proof of (c) is the same as that of Remark 3(b).

Corollary B(a) yields in particular that for every m, P, maps conti-
nuously W (D) into itself and BS, (D) into itself if only s > 0. Corollary B(b)
implies that Harm§ (m)(D) = B, Harm(m)(D) for —o0 <5 < 00.

We now prove

ProrosiTion C.
(2) Harmj (m)(D) = B, Harm (m) (D) = [ Harm (my(D, lo|™® for s <1.
If0<s <1 then I} Harm (m)(D, |g| %) = L! Harm(m)(D, |g|~*).
(b  Bi,Harm(m)(D) = L*® Harm(m)(D, [o|™%) for s <0,
BY, . Harm (m)(D) = Bl Harm (m)(D).

(c1) BZ%, Harm (m)(D) = L* Harm (m) (D, loI") represents the dual of
Harmj (m) (D) via the pairing (L:,u, v)o i rz[s]+1, s> 0.
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(c2) Biy'Harm(m)(D) represents the dual of A? Harm(m)(D), which is the
closure of C*(D) "Harm(m)(D) in A,(D) (A = B%, ., for s > 0), via the same
pairing.

(c3) L* Harm (m) (D) represents the dual of BI° Harm (m)(D), which is the
closure of C* (D) nHarm (m)(D) in BI(D), via the same pairing (s = 0).

Proof. Let ue L' Harm (m)(D, |o|) " C* (D), s > 0, s—[s] > 0. We have

”u”Ll(D lel$) = sup |<u! v>0‘ = sup I(u: L';anv>0|'
' veLX(D, o] ~%) veL(D, 0| %)
ftell =1 floll <1

Propositions 1 and 2 imply that ¢ = L, P,,ve A,(D), ¢ vanishes on dD up to
order [s] and ||¢|| 4p) < ¢ ||””L5°(D.|p|-s)' Thus the function @ on R" equal to ¢ »
on D and to O outside D belongs to A,(R").

Let @ = Su, where S is the extension operator from D to R" described
in [31, 334] By [31, 2112], (Bif(R))* =A,(R. We also have
l|5““3;1‘(n") < c||u||3;1s(m by the continuity of S. Hence

[<u, Ly Prv)l =<0, ppl < C“Wn[{(m”(ﬁ”,i,mﬂ)
= CHﬁ“B[l’(m ”q’”A,(D) < C||u||xl‘1’(n) [ivll Lo, o =5 -

Thus |Jullpyp, e < cllulls o and Bif Harm(m)(D) = L Harm (m)(D, |ol9).

In order to prove the opposite inclusion, we first prove tha‘t B! (D)
represents the dual of A?(D), which is nthe closure of Cg’(p) in .AS(D).
(Warning! A2 (D) is not equal to the space A, (D) of functions which vanish on
oD up to order s.)

If we extend the functions from A? (D) to R putting zero outsid.e D' then
we get an isomorphic imbedding of A? (D) into the space A2 (R", which is the
closure of the Schwartz space $(R" in A,(R". By [31, 2.11.2, Remark 2],
Bi{(R") is the dual of A2(R". Thus the dual of A? (D) must be equal to the
restriction of Bif(R") to D, ie. to Bi{(D). Hence .

750y = sup [<u, 03
veAd (D)
floif<1

Since
[, 03| = |ty Ly Py 03] < [[ull 20,119 11 Lin P VLo, o1 =5

< c||ullpip, s 1P UHA,(D) < cllullLro, o ”U“A,(D)’

by Proposition 2, we have [|ulls;fp) < c|lullz1p,jq9- The smooth funct{ons on
D are dense in BifHarm(m)(D).since 4% k>s, is a retraction of
B%~*Harm (m-+k)(D) onto BifHarm(m)(D) (the cioretr;(:_tion is obviously
G,), and the smooth functions on D are dense in Bii™*Harm(m+k)(D)
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because of the regularity of P, (see Corollary B(a)). Thus part (a) of
Proposition C is proved for s <0, s # [s].

The second part of the above proof remains valid for s = [s] and thus
LY Harm (m)(D, |of*) = B, Harm (m)(D). The opposite inclusion follows from
interpolation since

51 Harm (m) (D) = [B}7* Harm(m)(D), B}* Harm (m) (D)][1/2]
= [L'(D, o™, L*(D, |Q’S+B)][1/21 = L' (D, lol)-

Thus (a) holds for every s <0.

We  have B} Harm(m)(D) = L'(D)  since  BY, Harm(m)(D)
= Harm{ (m)(D) = W (D) = L* (D). This implies that L, maps continuously
B5; Harm (m) (D) into L*(D, |o| ™) just as for Holder spaces, r = [s]+1, s > 0.

Let us now prove (cl) and. (b). Take s >0, s—[s]>0. The space
B35, (D) is the dual of B 1(D). The mapping L, maps continuously
B, Harm (m)(D) into B,(D). In view of Proposition A this fact can
be proved in exactly the same way as for p > 1, using the already proven
part of (a).

Now, B3, Harm(m)(D) represents the dual of B, Harm (m)(D) via
<L7+5 Do Indeed, it is obvious that every element of BLS, Harm (m) (D)
determines a continuous functional on B}, Harm (m) (D). Let now @ be such
a functional. We extend ¢ to an element ¢ of (BY, (D))*. Since P, maps

11 (D) into Bi; (D) and is selfadjoint, P, maps continuously (B34 (D))* into
B % (D). Thus P, @ is the element of B3, Harm (m)(D) representing ¢.

The mapping L;, maps Bj,; Harm(m)(D) into L!(D, lol™%). Thus every
function from L® Harm (m) (D, |g|) represents a functional on Bj; Harm (m) (D).
Thus L* Harm (m)(D, [o) < B%, Harm (m) (D). The opposite inclusion follows
from Lemma 1 applied to the (k+ m)-polyharmonic functions, k > s, since
B % Harm (m)(D) is the retract of A,,_, Harm(m+k)(D) under 4* Thus (b)
}s proved for noninteger s. Complex interpolation permits us to. prove (b)
or all s.

Let us now prove the rest of (a). Let 0 <s<1 Since L) maps
Biy Harm (m)(D) into L'(D, |¢|™%) and P,, maps L'(D, |o|™%) into itself, we
have Bj; Harm(m)(D) = L'(D, |o|™®). For every m-polyharmonic u

lllssy o~ sup [ <u, 03] < [ullpagpyer-s-
u® "SLOOH“”S(D:’EISJ RVES ” Iz Dol ™%
el <1

Hence L' Harm(D, |o|™%) = B§, Harm (m) (D).

Now BlHarm(m)(D) represents the dual of IL! Harm (m)(D) via the
pairing <u, Ly, v). We shall prove in the sequel that BY, Harm (m)(D) repre-
sents the dual of BI°Harm(m)(D) via the pairing (Liu, v>. Thus

©

o
lm Spaces of polyharmonic functions 161

llullg?, oy < clltllry i u is m-polyharmonic. Hence B?, Harm (m)(D)
= L! Harm (m) (D).

It now remains to prove (c2) and (c3).

Let us prove (c2). From the above-proved duality between A°(D) and
Bif(D) it follows that every ve BifHarm(m)(D) determines a continuous
functional on A2 Harm (m)(D), since ue A2 Harm(m)(D) iff I}, ue A°(D). We
can now proceed in the standard way, extending ¢e (A9 Harm(m)(D)}* to
Fe(4,(D))* and taking v = P, §e(A? (D)}* = B;{ (D).

In order to prove (c3) we use the fact that B, (D) is the dual of the
space BY, (D), which is the closure of CZ(D) in B% (D) (see [31, 2.11.2,
Remark 2]). The operator P, maps continuously BY . (D) into itself (this
follows from Th. 12.10 of [1] and interpolation). The mapping L. maps
BlHarm(m)(D) into B%.(D), since L®(D) € BS (D). Thus L. maps
BI°Harm(m)(D) into B%, (D). Hence as before each veBY, Harm (m)(D)
determines a continuous functional on B1° Harm (m)(D) and BY; Harm (m)(D)
= (Pn(B%% (D))*. Thus BY, Harm(m)(D) = L' Harm(m)(D) represents the
dual of BI° Harm (m)(D).

In the above proof we have used implicitly the fact that the smooth
functions on D are dense in L' Harm (m)(D). This fact needs a special proof,
which is the same as the proof for m =1 given in [21].

Remark D. It can be easily proved using the fact that C§ (D) is dense
in Co(D) = {feC(D): flap =0} that if m=1 then :

B1° Harm (D) = {ucBlHarm(D): gVu— 0 if ¢ — 0},
A% Harm (D) = {ue A, Harm(D): |g|* *Pu—0if ¢—0}, 0 <s < 1.

Remark E. Let us make a trivial but useful observation. Since for
D < C" the holomorphic functions form a closed subspace of the space of
harmonic functions with respect to any norm considered here, we have now
an explicit description of Sobolev and Besov spaces of holomorphic' functions
for every smooth bounded domain in C"..The additional assumptions on D
are needed only to establish duality and interpolation relations between these
spaces.

Proposition C (c2)~(c3) remains valid if we replace the spaces of 'harmo-
nic functions with the corresponding spaces of holomorphic fungtlons on
strictly pseudoconvex domains (cf. [197, {21]). If D is the unit disc in C then
BI° Hol(D) is the classical Bloch class Bg.

Part (a) of Proposition C permits us to get Corollary 1 for p =1, and
part (c1) proves Theoren 4 for p = co.

VI. Open problems. 1. It was proved in [24] that if m=1 theﬁ the
mapping u — P(¢*u) is an isomorphism between Harm, (D) and Harmj™*(D),
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—00 < § <oo. Is this true for m > 1, ie. is u— P,{¢"*u) an isomorphism?
What can be said about the mapping u — P, (lg|*w), where s > 0 is noninte-
er?
® 2. Find an explicit characterization of the spaces Harmj, (m)(D) for p < 1.
Is it in particular true that Harm9(m)(D) = L” Harm (m)(D) for p <1?

3. Are the smooth functions on D dense in L! Harm(m) (D, |o|*) if s > 0?

4. For which strongly elliptic second order operators T Lemma 1 and
Proposition 1(a), (b) hold? If these facts are true for T then all results of the
present paper remain valid if we replace the spaces Harm(m)(D) with the
spaces Harm,m(D). It may also be interesting to try to extend these estimates
to the case of pseudodifferential operators, since for every positive-definite
elliptic operator T of order 2m the operator T/ is a well-defined pseudodif-
ferential operator (see [30]). We hope that this could be an interesting
problem for specialists in PDE.

5. Let D be a strictly pseudoconvex domain in C". Is the Bergman
projection B continuous from W (D) into itself if p< 1 and s > n(1/p—1)?

6. Let D be a smooth bounded domain in C". Is the operator N solving
the 0-Neumann problem considered with respect to the Euclidean metric
regular in Holder norms? Note that in view of Corollary B in Appendix 2
the Holder estimates for such an N yield automatically the estimates for N in
every W3 (D) norm, 0 < s <00, 1 <p < o, without any additional assump-
tion on the domain D. The same is obviously true for the Bergman
projection B: if, for a smooth bounded domain D, B is regular in Holder
norms then it must be regular in all norms W;(D), 1 <p<oo, s> 0. In
particular, is B regular in Holder norms if D is a pseudoconvex domain with
real-analytic boundary?
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