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On relations between additive and
multiplicative clustering operators

by
H. ZOLADEK (Warszawa)

Abstract. It is proved that a family 7,, t 20, of sclfadjoint operators defines a one-
parameter semigroup of multiplicative clustering operators iff its generator is an additive
clustering operator. We show that 0 is not an eigenvalue of a multiplicative clustering operator.

1. Introduction. In the recent years there has been isolated a class of
operators, called clustering operators [1, 6]. This notion appears in mathe-
matical physics and corresponds to the fact that in a multi-particle system
the particles try to group into clusters which do not interact with other
clusters at large distances. This leads to the special structure of those
operators.

The simplest models where the clustering. operators appear are the (v
-+ 1)-dimensional 1sing models with discrete and continuous time. The Trans-
fer-matrix .7, of these models has a multiplicative clustering structure. This
was conjectured by Minlos and Sinai in [9] and proved by Abdulla-Zade,
Minlos and Pogosyan in [1] (for v = 1) and by Malyshev in [4] (for v > 2).
The generator H of the semigroup .7, (in the continuous time model) turns
out to be an additive clustering operator [7, 8]. Other examples of clustering
operators and their basic properties are given in [8].

An additive clustering operator H defines the Hamiltonian of an infinite-
particle system on the integer lattice and a multiplicative clustering operator
7 corresponds to the Transfer-matrix of such a system. Therefore it is
natural to expect that: (a) e is a multiplicative clustering operator and (b)
In .7 (if it exists) is an additive clustering operator. In the present paper we
prove (a) and give one resuit concerning (b).

The author thanks V. A, Malyshev for valuable discussions.

2. Results. Let C,, be the set of all finite subsets of the v-dimensional
integer lattice Z”. We consider the Hilbert space

H=1(C,)
with orthogonal basis (eg), Te C,,,
er(T)=0rr, T, T'eC,.
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DeriniTionN 2.1. A selfadjoint operator 7 in 4 is called a multiplicative
clustering operator with (clustering) parameters A and § if its matrix elements
have the following expansion:

(1) (eg, Teg)=1, fler, Ter)=13Y ¥ ﬁ (L, L), |T|+|T'|>0,

s21 (Ll i=1

where the summation is over all (unordered) partitions {(L,, Ly), ..., (L, L)},
s=1,2,...,of the pair (T, T) (ie. UL = L UL = T, LinL, = L, n L=
for i # j) such that

and the clustering functions w(L, L) = w? (L, L) satisfy:

i=1,...,s,

@ o(L+x, L+x)=w(L, L), xeZ' where {x,...,%x,}+x=1{x,
+x, ..., X, X}

) o(L, L) = o(L, L).

© 0< w0}, {0) =4i<1 and
(23) lo(L, L) < MA(1—2) ¥ if |ILUL| > 2,

where M > 0, 0 < f < 1 are constants, |B| denotes the cardinality of the set B
and dp, B < Z", is the minimum length of a tree graph connecting points of
B (the metric in Z" is given by

(1

dist(xla xl) = le '_x?.l = le(li)_x(zi)lx xj = (xj )! ey x‘(]V))a } = 11 2)

We say that a strongly continuous family 7, te C', of multiplicative
clustering operators in 3 defines a holomorphic group of multiplicative
clustering operators with parameters a and f if their clustering functions o,

Ty

=@ "' satisfy:

o, ({0}, {0 =e™*, a>0,
24 loo(L, L) < M) |t ™ B*29F if [LUL| > 2,
where 0 < M (t) < Me® for ¢ from a neighbourhood of the set [0, oo) = C!;
here M >0, and 6 > 0 is a small constant (§ < a/3).

DermviTioN 2.2, A selfadjoint operator H in 2 is called an additive
clustering operator with parameters a and f if its matrix elements have the
following expansion:

(2.5) (er, Heyp)) = Z
@ #L=T
0L =T
where the (clustering) functions'a)—(I_',, L) = o®(L, L) satisfy:
@ o(L, L)=o(+x, L+x), xeZ

oL, L), T TeC,,
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(b) o(L, L) = o(L, L).
(©) @({0}, {0}) = a and

(2.6) loo(L, L) < MB™™E if [LUL]| > 2,
where M >0, a> 0 and 0< f <1 are constants.

Remark 2.1. The estimate (2.3) in the definition of a multiplicative
clustering operator is slightly weaker than the estimate

lo(L, L)l < MR-V

used in earlier papers [1,6]. (Here L=Lx{0} cZ"xR' and L(t) =
Lx{t} = Z*xR') Our estimate is more natural for the purposes of this
paper. It covers the cases of small ¢ as well as those of large 1.

The main result of this work is the following:

TuEOREM 1. (a) Let H be an additive clustering operator with parameters
a and B. Then there exists Bo = Bo(M, a) > O such that for 0 < B < B, the
Jamily 7, = e™*%, te C, defines a holomorphic group of multiplicative cluster-
ing operators with parameters a and B 7, where ¢ is a small constant
depending on v and a.

(b) Let 7,, teC", be a holomorphic group of multiplicative clustering
operators with parameters a and B. Then the generator H of the semigroup
(Zhz0 is an additive clustering operator with parameters a and B.

Remark 2.2. The following natural problem arises: can a multiplicative
clustering operator .7~ be represented as e™'™ for some additive clustering
operator H? The necessary conditions for this are:

(i) 0 is not an eigenvalue of 7.

() 77 is a multiplicative clustering operator for 0 <t <1 (t = 1/2
suffices).

A partial answer to the question whether (i) is satisfied is given in
Theorem 2 below. But the second problem, the multiplicativeness of \/} R
remains open. Notice that for the Transfer-matrix of the Ising model in Z**!
the first problem is unsolved.

TueoREM 2. Let .7 be a multiplicative clustering operator with parame-
ters A and B. Then if B/ is sufficiently small then 0 is not an eigenvalue of T
Remark 23. V., A, Malyshev and 1. A. Kashapov have announced this

result, but their proof has not appeared in the literature (see note in [6.11]
and also [3]). The invertibility of the Transfer-matrix in the gauge lattice

.model has been proved by K. Fredenhagen in [2].

3. Proof of Theorem 1(a). Let y = ((L,, Ly), ..., (L, L), k =k(3), be a
finite ordered system of pairs of nonempty subsets of Z'. We call such a
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system a bond if the system {L, UL, ...,
[4] or [5]) and put

Ly u L} of sets is connected (sce
y=ULuL,
(3.1) T() =Ly v(L\Ly) W (Ls\ L\ Ly u..,
T =Lu(l- \L) UL\ L1 \L) U...

We also consider finite (unordered) systems I' = {y,, ..
bonds. Call such a system regular if

o3 Ymy> m=m(I), of

(3.2) TRINTH) =0, ToTE) =0, i#j,
and completely regular if
(3.3) FnF=0, i#j

I' is called connected if the system {7, ..., %,] is connected (see [5]). If H is

an additive clustering operator then for a given I'= {y,, ..., p,,} we put
m [ ko)

(3.4) =11 L—L [T o™, L),
i=1 i ! (L,L)ey;

where t = 0.

Lemma 3.1. Let H be an additive clustering operator with clustering
Junctions w™. Then the matrix elements of the operator 7, = e™'¥ have the
Jorm

(3.5) (er, Tier) = Z w:(r)+5|’rur'[,1=
g

where the summation is over all completely regular systems T’ such that
(3.6
TN=UTx)<T, TO=UT@E)=T,
Proof. From (2.5) it is easy to show that

T\T(I) = T'\T'(I").

(3'7) (eTa ‘9—reT') Z (—, (el‘a H"e ) = Z ( H ]_I—'[ C()H(LL, E[),

nzo M nz0 "' (LpLpi=1
where the summation is over (ordered) systems of pairs ((Ly, )=, such that
L#®, L+,
Lieh=T Lio(G\L)=0,
Leh=Liu(T\L), L,n(T,\L)=0

Le T, =L u(T\Ly), LT,
TA\L, = T'\L,.

(3.8)
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(Here the vectors ey belong to the domains of all H") We divide each
collection ((L;, L)) satisfying (3.8) into connected (ordered) subsystems —bonds
¥ j=1,....m, and assign to it the system I = {y, ..., y,,}. From (3.8) it
follows that I' is completely regular and satisfies (3.6). Conversely, to any
completely regular system I of bonds satisfying (3.6) we can assign
nfk(yt.. k(7)Y systems ((L;, L))}, satisfying (3.8); here Y k(y) = n.
Different systems ((L;, L)) correspond to different permutations of the set
i1, ..., n} leaving the natural orderings of the y; invariant. From this remark
and (3.7) the lemma follows.

DerinviTioN. Let T, T" < Z¥. Then we define
3.9) (T, T) = §jp 1 +), DN &, (D),
r
where the summation is over all connected regular systems I' of bonds such
that
(3.10) TTH=T TI=T.

To define D(I') for any I' = {y,, ..., y,,}, consider the graph G = G with
vertices {1, ..., m}, in which there is a unique edge between vertices i and j
iff 5 %, # (Z). Then we put

D(I) = py, (0, 1),

(see [4, 55]), i.e. D(I) is the M&bius function for the lattice 2 of pamtlons
of the graph G.

LeEmma 3.2. We have
ter, Tver)= Y [len(T. T),

(ToTh

where the sum is over all partitions {(T;, Tl') (T THY, s=1,2, ..., such
that T#Q, TT#0, UT=T U =T Tn?} T NnT =@ fori#].
Proof. From (3.9) and (3.4) we get

S o M= Z ZHémle HD(F)w.(Fi)

(TpTpi=1 (T3, T,

=Y'a!ny" 'H D(Iy),
=1

where I < {1, ..., s}, the sum Y ' is over all ordered systems (I';, ieI) with
Tr)="1,T (I‘) = T; for iel, the sum ¥ is over all systems I such that
TN el T'"De T, T\TIN=T\T'(I'), and the sum Z is over con-
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nected regular Iy, ...,
from the fact that

I, such that () I'; = I'. Therefore Lemma 3.2 follows

1 if I' is completely regular,
ZHD(Fi) h {0 otherwise,

where the sum is over all I'y,..., I', with YT, =T (see [4, 5]).

To finish the proof of Theorem 1(a) we shall prove the estimate (2.4), In
order to do this we transform (3.9). Notice that D(I') does not change if we
replace one bond yel, y = ((Ly, Ly), ..., (L, L)), with

'Y' = «Lla ’1): ey (Lj1 'Uj)’ ({X}, {x})a (L]'+1’ L/j-f-l)v ree (',L.u L’s))’

where xe(L;jy U T()) (L0 T'(y); only k(y) and [Jw®(L, L) change in
(3.4). Any bond y with |§] > 1 can be obtained with the help of a sequence of
the .above operations from a unique bond y' consisting of pairs (L, L) such
that [LUL| > 1. If §={x} then y =(({x}, {x}), ..., ({x}, {x})) and we say
that y is obtained with the help of the sequence ot the above operations
from a unique distinguished bond v with k(y) =0 and ¥ = {x}. For y' of
the above two types we define the numbers ry, ..., Fiyy+1, Where ry =1
for distinguished 7, and for ¥ = ((Ly, Ly), ..., (L, L), k=k(@y),

=T, n=|LvTE) (L= 0 TH)), ,
i=2 .. k; Tewr = [T'(¥)].
Notice that since 7' is a bond
(3.11) r2max{|Ty)nT ), 1}, j=1,..., k+1.
Using the above arguments, from (3.4) and (3.9) we get
612y (T, T) _61TUT| 1+Z D) T (=} T o™(L,I)
yer (LLey
N ® (—tary)"t c(—tar . )t
=0, Tpsqg=0 kD4l

where the sum Y extends over all connected systems I' = {y}, ..., yi,} of

distinguished bonds and bonds consisting of pairs (L, ) with ILUL]>1
such that T(I') = T, T'(I') = T'; here k = k(y).

If T=T = {x} then the above sum is simply
@ ({x}, {x}) =e™.
For other pairs (T, T') we use the following lemma.

Lemma 3.3. (a) The following. formula is true:

o I h+1 k+1 &

Zy oo Zgyq _
% B i=Z1 [MG@~z)

(3.13)
=0, e =0 k+lL+. .+l )l
J#i
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(b) We have the estimate
k+1 g
D =
(314 0= L Fatr
J#
(Cly for |at} <1 (te CY),
< (C/ayt o minri=1/3kRer for Re(a) > 1

where the r; are positive integers and C > 0 is an absolute constant independent
of a,t, k, .

I have not found the formula (3.13) in the literature. The proof of this
lemma is left to the Appendix.

We return to the estimate of e, (T, T"). We use the following estimate of
D(I') proved in [5]:

(319 D) < HC"’ <[] I] ¢,

¥ (LL)ey'
where C, = C;(v) is an absolute constant. Notice also that
(3.16) Y diwZdror, LkO) =1

y' el (L,L"Yey’

From (3.11), (3.12) and (3.14)-(3.16) we get

Y H(Clrl)" H (C, BB if |atf <11,

T
lo (T, T < Z H —(mmrl—l/S)Re(a!)(C/a)k H (€, BdLuL

if Re(ar) =1

As in [6I1, p. 218] one can show that for fixed |I'| =m(I) and} k(y), i

=1,..., |, .
_ . EY K
(C3p*79T" B

YT IT (C2 B <

r y (LL)
for some small ¢ > 0. Hence we get the final estimate

MM ﬁ‘iTuT
Mo~ 2Retan)3 ﬂdT uT’

if lat] <1,
(T, Tl < if Re(at) > 1,
where B, = p'~¢. This finishes the proof of Theorem 1(a).

4. Proof of Theorem 1(b). Let 7; be a one-parameter holomorphic. group
of multiplicative clustering operators with clustering functions obeying the
estimate (2.4).

LemMA 4.1. We have
wo(T, T') = dyr )1
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Proof. This follows from the fact that the clustering functions of
multiplicative clustering operators are uniquely determined by their matrix
elements [87].

Differentiating the formula (2.1) for .7; at t = 0 and using Lemma 4.1 we
obtain the formula (2.5). Hence one only needs to prove the estimate (2.6).
But this follows from the Cauchy formula

1 T, T)
@ ——ldt

------ j

k=0 27 It|=r

0

(T, T)= w0 (T.T)| =-— § 25
or

and the estimate (2.4). Theorem 1(b) is proved.

5. Proof of Theorem 2. Denote by D the diagonal part and by ¥ the off
diagonal part of J:

DY(T) = A"y (T), V=7-D.
Assume that Y e # is an eigenfunction of & with eigenvalue 0. Then
Ty =D(id+D"'V)y = 0.
LemMMA 5.1. We have
1D~ V|| < const f(1—1)
with coust independent of B and A provided B/ is sufficiently small,

From this lemma it immediately follows that y = 0, which completes the
proof of Theorem 2.

Proof of Lemma 5.1. We use the results of [6.I]. It is easy to see
that the operator D™! ¥ is clustering (i.e. is of the form (2.1) with [Tew(L, L)
replaced with &((Ly, Ly), ..., (L, L)), where & = & is some translation
invariant function of s arguments, [6, 8]). The clustering functions of D~' ¥
are

B s s (], i) = 0,
B(Lys L), oo (L, L) =127 07 (L, Iy i T]IL O L > 1,

and satisfy the estimate
B (L, L), ..., (Lyy )] < T comst A(1—2) (314" 5%,

Denote by P, the orthogonal projection of .# onto {fi f(D=0if

[Tl # n}. Then from the results of [6.I] (Corollary 1 from Lemma 2.2) we
have

(Cﬂ/i)max(m,n)

HP,,D“lVP,nIlSconstA(l—J,){ if-m>0, n>0,

0 if m=0or n=0.

icm®
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From this we obtain
ID™* VIl < sup Y AIP, D™ VP,|I+]sup Y|P, D™ VP,
n m m n
< const A(1-—2) B/A.
Lemma 5.1 is proved.

Appendix. Proof of Lemma 3.3. (a) We first prove the formula (3.13). It is
easy to see that it is enough to show the identity

k+1
Al Y =X T (e—x)
i=1 1<r<s<h+1
ros#i
0 ifm<k,
B (a—x) [T xkht if m>k,

1<i<j<k+1

where the sum is over all oy 20, ..., 04y =0 with Y o, =m—k. .
From the Vandermonde formula it follows that the left side of (A.1) is

X xket X, 1
k—1
x3 x5 X 1
(A2) det
k-1
xl’:‘#-ll Xk+1 Xer1 1
and that
x4 x;, 1
(A.3) [T (u—xp=det]:................
tisjsked et XETd Xpsy 1

If m < k then (A.1) follows from the fact that in (A.2) two columns are equal.
The case m =k is also obvious. .

To consider the case m>k we compute the coefficient a; of the
monomial

Pic+ 1
ce Xpt1s

ZB; =m+k(k—1)/2,

in the expansion of the right-hand side of (A.1). The contribution to a; from
.. x5! with o; < f;. Each such
monomial is multiplied by a unique monomial x#~* with coefficient 1 coming

from Y x* in (A.1). From this one can easily see that

. 0...0 1...1 (fy zeros) .
ag=det}......... ‘ .
00 11 (By 41 zeros)

X=X

(A4)
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Now, a; = sign= if there exists a permutation n of rows of the above matrix
leading to
1 1
0o 1.
and 0 in other cases. But these coefficients coincide with those of (A.2), which
completes the proof of the formula (3.13).

(b) If r; # r; for i s j then the estimate (3.14) for Re(at) = 1 is obvious,
and when |at| <1 one can use the Cauchy formula

1 YY)

R () = o D a.

2mi =2

The difficulty appears when some r; and r; coincide. Consider first the case
Re(ar) > 1. Assume that r; =7, =...=r=r and r; #r; in other cases
(other groups of coinciding r’s are considered analogously). We use the
Cauchy formula

(A5 f@y=a* (J_ dfy .. dlysy

!
Zm‘) ly-r=1/3D K3 —r=2/30  Igaq=ri=13 | (&7

e 1+1 e—ﬂ'Ci
XVIFT )

Y | () ) (B
i=2

i>i+1

P
+f>zz+1 H(n—Cj)ﬂ(rrrz)}'

We have the following' estimates: ' -

6=l = 1i—ji/3D,

(A.6) =l =% for i>I+1,
I+1
Ci < [T#3) =(U+11@)~""* < Cb.
i=1

From (A5) and (A.6) the estimate (3.14) for Re(at)>1 can be easily
obtained. The case |at] <1 is treated as before. Lemma 3.3 is proved.
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