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Analogues of Hardy’s inequality in R”
by
TATIJANA OSTROGORSKI (Beograd)

Abstract. For a class of integral operators K, defined for functions on a cone V in R", we
prove a weighted IF-norm inequality

J(Kf () 4 (x)dx < C [ fP(x) 47 (x)dx
v

v

where 1< p<co, and the weight functions A47(x) are suitably defined (as n-dimensional
analogues of the power functions #”, teR). As special cases of the operator K we consider
Hardy’s operator and the Laplace transform.

1. Introduction. The purpose of this paper is to find an n-dimensional
analogue of the well-known Hardy inequality [8, p. 20]:
If1<p<oo and y <p—1, then for positive functions [

(H,) ’ I(}f(y)dy)”xv"’dx <C gf”(x) x7dx

!
(where C is a finite constant).

We shall consider cones as n-dimensional counterparts of the half-line
(0, ) = R,. Let ¥ be a cone. Throughout the paper V will be assumed to
be open, convex, homogeneous and selfadjoint (see Section 2 for the defini-
tions). The cone V defines a partial order in R" in the {ollowing way: x <y y
iff y—xe V. We shall write {a, b) for the “interval” {a, b} = xeV:a<yx
<y b} and define the operator (“Hardy’s operator”) by

1 Hf(x)= | fO)dy, xeV,
<0,x>
for positive functions f defined on V. In particular, we shall write

(2 Ax)= [ dy.
<0,x)

Eo

It will be shown that the powers of this function, 4”(x), play the role of
the weights x” in (H,).

In the one-dimensional case, it is known that inequalities similar to (H,)
hold for other operators too: for example, for the Laplace transform. So we
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shall consider a class of operators
3) Kf(x) = [k(x, y) f(y)dy, xeV,
v

where k: V'x ¥ — R, is a given function, the kernel of K, and f: V- R, . If
the integral in (3) is convergent for some function f, the operator is said to
be applicable to f.

We shall find conditions for the kernel k which ensure that the operator
K satisfies an (H,)-type inequality (ie. it is a bounded operator on the
weighted IP spaces on the cone, with weights 47). This will be done in
Section 3 (Theorem 1), after introducing some definitions and preliminary
results in Section 2. In Section 4 we shall consider some special cases of
Theorem 1. It will be shown that Hardy’s operator satisfies the conditions of
this theorem, and this will give the n-dimensional analogue of (H,) (Theorem
2). We shall also show that the Laplace operator defined by

4 _ Lf(x) = [e™™f(y)dy
14

(where * denotes an involution in V] see (6) below) satisfies the conditions of
Theorem 1, and in fact satisfies the same type of inequality, with the same
weights. (See also [1], where it was shown, in the one-dimensional case, but
in spaces more general than I7, that the operators H and L satisfy inequali-
ties with equal weights.)

Note that in the one-dimensional case the weights x” in (H,) were
replaced by a larger class of functions. In fact, Muckenhoupt [3] found a
necessary and sufficient condition for the weights to satisfy (H,). Now, as it was
pointed out in [4] the n-dimensional analogue of this condition is necessary
but not sufficient. In this paper we show that the weights A7 satisfy Hardy’s
inequality, but the problem of more general weights remains open.

2. Homogeneous cones. First we introduce some definitions (see [2], [5]
or [6]).

Let ¥V be an open convex cone in R". Then V*
={yeR" y-x>0, xeV} is called the dual cone of V. The cone V is
selfadjoint if V = V*. Let G(V) be the group of automorphisms of ¥V (i.e. the
group of all nonsingular linear transformations 4: R”— R" such that AV

= V). The cone is said to be homogeneous if for any x, ye V there is an _

AeG(V) such that x = Ay.
Let ¢ be the “characteristic function” of the cone:

5) o) = [e™*¥dy, xeV.
v

(The integral is convergent, see for example [6]).

Analogues of Hardy's inequality 211
Now put
(6) x* = —grad log ¢ (x).
It was proved in [2, 5] that the function « is an involution of V and satisfies
(7 x¥* = x,
(8) (Ax)* =A""'x*  for AcG(V),
©® P(x) @ (x*) =cy,
dx* .

(10) el »*(x),

where the left-hand side denotes the Jacobian of the transformation x — x*;
¢, and ¢, are constants depending on the cone V.

Throughout the paper the letters C, ¢, possibly with subscripts, will be
used to denote constants, not necessarily the same at each appearance; it is
clear from the context on which parameters the constants depend.

Next we introduce a definition.

DermNiTION. A function f: V— Ry is said to be V-homogeneous of order
o, for some aeR, if

S (Ax) = |Af (x)
for all AeG (V).

Since for A > 0, Ax = Ax is clearly an automorphism of V, we see that V-
homogeneous functions are homogeneous in the usuval sense, ie. f(ix)
= 1*"f (x).

Fo(r example, the function ¢ defined in (5) is V-homogeneous of order
—1, and 4 defined in (2) is V-homogeneous of order 1. Both statements are
verified by introducing a change of variables in the respective integrals.
In the latter case we also use the fact that x <,y implies Ax <, Ay,
for every AeG(V).

In the next lemma we prove that there are not many V-homogeneous
functions. This is the analogue of the fact that Ct*, aeR, are the only
homogeneous functions in R..

Lemma 1. Let V be a homogeneous cone and let f: V— R, be V-
homogeneous of order o, ae R. Then there is a constant C such that

F()=CA*(x), xeV.

Proof. Consider the set D = {xeV: 4(x) = 1}. We claim: if Ae G(V) %s
such that Ax, = x, for some x;, x,eD, then |A| = 1. Indeed, since 4 is
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V-homogeneous of order 1, we have
L= A(x;) = A(Ax;) = |A| 4 (x,) = |4

which proves the claim.

Now we prove that every F-homogeneous function is constant on D.
Indeed, if x;, x;e D, then there is an A& G (V) such that Ax, = x, (since the
cone V is homogeneous) and such that |4| =1 (by the claim above). Now
since f is V-homogencous, we have

J(x2) = fldxy) = A" (x;) = [ (%)
which proves that f(X) = C, for every XeD. Finally, for xe V we have %
= x4~ Y"(x)e D, so that
J(x) = f(4"(x) X) = (47" ))"f () = 4*(x) f (%) = CA*(%).
This proves the lemma.
CoROLLARY 1.

/p(x)=Cd(x), xeV.

This corollary is obvious, since by a previous remark, the function 1/ is
V-homogeneous of order 1.

Thus 1/¢ and 4 are equal up to a constant, which was not at all
obvious from the definitions (2) and (5) of 4 and ¢. Now we can use both
formulas (2) and (5) to derive the properties of these two functions. First we
see that 4 satisfies formulas analogous to (9) and (10):

(11) 4(x)4(x*) = Cy,
dx* C,

12 paadl P T
(12) dx 4% (x)

On the other hand, the following properties are easily deduced from (2):
(13) 4 is continuous and A(t) >0, teV,
(14)  4(r)— 0 as t approaches the boundary of the cone.
(15)  If B is a compact set in V, then there are constants Cy and Cy such that

0<Cy<4(x)<C, <, for xeB.

3. Operators on cones.. In this section we consider operators of the type
(3). The kernel k: Vx V— R, of the operator K is said to be V-homogencous
of order o if

k(Ax, Ay) =|APk(x, y)
for every 4eG(V).

icm®
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Examples of operators with ¥-homogeneous kernels are (1) and (4). Their
kernels are .

1, y<yx
16 k(x, y) = ’
(16) (x, 5) {O, for other yeV,
and
(17) k(x, y)=e "

respectively. It is easy to check that both kernels are V-homogeneous of
order 0 (for (17) we have to use (8)).

As a matter of fact, it is enough to consider V-homogeneous kernels of
order 0 only, since if k is V-homogeneous of order « we can take ky(x, y)
= A7*(x)k(x, y), which is V-homogeneous of order 0.

Lemma 2. Let V be a homogeneous selfadjoint cone, and let the operator
K have a V-homogeneous kernel of order O and be applicable to A%, for some
aeR. Then

KA (x) = CA*+1 ().

. Proof. We shall show that K4*(x) is ¥-homogeneous of order a+1;
then the lemma will follow from Lemma 1. Now, if AeG(V), we have by
introducing a change of variables and making use of the V-homogeneity of
k and 4:

K4%(Ax) = [k(4x, y) 4*(3)dy = [k(Ax, Au) 4*(Au)|A] du
14 1 4
=APT [k(x, w) 4% () du = |A]** 1 KA%(x).
v

This proves the lemma.

Next we consider the adjoint operator

Kf(y= i!:k(x, NS (x)dx.

In the proof of Theorem 1 we shall have to deal with both operators K
and K’ simultaneously. It will make matters easier if we impose a further
condition upon the kernel k(x, y), which relates it to the adjoint kernel
k(y, x):

(18) k(x*, y*) = k(y, x).

Let a kernel which satisfies (18) be called x-symmetric. The lemma below

shows for x-symmetric kernels the relation between the domains of K and
K'

2 - Studin Mathematicn 88/3
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Our main two examples, Hardy’s and Laplace’s operators, have -
symmetric kernels. Indeed, for the kernel (16) we have
kix*, y¥) =1 < y* <px* <> x<py (f [2])
< k(y, x) =1,

which means that k satisfies (18). Also for the kernel (17) we have (by making
use of (7))

k(x¥, y%) = 7" = 7 = ¢ = k(y, ).

Lemma 3. Let V be a homogeneous selfadjoint cone. If the kernel k of the
operator K is x-symmetric, then

K'A4*(y*) = CKA™*72(y).
Proof. We have
K'4%(y*) = [k(x, y*) 4% (x)dx.
v
If we introduce the change of variables x = u*, we have, according to (12),
dx = Cduf/A?(u) and therefore

du
A*(w)’

K/ 4%(y*) = C [ k(u*, y*) 4* (u¥)
|4

Now an application of (18) and (11) yields
KA () =C, [k(y, )47 47> (W)du = C, K4™*72(y).
v

This proves the lemma.

CoROLLARY 2. Let the kernel of the operator K be x-symmetric. If K is
applicable to A% for some acR, then K' is applicable to 4‘“”2.

Now we come to the main theorem of the paper.

THEOREM 1. Let 1 < p < 0. Let V be a homogeneous selfadjoint cone in
R". Let k be a V-homogeneous kernel of order 0, which is x-symmetric and such
that for a given aeR the operator K is applicable to 4* Then

(19) [(KS ()" 4777 () dx < C [ f7(x) 4" (x) dx
14

|4
where y = —oap—1,
Proof. First, since K is applicable to 4% we see from Lemma 2 that

(20) K4*(x) = C4*F1(x)

icm
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and from Corollary 2 it follows that the operator K’ is applicable to 4~ 2,
so that again by Lemma 2 we have
(21) K47 2(x) = C4™*" 1 (x).

Now we apply Hélder’s inequality to the integral defining Kf (the
integrand of which was multiplied by 4#4~#; Be R will be chosen later):

(22 Kf(x) = ‘J:k(x, f(y)dy
= ’[k”"(x, WG AP K (x, y) 47 () dy

= (Jk(x, ») /7 (3) 42 () dy)‘“’gk(x, ) 4757 () dy) "

14

Now if we choose f = —a/p/, ie. —Bp' =0, then we can apply (20) to the
last integral in (22) and obtain

(23) Kf () = (Jk(x, y) f2(5) 475212 (3) dy)"/? (K 4% ()"
v

= (CA“ ()7 ([ k(x, 1) £2() 4™ () dy)'”.

v

Now we can substitute (23) into the left-hand side of (19) (and use p/p’ =
p—1):
(24 [(Kfx)a7=r~ 172 (x)dy
|4

S C A7 70 403 D00 () [h(x, 3) 2 () 470D () dy dx.
v v

By an application of Fubini’s Theorem the last integral equals

4

(25) jf“’(y)ﬁ"‘(”“”(y)i[k(x, y)A““‘z(X);ixdy
v

(since —oap—1—p+(ax+1)(p—1)= —a—2), and the
K’'47*72(y) so that by (21) we deduce that (25) equals

inner integral is

(26) C‘j:f”(y)ﬁ‘“‘“’"“(y)A"""1 (dy = Ci[f"(y)d"’""l (»ndy.

Now the theorem follows from (24)(26).

4. Applications to some special operators. In this section we shall apply
Theorem 1 to some special operators including Hardy’s (1) and Laplace’s (4).
In fact we only have to prove that these operators are applicable to some 4°
(all the other conditions of Theorem 1 were verified earlier).
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Now, let = = {xeV: |x| = 1} be the part of the unit sphere contained in
V. Consider the integral

@n [4*(t)ar.
z

Since 4 is a bounded continuous function on X (see (13)) it is obvious that
(27) is convergent for all a > 0. And if (27) converges for some a, < 0, then it
converges for all a > a,, by Holder’s inequality. Let o4 = o, (V) be the
infimum of all « such that (27) is convergent. For example, the cone R"

=401, .o0; %) % >0, ..., %,>0} has o= —1, and the cone V! =
{(xo, X1v -y x): %3 > x4 +x2) has oo = ~2/(n+1).

Now put
(28) o =max(—1, gp).

Then we can prove the following two lemmas in which it is shown that
the operators H and L are applicable to A%

LemMmA 4. Let a > ¢. Then

(29) : [ 4%(0dt = CA**1(x).
£0,x>

Lemma 5. Let a > a. Then

(30) [ 4%(t)dt = CA**(x).

Proof of Lemma 4. We have the obvious majorization

(1) HA*(x)= [ 4*(dt< | 4*()dr.

0,x> It <|x|
Now we can introduce the polar coordinates r = Jf], ¢' = t/r. Then

||
(32) [ 4*@de=] [ 420t drar,

1t} <] P
and if we make use of the homogeneity of 4 the last integral equals

1x|
(33) ‘ [4°(@)de' [ =t
hy 0

The first integral in (33) is convergent by (27) and (28) since « > ¢ > 64 and
the second is convergent since a >0 > —1 (ie. antn > 0).

A combination of (31), (32) and (33) proves that HA%(x) is finite for all
xe V. An application of Lemma 2 completes the proof of the lemma.
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Proof of Lemma 5. We introduce the polar coordinates r = |t|, t’
=t/r in the integral

LA*(x) = [e ™" A*(5)dt = [df' [e™*"™ A*(rt') "~ L dy
v z 0

— j’Aa(t/) je—r(x*-t’) pntn=1 g
z )

Now if we introduce the change of variables r(x*-t') =g, we obtain

’

©
e [eTe g g,
(x*,tr)urﬁn (.E Q Q

Now the last integral is convergent since o > —1 and we only have to prove
that the first integral in (34) is also convergent. Let d(a), for ae V, denote the
distance of a from the boundary of V. Then

(35) ay >d(a

for every y'eX (see [2]). An application of (35) to (34) yields (since an
+n>0) '

(34) LA*(x) = [4*(¥)
b

1

a < - -
LA () < Cd(x*)an-l‘n

[4*(¢)dr.

b

The last integral is convergent by (27), and d(x) > 0 for every xeV (recall
that Vis an open cone), so that LA*(x) is finite, and this, by Lemma 2,
completes the proof of the lemma.

Now we can easily prove the n-dimensional Hardy inequality, and also a
similar inequality for the Laplace transform.

THEOREM 2. Let 1 < p <oo. Let V be a homogeneous selfadjoint cone in
R". Then for y < —op—1 we have '

O § fOdy) 47 P(x)dx < C | f7(x) 47 (x)dx.
v <Ox v
THEOREM 3. Let 1 < p <o0. Let V be a homogeneous selfadjoint cone in
R". Then for y < —op—1 we have
‘[(Iff(x))"AV“'(x)dx < C[fP(x) 47 (x)dx.
12 v

Note that for the cone R% (where o = —1) we have y <p—1 in
Theorems 2 and 3, just as in (Hp).

Proof of Theorem 2. By Lemma 4 we see that the operator~H is
applicable to 4* for a > . Also, by some previous remarks, its kernel is V-
homogeneous of order 0 and *-symmetric. Thus H satisfies all the conditions
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of Theorem 1 and we have
(36) [AT=7 172 () (HS () dx < C [ 47271 (%) f7(x) dx
v 12
for & > 0. Now we only have to put y = —ap—1; then y < —op—1 and (36)
gives the statement of the theorem.

Proof of Theorem 3. The proof follows in a similar way from
Lemma 5 and Theorem 1.

Note that we could easily obtain generalizations of Theorems 2 and 3
which would deal with some other operators. For example, the following
Lemma 6 is proved along the same lines as Lemma 4, and similarly the proof
of Lemma 7 can be obtained by imitating the proof of Lemma 5.

LeMMA 6. Let o > o. Let the kernel k of the operator K be V-homoge-
neous of order O and let there exist a function h: R, xR, — R, such that

k(x, y) < h(x], y))
and

=]

fretn (x|, r)dr < oo
0
Jor all xeV. Then
KA*(x) = CA** 1 (x).

Lemma 7. Let « > 0. Let the kernel of the operator K be of the form
k(x, y) = p(x* y), where ¢ is such that

Jo@retnlg < x,
0
Then
KA4%(x) = CA**1 (x).
Now it is easy to see that the operators from Lemmas 6 and 7 also
satisfy weighted norm inequalities as in Theorems 2 and 3.
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