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sion of the space is a multiple of 4. Slight variants yield the other cases.
In particular, B can be defined as

1 .

i 1

for any number of 1’s. Then A can be defined as above on even-dimensional
spaces, and as the direct sum of such an operator and a one-dimensional 0 in
the case of odd-dimensional spaces. We omit the details.
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Vectors of uniqueness for id/dx
by
RALPH pe LAUBENFELS (Athens, O)

Abstract. A vector x in a Hilbert space is a vector of uniqueness for a symmetric operator 4
if A, with domain restricted to span{4”x|n =0, 1,...}, is essentially selfadjoint on the closure
of this domain. We characterize vectors of uniqueness for the operator id/dx on I?[0, 1]. Let
gl = _[;g(z)e‘" ik gt g™ == the nth derivative of g, E = {k|§(k) # 0}. We shbw that g fails to
be a vector of uniqueness if and only if there exists a nontrivial f such that f®(0) =0 = f® (1),
for all n, and
21

1+k*

G}
0]
We show that g is a vector of uniqueness if and only if the closure of span {g"n=1,2,...}
equals {f&I?[0, 17 f(k) = 0 when k¢E}.

We show that g fails to be a vector of uniqueness for id/dx on L*(R) if and only if there
exists a nontrivial f such that f™(0) =0, for all n, and

FOP dt
Fg)| 141

keE

} »
E

where & is the Fourier transform, and E is the support of #g.

Introduction. Vectors of uniqueness were introduced by Nussbaum [4]
(see Definition 2). He showed that a symmetric operator on a Hilbert space
is selfadjoint if and only if it has a total set of vectors of uniqueness. In the
same paper, and in subsequent papers, the selfadjointness of certain opera-
tors is shown by proving that certain classes of vectors are always vectors of
uriiqueness (see [31-[5]).

Nussbaum defined vectors of uniqueness in terms of the classical mo-
ment problem. He defines x to be a vector of uniqueness for A if the moment
sequence {{A"x, x>} o is determined. We use the equivalent definition given
in [61, vol. 2, p. 201 (Definition 2).

It is often advantageous, when considering questions of essential selfad-
jointness, to focus on vectors of uniqueness. It is precisely in this setting,
when the domain of 4 equals span{A"x[n=0,1, ..}, for a fixed x (see
Definition 2), that the spectral theorem says that selfadjointness is equivalent
to A being unitarily equivalent to multiplication by f(f) =¢ on 'I*(R, w), for
some measure j.
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We characterize vectors of uniqueness for id/dx on I*[0, 1] in terms of
Fourier coefficients (Theorem 11). Intuitively, the more slowly the Fourier
coefficients go to zero, the more rapidly the derivatives of the function go to
infinity, which makes it less likely that the function will be a vector of
uniqueness (see Corollaries 15, 16, 24 and 25). For example, functions whose
derivatives satisfy a quasi-analytic growth condition are automatically vec-
tors of uniqueness (see [1] and [4]).

Perhaps the most surprising result is that there are so many C*
functions that are not vectors of uniqueness. This includes any function with
a zero of infinite order (Corollaries 12, 13, 22 and 23). This is related to
quasi-analyticity, since a quasi-analytic class of functions is one that contains
no nontrivial functions with a zero of infinite order (see [7], Ch. 19).

Proposition 4 and Corollaries 5 and 6 are preliminary results about
essential selfadjointness and vectors of uniqueness. Results about id/dx on
I*T0, 1] are contained in Theorems 11 and 17 and Corollaries 12, 13, 15, 16
and 18. Results about id/dx on I?(R) are contained in Theorems 21 and 26
and Corollaries 22-25.

All operators are linear, on a Hilbert space, with inner product { .

DeFINiTioN 1. D(A) = domain of the operator 4. C*(4) = (=, D (4").
DerimniTioN 2. If x is in C*(4), then
D(x, A)=span{4"x|n=0,1,...}.
We say that x is a vector of uniqueness for A if the operator By = Ay, D(B)
= D(x, A), is essentially selfadjoint on D(B).

-A symmetric operator is selfadjoint if and only if it has a total set of
vectors of uniqueness (see [4] and [6], vol. 2, p. 201).

DEFINITION 3. A* = the adjoint of 4, 4 = the closure of 4. The graph-
closure of D(A) is the closure with respect to the graph norm ||x||3 = ||x||
+||4x]|?. Note that the graph-closure of D(Ad) is D(A).

For completeness, we include a proof of the following well-known
proposition,

Prorosition 4. Let Af (1) =t (t), D(A) = {polynomials}, in I*(R, 4).
The following are equivalent:

(@) The operator A is essentially selfadjoint on I)-(—,;ﬁ
(b) The graph-closure of D(A) equals

{fin PR, T 21/ 0Fdu() < o).

Proof. Let B be the operator Bf (1) =tf(z) on I*(R, ),
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p@B) = {f] [ Al OPduE < o).

(b)=>(a). 4 = B, which is selfadjoint. . ‘

(a) = (b). Since B is an extension of 4, and B is closed, B is an extension
of A. Thus (¢*4f)(t) = (€*%f)(t) = € f (1), for all fin D(A), where {e‘sz}sﬂ, lf
the one-parameter group generated by A. Suppose g is win (D (A =(D(D)%
in I?(R, 1. Then, for any real s, 0= T 1,g>= iZ e g du(). Thus
g()du(t) =0, so that g =0 in L*(R, (). Thus D(4) = I*(R, {J). Since B i§ a
selfadjoint extension of 4 on the same space, and A is essentially selfadjoint,
A =B, as desired.

CoRrOLLARY 5. Let Af(t) =tf (§) on I(R), g in C*(A), E = support of g.
Then g is a vector of unigueness for A if and only if the graph-closure of
D(g, A) equals {feL*(E)|fet*1f @) dt < o}

Proof. Define the absolutely continuous measure u by du) =g (t).}zldt,
and the unitary operator U: I*(E) — I?(R, 1) by Uh =h/g. By .Pttopo.smon
4, since (UAU™Y) f(t) =1f (1) on I*(R, p), A4 is ess?ntially selfadjoint if and
only if the graph-closure in I*(R, p of {polynomials} equals

he 2R, | | @Rl 0P d < o},

Since U~ of the latter set is {feI*(E)|fet*|Sf ()?dt < o}, the result
follows.

CorOLLARY 6, Let (Af)(k) =kf(k) on ’(z), g in ?‘”(A), E
= {k|g (k) # O}. Then g is a vector of uniqueness for A if and only if the graph-
closure of D(g, A) equals {fel? (BT K|S R)? < o}

Proof. This is the same as Corollary 5, letting m be the -discrete
measure supported on E with m({k}) = g (k)2

DermurioN 7. g™ = nth derivative of g. (k) = ]"(1, f(tye 2" dy, the kth
Fourier coefficient of f. For E a set of integers,

IA[0, 1] = {fin I2[0, 1]| f (k) = O when k¢ E}.
Dermirion 8, By id/dx on I?[0, 1] we will mean the operator with
domain
D(A) = {absolutely_continuous f|f’ is in IZ[0, 11, £(0) = f(1)}
= {fin I2[0, 1]|LK*IF (0 < o).
Note that C%(4) = {infinitely differentiable. f| £ (0) = £ (1), for all n}
(see Definition 1). . . :
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LemMA 9. Let A be idfdx on I*[0,1], g in C*(A), E = {k|§(k) # 0}.
Then g is a vector of uniqueness Jor A if and only if the graph-closure of
D(g, A) equals {f in L}[0, 1]|Y k*|f (k)* < 00}.

Proof. This follows from Corollary 6, since A is unitarily equivalent,
via Fourier series, to the operator considered there.

DeriNiTioN 10. A function f has a zero of infinite order if there exists x
such that f®(x) = 0, for all n.

TreorEM 11. Let A be idfdx on I*[0, 1], g in C*(A), E = {k|j(k) # 0}.
Then g fails to be a vector of uniqueness for A if and only if there exists a
nontrivial F in C*(A) nLE[0, 1], with a zero of infinite order, such that

LGl
wee 1+K |G (k)
Proof. Let @ = {feI}[0, 1] k*|f(k)*> < c0}. Define the graph in-

ner product { Y, on @ by (f, kDg = {f, k>+ (4f, Ak>. Note that {f,
I (e Desattion 3y, 70 = ok <A Al Note that <J,

. By Lemma 9, g fails to be a vector of uniqueness if and only if there
exists a nontrivial k in @ such that, for n=0, 1, ...,

0= Ch, A"g5 = (b, ATg>+ (AR, A gy = 3 (k™) RKGH)

k=~ o0
= 1"((h* )™ (0)—(h»g)"*?(0)),

where hxg is the convolution of h with g.
If such an h exists, let F = (h+g)~—(h*g)®. Then F has a zero of infinite
order, F(k) =0 when §(k) =0, and
1 |FRP -
—_— | = 1+ k%) h(k)? = ||ni3
o TTE (50| =y, AR =g < oo,

as desired.

Conversely, if such an F exists, we may assume, by translating F if
necessary, that F®(0) = 0, for all n. Let
1 Fk

h(t) = st 2wkt
g N,Z*owkz e

Then £ is in 9, and 0 = F® (0) = (h*g)™ (0) —(h x g)"*? (0), for all n, so that
g fails to be a vector of uniqueness.

CoroLLARY 12. If there exists F in C*(A), with a zero of infinite order,

suc'h that, for some ¢ < 1, |F (k)| < Ik g k)|, for all k, then g is not a vector of
uniqueness for A =id/dx on I?[0, 1].
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CoroLLARY 13. If g has a zero of inifinite order, then g is not a vector of
uniqueness for id/dx on I*[0, 1].

Remark 14. We proved Corollary 13 in [2]‘by showing that the
deficiency indices of id/dx, with domain equal to span {g™|n =0, 1, ...}, are
nonzero.

CoROLLARY 15. If h is not a vector of uniqueness for id/dx on I*[0, 1],
and |§(k)| = |h(k)|, for all k, then g is not a vector of uniqueness.

CoRroLLARY 16. If his a vector of uniqueness for idfdx on I?[0, 1], and
G (k) < [h(k)|, for all k, then g is a vector of uniqueness.

THEOREM 17. Let E = {k|j(k) # O}, where g is as in Theorem 11. Then
D(g, A) # I%[0,1] if and only if there exists a nontrivial F in
C*(A) N I%[0, 1], with a zero of infinite order, such that
Fk)P
gk

Proof. This is the same as the proof of Theorem 11, using the regular
inner product instead of ¢ Dg, with F = hxg.

keE

CorOLLARY 18. Let A, g and E be as in Theorem 11. Then g is a vector

of uniqueness for A if and only if D(Ag, A) = I}[0, 1].

Proof. This follows from Theorems 11 and 17, using the fact that
@) (k) = —ikg (k).

DEeriNiTION 19. We will dc_note by & the Fourier transform,

(FNW = ] fOe .

LemMMA 20. Let A be id/dx on L*(R), g in C*(A), and let E be the
support of Fg. Then g is a vector of uniqueness for A if and only if the
graph-closure of D(g, A) equals {f|%f is supported on E, [gt*|Ff(t)*de
<}

Proof. This follows from Corollary 5, as Lemma 9 followed from
Corollary 6.

Using Lemma 20 and the Fourier transform in place of Lemma 9 and
Fourier series, we get analogous results for id/dx on I*(R).

TueoreMm 21. Let A be id/dx on I?(R), g in C*(A). Then g fails to be a
vector of uniqueness for A if and only if there exists a nontrivial H in C*(4),
with a zero of infinite order, such that FH(s) =0 when Fg(s) =0, and
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2 dt

(FHQ [ dt
142 =%

(F9)(0)

[

E
where E = {t| F¢(t)+ 0}.

CoroLLARY 22. With A and g as in Theorem 21, suppose there exists H
in C*(A) such that for some ¢ <1,

|FH(@)| <t Fg() ae.
Then g is not a vector of uniqueness for A.

‘ CoroLLARY 23. If g has a zero of infinite order, then g is not a vector of
uniqueness for id/dx on I2(R).

CoroLLARY 24. If h is not a vector of uni 3 i
queness for id/dx on I*(R) and
[ Fg @) = |.Zh(t), for almost all t, then g is not a vector of uniqueness.

CoroLLary 25. If h is a vector of uniqueness for id/dx on L?(R)
and
|Fg (@) < |Fh(t)l, for almost all t, then g is a vector of uniqueness.

THEOREM 26. Let E = {t[?g (t) £ O}, where g and A are as in Theorem
21: Then D(q,.A) # {fin Z(R)|ZSf () =0 when t¢E} if and only if there
exists a nontrivial F in C*(A), with a zero of infinite order, such that FF ®
=0 when Fg() =0, and

FF(@n) P

dt < o0.
Fq(r)

[
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An improvement of Kaplansky's lemma on locally algebraic operators
by
BERNARD AUPETIT* (Québec)

Abstract. Let X and Y be two complex vector spaces and let T, ..., 7, be linear operators
from X into Y. Suppose that for every £e X the vectors Ti ¢, ..., T,¢ are linearly dependent.
Then, using an analytic argument, we prove that there exists a nontrivial linear combination of
these operators having rank <n-—1.

Let T be a linear operator on a complex vector space X. Then T is
locally algebraic if for every £ X there exists a nontrivial polynomial p such
that p(T) ¢ = 0. A standard result of I. Kaplansky ([3], Lemma 14) states that
boundedly locally algebraic (the degree of p is bounded independently of £)
implies algebraic (for another proof see [5]). This important result has many
consequences (see for instance [2]-[4], [6]). In this short paper we present
an analytic proof of that result. This argument is very interesting because it
implies a surprising extension of Kaplansky’s lemma.

TueoreM 1. Let X be a complex vector space and let T be a linear
operator from X into X. Suppose that there exists an integer n > 1 such that
& TE, ..., T"¢ are linearly dependent for all £ X. Then T is algebraic of
degree < n.

Proof. Suppose that n is the smallest integer having this property.
Hence there exists &oeX such that &, Té&, ..., T""'&, are linearly
independent but &, T&,, ..., T"&, are not. Then there exists a monic
polynomial p, of degree n such that po(T)&o =0 and if p is another monic
polynomial of degree n such that p(T)& = 0 then p = p,. Let ne X be an
arbitrary fixed vector. We now prove that po(T)n = 0. Let F be the linear
subspace generated by &o, Téqg, ..., T"&, n, T, ..., T"y. Then dim F < 2n.
For AeC we set

fo) =&+ineF, fi)=ThHMeF, .., fi-i@=T""fo(deF,
g = T"fo(d)eF.

Because fy(0), ..., fy~1(0) are linearly independent in F there exist n linear

* This work has been supported by Natural Sciences and Engineering Research Council of
Canada Grant A 7668.
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