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Consequently Qn is in the linear subspace generated by T, &, ..., T,.; &,. So
Q has a finite rank < n—1. If moreover the T, commute, then Q and R
commute, so Q%5 = —QRE = —RQE, =0. Hence 0* =0, m

Remark. Let P and Q be two different projections having the same
range of dimension 1, defined on a complex vector space X. For every e X
the vectors P¢ and QF are dependent and obviously there are linear
combinations of P and @ having rank one. But aP+fQ s 0 for any «, fie C.
So in general it is impossible to have Q = 0 in Theorem 2.
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Extension of C* functions from sets
with polynomial cusps

by
WIESEAW PAWLUCKI and WIESLAW PLESNIAK (Krakéw)

Abstract. We give a simple construction of a continuous linear operator extending C%
functions from compact subsets of R" with polynomial cusps including fat subanalytic sets.

1. Introduction. Whitney's extension theorem [15] yields a continuous
linear operator extending C* functions (k finite) defined on closed subsets X
of R". For '™ functions such an operator does not in general exist (see e.g.
[12, p. 79]). However, Mityagin [4] and Seeley [7] proved the existence of
an extension operator if X is a hal-space of R". Stein [9] showed that such
an operator exists if X is the closure of a Lipschitz domain in R" of class
Lip1. Stein’s result was then extended by Bierstone [1] to the case of a
domain with boundary which is Lipschitz of any order. By the main result of
Bierstone [1] involving Hironaka’s desingularization theorem, an extension
X is Nash subanalytic (not necessarily fat) the existence problem was solved
by Bierstone and Schwarz [3]. Recently Wachta [14] has constructed an
extension operator for fat closed subanalytic sets in R” without making use of
the Hironaka desingularization theorem. For closed subsets of R" admitting
some polynomial cusps, the existence of an extension operator was shown by
Tidten [10]. :

In this paper we construct an extension operator for the family of
compact uniformly polynomially cuspidal (briefly, UPC) subsets of R" (see
Theorem 4.1), The UPC sets were introduced in [6] as follows.

Drrnrion 110 A subset X of R™ is said to be UPC if there exist
positive constants M and m, and & positive integer d such that for each point
x in X, one may choose a polynomial map h,: R -+ R" of degree at most d
satisfying the following conditions:

(i) he((0, 17) = X and h(0) = x;

(i) dist (h,(t), R"—X) 2 Mt™ for all x in X and te(0, 1].

Every bounded convex domain in R" and every bounded - Lipschitz
domain are UPC. More generally, every subset of R" with a parallelepiped
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property is UPC (see [6]). Using Hironaka's rectilinearization theorem and
Yojasiewicz’s inequality we proved in [6, Corollary 6.6] that every bounded
fat subanalytic subset of R" is UPC. Further examples of UPC sets are
provided by the following

ProrosiTioN 1.2. Let K be a compact set in R" and let f be a C* mapping
defined in R" with values in R" such that for each xe K, D(x) ¢ 0, D being the
Jacobi determinant of f. If then K is UPC, so is the set f(K).

Proof. By Definition 1.1, there exists a mapping h: K x[0, 1]3(x, 1)
— h(x, t)e K such that for each xe K, h(x, ) is a polynomial of degree at
most d, and

(L.1) dist (h(x, t), R"—~K) = Mt™, for xeK and &[0, 1],

the constants d, M and m.being independent of x and t. Choose ¢ > 0 so that
{D(x)| 2 ¢, for each xeK. By the implicit function theorem, there exist
positive constants L and L, such that for each xeK and each re(0, ¢],

(1.2) f(B(x, Lr) = B(f(x), Ly 1),

B(a, s) denoting the ball centered at a of radius s (see e.g. [12, p. 105-106]).
Fix ye f(K) and choose xeK such that y = f(x). Define

H(y, t):=f(h(x, 1), for te[0, 1].
Then by (1.1) and (1.2),
(1.3) dist(H(y, 1), R"—f (K)) = Nt", for 1[0, 17,

where N = L, min(M, Lc)/L. Take a positive integer § > m. Let T(y, ) be
the Taylor polynomial at 0 of degree s of the function H(y, -). We have

(14) H(y, ) =T, )+ R(p, 1), for (y, nef(K) x[0, 1],

where R(y, t) = [1/(s+ )IN&** H/oc* ) (y, ©1) with 0< @ <1 (@ depen-
ding on ). Since the coefficients of each polynomial h(x, ') are uniformly
bounded on K and since degh(x, -) < d, for each xe K, the remainder R is
uniformly bounded in f(K)x[0,1]. Choose d&(0,1] such that
[tR(y, )] < N/2 as ye f(K) and te[0, §]. Then by (1.3) and (1.4),

(15)  dist(T(y, 1), R"—f(K)) = (N/2t", for (v, e f(K) x [0, 8].

The proposition follows if we replace in (1.5) t by dt. Actually, it is sufficient
to assume f is of class C**1.

From Proposition 1.2 we derive in particular that the class of {compact)
sets with cusps considered by Tidten [10] is contained in the class of
UPC sets. On the other hand, the set X = {(x,p)eR? 0<x< 1,
x** <y <2} is UPC (since it is semialgebraic) but it does not
belong to Tidten’s class.
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In order to construct the extension operator we use the Lagrange
interpolation polynomials corresponding to systems of Fekete-Leja’s extre-
mal points of X. In the prool of the extension property a crucial role is
played by both Markov's inequality and Bernstein’s theorem for. UPC sets
proved in [6]. For the convenience of the reader we restate them below.

Turorem 1.3 (Markov's inequality). Ler X be a UPC subset of R". Then
there exists a constant r = O such that for cach polynomial p: R*— R of
degree at most k, and each multiindex ae 2", we have

D% pllx & CR™|{pll g

where C is a positive constant depending only on X. (Here ||h|yx stands for the
supremum norm of « function h defined an X.)

Turorrem 14 (Bernstein's theorem). Let X be a UPC compact set in R".
A real-valued function | defined on X is the restriction to X of a C*™ function
g on R"if and only if for each r > 0,
lim k" distx(f, %) =0,
k o
where 1, is the linear space of (the restrictions to X of ) all polynomials from
R" to R of degree at most k, and

distx (/. ) = inf {ll/~pllx: pe A}

In the subanalytic case Theorems 1.3 and 1.4 were proved in [5]. Both
Markov's inequality and Bernstein's theorem hold true if X is a compact
subset of R" such that Siciak’s extremal function of X, introduced in [8] by
the formula

Py (x) = sup lsup |[px)"™: pe#, llplx € 11}, for xeC",
kot

has the following Holder continuity property (cf. [6, Remark 3.2]):
(HCP) DPy(x) € 14+ 0% il dist(x, X) €< 1,

with some positive constants €', and u independent of é. Consequently, in
order that vur extension operator exist it is sulficient that X have HCP. In
[6, Theorem 4.17 we proved

TuroreM 1.5, If X is a UPC compact subset of R" then ®y has HCP
with the constamts ¢ and p depending on the constants M, m and d of
Definition 1.1,

So far, we do not know any other examples of (fat) compact subsets X
of R" with ¢y having HCP.
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2. C* functions on compact sets in R". Let X be a fat compact subset of
the space R" (ie. X = ﬂl—t_)(~). A C® function on X is a function f: X — R
such that there exists a C™ function g on R" with g| X = f. Let C*(X) be the
space of all such functions. For a compact set E in R" and k=0, 1, ..., we
define

qex () :=inf{lglk: ge C*(R"), g|X = [},
where )
lglk : = max ||D* g/l
|la] Sk

Let 7, be the topology in C*(X) defined by the seminorms ¢g,. Then 7, is
exactly the quotient topology of the space C'™(R"/I(X), where C*(R") is
endowed with the natural topology 1, defined by the seminorms |-|%, and
I(X) = {geC*(R": g|X =0}, Since the space (C*(R"), 7o) is complete and
I1(X) is a closed subspace of C*(R"), the quotient space C*(R"/I(X) is also
complete, whence (C*(X), r,) is a Fréchet space.

Now consider the mapping J: C*(X)3f —J(f) =(D"g|X),_,, , where
ge C*(R" and g|X = f. By Whitney’s extension theorem [15], J is a linear
bijection of the space C™(X) onto the space &(X) of C™ Whitney fields F
= (F*),_,u » Where each F* is a continuous function on X. #(X) is a Fréchet

space with the topology 7, defined by the seminorms

I = |Fi +sup {(REFFO)/Ix—ylF 7 x, ye X, x o v, Jof <k}
(k=0,1,..), where

|Fls = sup {[F*(x): xe X, la <K},
REFF( =F (- 3 (UBF P x)y—x).
181 <k~ o}

The linear bijection J is a continuous mapping from (C*(X), t;) to
(£(X), t5). This follows from the fact that if the geodesic distance on a
compact set E in R" is equivalent to the Euclidean distance, then the
seminorms || ||k and | |§ are equivalent too (see [15]). Hence in particular, if
E is a cube (containing X), the seminorms || |[§ and | & are equivalent.
Consequently, by Banach’s theorem, the spaces (C™(X), 7,) and (4(X), t5)
are isomorphic.

Now we equip C¥(X) with another topology. Following an idea of

Zerner [16], we set d_ (f):=|fllx. do(f):=distx(/, #), and for k
=1,2,..,

dy(f):=sup Fdisty(f, #).
121

Then by Jackson’s theorem (see e.g. [11]), each d, is a seminorm on C*(X).
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Denote by 13 the topology in C™(X) defined by the system of the seminorms
d, (k= —1,0,..). We have

Proposimon 2.1, If X is a UPC compact set in R* then (C*(X), t3) is a
Fréchet space.

Proof. Let (f;) be a Cauchy sequence in (C*(X),t3). Then (f) is
uniformly convergent on X to a continuous function f. Hence, since the
function h — disty(h, %) is continuous in the Banach space C(X) of all
continuous functions on X with the uniform norm || ||y, for each ¢ > 0, d, (f;
—~f) < ¢ implies d(f—f,) < e. Therefore di(f) < di (f—f)+di(f;) < o0, and
by Theorem 14, feC®(X).

Prorosimion 2.2, If X is a UPC compact set in R" then the topologies t,
and t3 coincide.

Proof. Put g =1 and for each k > 1, set ¢ = (1/C, k))““, where the
constants C; and p are so chosen that the extremal function &y satisfies
HCP (see Theorem 1.5), and C; > 1. For k=0, 1, ..., there exist C*
functions u, on R™ such that 0 <u, <1, u, =1 in a neighborhood of X,
w (x) = 0 if dist(x, X) > &, and for all xe R" and ae Z%, |D*u, (x)] < C,e;
with some constants C, depending only on « (see eg. [12, p. 77]). Fix
feC*(X) and define

g= Z Ue* (P De- 1)»

where p..; :=0and for k=0, 1, ..., p, is a polynomial of degree at most k
such that || f— plx = disty (f, #2). Note that if E is a fixed compact set in R"
such that X —intE, then the topology 7, coincides with that given by the
family of the seminorms gg, (k =0, 1, ..). Set X, = {xeR" dist(x, X) < &}
for k=0, 1, ..., and choose E to be the set X,. Then E o X, for each k. By
Theorems 1.5 and 1.3, for each [ =0, 1, ... and each aeZ’ with |a| <[ we
get :

o o ~
D% gl < 11D uo Pollxe+ ¥ <ﬂ>IID” uellxi 11D* 7 (D= Pa= 1l x,
1 fga

k=

o

ps
< Callfllx+ 3 % ,@)C‘n‘a‘z (14 Cy e 1D (= Pe- il

k=1 f%a

< Ca||/'J.|x+kZi'”§ <;>Cﬁ (Cy k)|l3'|/ﬂ‘(1 + 1/k)* Chrle= 8l lpx—Pi-1llx

< Cad—-1(f)+czdo(f)+‘cz 2 klfinrie= Pl digty (f, Pe-y)
k=2

< Codey (f)+Cado () +Cidygsa (1),
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where s is an integer such that s > max(1/y, r), and the constants C; and C,
depend only on n, X and L The proposition now follows from Banach’s
theorem,

Finally, let 7, denote the topology for C*(X) defined by the seminorms
[f1% = sup {{D*f (x)|: xeint X, |o < k).

Assume X has the following Whitney extension property (WEP): For every
¢ function f on int X whose partial derivatives of all orders are uniformly
continuous on int X, there exists a C* function g in R" such that g = fon
int X. Then the space (C*(X),1,) is complete and again by Banach’s
theorem, the topologies 1,, 7, and 7, coincide.

We note that there exist UPC compact sets in R" which do not have
WEP (take eg.

X =[0,11x[~1,1]-{(x, Y)eR* 0<x<1,0<y <exp(—1/x)}).

A sufficient (but not necessary) condition in order that X have WEP is that
it satisfy the following strong regularity condition (see [2, Proposition 2.16]):

(SRC)  There exist a positive integer k and a positive constant C such that
any two points x, ye X can be joined by a rectifiable arc ¢ which
lies in int X except perhaps for finitely many points, and satisfies
Clof* < [x—y|. ‘

(That SRC is not necessary in order that X have WEP follows from an
example given by Wachta [13]) In particular, if X is a fat subanalytic
compact set in R", then by Bierstone [2, Theorem 6.17] it satisfies SRC, and
in this case the topologies 1,, T2, T3, and 1, all coincide.

3. Lagrange interpolation polynomials. Let now 2, denote the vector
space of all polynomials from K" into K of degree at most k, where K = C or
K=R. Let

i {1, 2, .3 = %()) =01 (), .o () € 20

be a one-to-one mapping such that for each Jo e (D < e+ 1)), Let my,
denote the number of monomials x*: = XPhL X of degree at most k. One
can easily verify that my = ("{*). Let e(x):=x" for j=1,2 ... The sel of
monomials ey, ..., €m, 15 a basis of the space Py

Let (¥ =11,...,4) be a system of k points of K" Counsider the
Vandermonde determinant

‘ V(E¥) =V, ..., t):=det [e; (1)1,
where i, je {I, ..., k}. If V(:™) » 0, we define

I9(x, (%) := p(t,, o Gt X Gy, o BV (1),
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Since
I, t%) = 6;  (Kronecker’s symbol),
we get the following Lagrange interpolation Sormula (cf. [8, Lemma 2.17).
(LIF) If pe#, and ™ is 4 system of my points of K" such that
V(™) 5 0, then

my

) = ¥ plt) [P (x, "), for xeK".
J=1"

Let X be a compact subset of K" A system t® of k points ty, ..., t, of X
is called a Fekete-Leja system of extremal points of X of order k if V(t®)
2 V(s®) for all systems s® = {s,, ..., 5,} = X. Observe that if t® is a system
of extremal points of X such that V(t™) 2 0, then

(3.1 L2(x, ) <1 on X, forj=1,... &

Following Siciak [8] we shall say that the set X is unisolvent if for each
kand pe #,, p =0 on X implies p = 0 in K". Let X be a unisolvent compact

subset of K" and let f: X — K. For each k, let ™ be a system of extremal
points of X of order m,. Define

m
(3.2) Lof(x) =Y f(t) I (x, ™),
=1

Ly [ is called the Lagrange interpolation polynomial of f of degree k.
Suppose f is continuous on X. Let p, be any polynomial of degree k
such that || f~pylx = distx(f. #). Then by LIF, (3.1) and (3.2}, we have

(33) ILf= L fllx < I1f=pellx +11Le f— Le pillx
S (me+ DI f=pdlx < 4k disty (f, P,).

4. Extension operator. Let now X be a UPC compact subset of R" and

. Jet w, be the C* functions defined in the proof of Proposition 2.2. Since

int X 5 @, the set X is unisolvent. Given feC*(X), let L, f be the Lagrange
interpolation polynomial defined by (3.2). Then our extension operator is
defined as follows:

@1 U =u Lo f+ S (s f=Ly f).
k=1

The series (4.1) defines a C*™ function on R" the restriction of which to X is
equal to f. For, if ae 2%, by Theorems 1.5 and 1.3, and by (3.3), we get (cf.
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the proof of Proposition 2.2)

’ S“P]DaLf] sup]D’(u‘Ll N+ f Z (Z)S;lplD”ukD“"/'(LkH./'—ka)i
k

k=1p8<a

< M1 I1f 1%+ M sup ¥4+ 2 diste (f, )
k

< M{d-y (N +dggenr2 ()]

where the constants M, and M, depend only on o, X and n, and M
= max(M,. M,). Thus, by Proposition 2.2, we have proved

TueoreM 4.1. If X is a UPC compact set in R", then the operator (4.1) is
a continuous linear operator from the space (C*(X). t,) (or, what Is the same,
(C™(X), t3), or else (8(X), 1,) to the space C*(R") endowed with the natural
topology To.

Remark 4.2, If X is not UPC, then in general there exists no conti-
nuous linear operator from C*(X) to C*(R"). By an example of Tidten [10],
that is the case if X = {(x, ))eR*: 0<x<1, 0<y< 9(x)], where ¢ is a
C* function infiniteiy flat at 0, and @(x) >0 as x > 0.
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Added in proof (September 1987). If X is fat, it can also be shown that the following are

equivalent: (i) Markov’s inequality, (ii) Bernstein’s theorem. (iii) the existence of a continuous
linear operator L: (C*(X), t3) = (C™(R", o).
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