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S, spaces and vanishing of the functor Ext
by
ZAFER NURLU* (Ankara)

Abstract. S,(a, r) spaces are introduced by V. V. Kashirin [4]. We derive some properties
of this class of K&the spaces and obtain necessary and sufficient conditions for an S, (a, 1) space
E to satisfy Ext!(E, E) = 0 when E is of type d; or d,. In [7, 8], A4(a) spaces are introduced
and shown to be the only d, K&the spaces which satisfy Ext' (E, E) = 0. We show that the class
of S,(a, o) spaces coincides with the subclass of Aq(a) spaces which consists of those i4(a)
spaces where & = (¢, @, ...), i.e, generated by a single function . V. V. Kashirin, in [4], asked
whether every regular nuclear Kathe space E of type d, is representable as an S, (b, o) space,
which was answered in the negative by M. Kocatepe (Alpseymen) [5]. We show that even under
the additional assumption that Ext!(E, E) = 0 this is not possible. '

Preliminaries. Unless otherwise stated, throughout this work, the letters
E; F, ... etc. will denote nuclear K&the spaces K (a,,) which have a conti-
nuous norm and whose generating matrix (a;) satisfies 0 < ay, < @iy,
Yk, n. Following E. Dubinsky [1] we say that E = K (a,) is of type (d), i
=0, 1, 2,5, if it is generated by a matrix (q,) which satisfies the correspon-
ding condition below: :

(do) For each k, a4, /@, is nondecreasing in.n (in this case E is also
called regular).

(dy) 3p Yk Am  supatf(a,, am) < + 0.
(dy) Yk Am Vr SUp Gy apu/aZ, < + 0.

ds) AM >0 Yk V1 Gy 10/0n < (Gt 2,0/0r 1,0™.

An L,(a, r) space, also called a Dragilev space, is the Kothe space E
= K (exp f (r a,)) where f is an increasing, odd, logarithmically convex func-
tion (i.e. In f (expx) is convex for x > 0), a =(a,) is an exponent sequence (a
nondecreasing sequence of positive real numbers which approaches infinity
rapidly enough to make E nuclear), and (r,) a strictly increasing sequence
with limit re RU {+o0}. An L;(a, r) space is isomorphic to an L, space of
type —1 (resp. 1) if r <O (resp. 0 <r < +00). Hence basically there are four
types of L, spaces: r = —1, 0, 1, + co. For any A > 1 the function f(Ax)/f (x)
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is increasing and either has a finite limit for all A > 1 or approaches infinity
for all A > 1 as x — o0; accordingly, f is called slowly increasing resp. rapidly
increasing. If f is slowly increasing then L, (a, r) is isomorphic to the power
series space of finite type (which is d,) Aq(a) = Ly(a, 0) if r < + 00 or to the
power series space of infinite type (which is d;) A (a) = Ly{(a, o), where id
denotes the identity function. If f is rapidly increasing, then for all 4 > 1,
S (Ax)}f 1 (x) decreases to 1, while f(Ax)/f (x) and f(x)/x increase to + co.
In this case L,(a, r) is of type d; (resp. d;) if r = 1, o (resp. r = —1, 0). All
Dragilev spaces are regular and independent of the choice of the sequence
().

A regular K&the space E = K (ay,) is called weakly stable (resp. unstable)
if the generating (regular) matrix (a,) satisfies

Vs3Ap Vg 3r supaydeur1/(Gpmpnsy) < +0
(resp. 3s Vp 3g Vr  lima, sy @0y s 1 o) = 0).

For concepts not defined and as general references we refer the reader to
[1], [6], or [10].

1. S, spaces. An S,(a,r) is defined similarly to an L(a,r), but the
logarithmic convexity of f is replaced by the convexity of g for x > 0. Below

some properties of S, spaces are stated. The proofs, being immediate
consequences of the convexity of g, are omitted.

ProrosiTioN 1.1. Let E = S (a, r). Then E is regular and:
(@) If r <O then E = S,(b, —1) and E is d,.

@) If r =0 then E is d,.

(i) If 0 <r < 4o0 then E=S,(b, 1) and E is ds.

@iv) If r =40 then E is d;.

ProrositioN 1.2. Every L,(a, r) space is an S,(a, r) space for some g.

Proof. The proofs for r =1, co will be given. The cases r = —1, 0 can
be similarly proved. '

I:et E = L;(a, ©); 1T+ 0. Define ¢(2") = f(2") and extend g to an odd
function on R via linear segments; hence g is strictly increasing. Since

(g2 =g @)2" = (£2W2)(f 2" Hf (2)—1)

and each factor in the latter product is nondecreasing in n, it follows that g is
also convex. Suppose 2™ < 14, < 2™, Then

fra) < Q™) =g@2" ) <g(na,),
glria) <g(2"™ ) =f(2"" ) < f (2 )

so L;(a, o) = §,(a, ) as sets and the topologies coincide.
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Let E = L, (a, 1). Since the case f = identity is trivial, assume f increases
rapidly. Let r.T1. Let p, = f~*(2"), define g(p,) = f(p,) = 2" and extend g to
an odd function on R via linear segments; hence g is strictly increasing. Then

(Pt ) =g @ Pus 1 =pa) = (2 WS ~H2THFTH2Y-1)

and the latter quotient increases with n since f is rapidly increasing. We
conclude that g is convex. Now suppose p,, < ry 8y < Pp+1. Then for r;>r,
and for large n we have

g <gPmer) =271 =2 (p) <2f (rean) < f(nan),

Srca) < f(Pme1) =9 Pmr1) <9 (p'l")“ 1 an> <g(na,)

m

where the last inequality follows from lim,, pm+1/Pm = 1. Therefore Ly (a, 1)
= S,(a, 1) as sets and the topologies coincide.

Remark 1.3. The above propositions show that S, spaces generalize L
spaces and moreover exhibit similar properties as L, spaces regarding the
types except for S,(a, 1) spaces. V. V. Kashirin in [4] gives an example of an
S,(a, o) space which is not isomorphic to any L, space and concludes that
S, spaces form a strictly larger class. A close inspection reveals that S,(a, 1)
spaces may be of type dy or d; (in which case they are isomorphic to some
power series space of finite type; see [1]), or even a cross product of a d;
space by a d, space, which cannot occur for any L, space.

An Ly (a, 1) space is d, iff fis rapidly increasing. The next lemma shows
that if an S, (a, 1) space is d then g resembles a rapidly increasing function,
but only at the points a, so somewhat “locally”.

Lemma 14. If E=S,(a, 1) is d; and O <r 1 then g satisfies:

() VM>0Vk3p,n, M<gr,a)gra) Yn=no.

i) VA>1 limg(a)g(Aa,) = limg(a/A)/g (a,) = O.

(iii) g(x)/xT+ 0.

Proof. The proofs for (ii) and (iii) will be omitted since they follow from
(i). To prove (i) let E be d,. Then we may assume that 2g(rca,) < g(rya,)
+g(rks1 @) Vk and for n > n,. By successive applications we obtain

g(res1a0) <3E0ria)+g(neza) < ..
m
< g(rl an) Z 2_j+2_mg(rk+m+1 an)
J=1
<g(ria)+2 g amr1a)  fOr N2y,
By the convexity of g and using the above estimate we have for n 24 m

rer1 9 adme < gy a) < grea) +27"g (Ferm+1an)-
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Therefore with p =k-+m+1 where m is chosen large enough to satisfy
M < 2" (ry+1 —nd/re and for no =n, we obtain the result.

We next show that the classes of S, spaces for r=1, r = o0 are not
disjoint. In the next section this intersection will be completely characterized.

ProposITION 1.5. Any unstable S, (a, o0) space E is diagonally lsomorphzc
to some S, (b, 1) space.

Proof. The. unstability of E is equivalent to lim,a,,/a, = +c0. Let d,
= i0f 5y A+ 1/0y. Then d,T+oco. By modifying (a,) if necessary assume
dy > 16. Define r, by ry = 1/4, r, = 1/2, r, = 1—d; ¥/* for k > 2. Then (1
—1) % < dy < Gy 1/a, k > 2 (to avoid repetitions, modify (r,) slightly so that
the inequalities are still valid). Define (s,) by s; =0, 5 = (1—r)~ ! for k > 1.
Then s, T+oo strictly. We have:

(1) (Sk+1—8)(res1—r) increases with k.

@) (Serr—3/er1—1m) Sdyy VE>1

Let by =1, b,,.; = 4r,b, for n > 1. Clearly b, + 0. Define g successive-
ly at the points

—tyby—=raby— . o by =r by = by — ...

by

n—1
glneb) =Y fls;a)+f(sxay) for k=1,...,n
j=1

and extend g to-an.odd function on R via linear segments. Clearly g is
strictly increasing and g(r,b,) = g(r, b,.) since s; = 0. Let m(x, y) denote
the slope of the segment joining (x, g (x)) to (v, g (y)) for x < y. To show that
g is convex we distinguish two cases:

Case 1: k+1 <n. Using (1) and the convexity of f we have
(Sk+ 2~ Se+ 1)/(Sk+ 1~ %)

S (k2 0 =1 (it 1 @V (k1 @) —f (5¢.07)

from which it follows that

(e 2= T W res1—1d <

M(rebys ey b)) < m(riyy by, resa by).
Case 2: k+1 =n. We have

byry ra—ry T d, 1
bn Fp—Tp—y Tn—Tn—1 = Sy~ Sp—1 = (S,,"S,,n l)an‘
By the convexity of f; this is
f(zan+1) fan+1) Sf(s28n44) 9("2 byr1)—g(riby.y)

f(sn an) —f (Sn— 1 an) f(sn an) —f (Sn'- 1 an)

from which m(r,_, b,, r,b,) <

g(rn ) (rn—l bn)

<m(r,by, r1 b, ,) follows.

icm

S, spaces and the functor Ext 17

Letting

= exp[:}:: f(sa)]

we obtain t,exp[f(sxa,)] = exp[g(ry b))] and hence conclude that S, (a, o)
= §,(b, 1) diagonally.

Kashirin in [4] has shown the following result:

ProrosiTioN 1.6 Any unstable d, Kéthe space is diagonally isomorphic to
some S, (a, c0) space.

Let K (&) be a Kothe space, and (n;) a subsequence of N. The space

K (by,) where by, = ay for m <n <mn,, wil be called a repeated form of
K (ay,). In the case of a S;(a, r) space this is equlvalent to repeating terms of
a = (a,), that is, b, = ¢; 1f m<n<m,q, and b = (b,) will be called a repeated
form of (a,). Combining Proposition 1.6 with Proposition 1.5 we obtain

ProrosiTiON 1.7. Any repeated form of an unstable d, Kothe space is
diagonally isomorphic to some S,(a, 1) and S;(b, c0) space.

Proof. Since in Propositions 1.5 and 1.6 the isomorphisms are diagonal,
repeating a coordinate a finite number of times does not disturb the
isomorphism if we repeat the corresponding coordinate of (a,) resp. (b,) the
same number of times. This, in turn, still gives us an S, space of the same
type.

2. Vanishing of the functor Ext for S, spaces. For the definition of the
functor Ext(E, F) = Ext*(E, F) on the category of Fréchet spaces we refer
the reader to Vogt [12]. Consider the following conditions for two K&the
spaces E = K(ay,), F = K(b,):

(S;) 3Ip VuIk Vm K,R>03n,8>0Vi,j
ami/bkj < max {Sani/bxja api/Rbuj}‘ ’
S) Vuldp, kVm,K 3In,S>0 Vi,j

Ayifby; < Smax {ay/by;, ap/by}.

Write (E, F)eS, resp. (E, F)eS if the corresponding condition is satisfied. To
simplify notation we shall write Ext (E) for Ext(E, E). We state the following
result of Krone-Vogt [8].

Turorem 2.1. Let E = K(a,,) be a Schwartz space satisfying ay, >0
Vk, n. Then the following conditions are equivalent:

(i) (E, E)eS.

(ii) Ext(E) = 0.

(iii) Every exact sequence 0—E_—F—E — 0, where F is a Fréchet
space, splits.
2 -- Studia Mathematica t. 88 z. 1
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If E is further d, then these conditions are also equivalent to [8]:

(iv) (E, E)eS,;.

Combining Theorem 2.1 and modified forms of some results of M.
Kocatepe [5] resp. J. Hebbecker [3] with Proposition 1.7 we obtain the
main result of this section:

Tueorem 2.2. Let E =S, (a, 1} be d;. Then the following conditions are
equivalent

(i) Ext(E)=0.

(i) E=S;(b, ).

(i) E = Sy(c, 1) where ¢ is a repeated form of some d with
liminfd,,/d, > 1.

Proof. (i) is equivalent to the condition that 1 is an isolated point
among the limit points of {d,/d,: n, me N}, hence in view of isomorphism
also of {a,/a,: n, me N}. For a discussion of the limit points of (a,/a,) see
[2]. In [3], Satz 2.6, this condition is shown to be equivalent to (i) for
L;(a, 1) spaces, but in view of Lemma 14(i) this result generalizes to d,
S,(a, 1) spaces. (i) <> (iii) can also be obtained from Proposition 2 in [5] with
obvious modifications for ‘d; S,(a, 1) spaces. (i) = (i) is Proposition 1.7,
and finally (i) = (i) follows from the corresponding results for L, spaces in
[5] or [7] by using Lemma 14.

CorovLLArY 2.3. Let E = S, (a, co). Then E = S;(b, 1) for some b and [ iff
S,(a, 00) = Sy (c, o0) where c is a repeated form of some d with limd,.,/d, =
+00.

Proof If E = §,(b, 1) then Ext(S,(b, 1)) = 0 and by Theorem 2.2(ii) it
follows that S, (b, 1) is a repeated form of some unstable S (¢, 1). Then the
same is true for E. The converse implication is Proposition 1.7.

CoroLLARY 24. The intersection class (up to isomorphism) of S, spaces of
type 1 resp. oo consists precisely of repeated forms of unstable d, Kithe spaces.

Proof. This follows by Proposition 1.7 and Theorem 2.2.

The corresponding results in the case of a d, S,(a, 1) space are already
known (see Nyberg [9] and in particular Hebbecker [3] for a complete
treatment); in fact, a d, S, (a, 1) space, being also of type ds by Proposition
1.1(iii), is isomorphic to some A, (b) (see [1]). We cite Satz 1.11 in [3] in the
language of Theorem 2.2:

TueoreM 2.5. Ext(A,(a)) = 0 iff a = (a,) is equivalent to a repeated form
of some unstable exponent sequence.

3. Aq spaces and S, spaces. The A,(a) spaces are introduced in [7].

DermvTioN. Let @ = {¢,} be a sequence of positive increasing functions
satisfying for all x >0 and k

P+ 1(x) Z @ (X) 2 @, (%) = x2.
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Then the Kothe space K(a,) with a;, = ¢1(a), Ge10=Ph+1(ta k=1,
where a = (a,) i$ some exponent sequence, is denoted by A4(a).

Clearly a 14(a) space is of type d; and moreover, by replacing ¢, (x) by
x@i(x) if necessary, one can assume that A,(a) is regular. Krone in [7]
proves the following theorem:

TugoreMm 3.1. Let E be a dy Schwartz Kothe space. Then Ext(E) = 0 iff
E = lg(a) for some & and a.

We next show that 1, and S, spaces of infinite type are closely related.

TueoreM 3.2. The class of 5,(a, o) spaces coincides with the subclass of
Ao(b) spaces where @ consists of a single function, ie. @ =(o, @, ..).

Proof. Let E = 1s(a) with @ = {¢p, ¢, ...}. Without loss of generality
assume that ¢(x) > x* Vx and let ¢®(x) denote @ opo...00(x) (k-fold
composition). Let ay, = ¢®(4,). Define (p,) by po =2, Pn+1 = q?(pm) for m
> 0. Then (p,,) increases strictly. Let b, = 2" if pp < @p < Prt1- Finally deﬁne
g(2" = log p,, extend via linear segments, and complete to an _odd function.
Then ¢ increases strictly. To show that g is convex we consider

(g™ Y=g @2 ' =2") = 27"log(pu+1/Pn)-
Since

(Pus 1/P)? = (0 (P)/Pnf? < 0 (P)* < @O @ (P @ (Pa) = Put 2/ Prt 1

we see that the right-hand side of the considered equation increases with n,
and hence g is convex. . . ;
Now SuUppose p, <, < Pm+1 (s0 in particular b, =2"). Then

G0 = 0% (ay) < %D (Dt 1) = Pt
= exp[g(2™*9] = exp [g(2*D,)]
and
exp[g(2°5)] = Pmsk = 9® (Pm) < 0¥ (@) = G-

We conclude that E = S, (b, 00).

Conversely, given F =8,(b, «0), define for x> 0, o
=exp[f(2f ~"(logx))]. Then it easily follows that F = Ay(a) where a,
= exp[f (b,)]. .

Remark 3.3. It now follows easily that the popular Kothe space K (ay)
where @, = expoexpo...oexp(a,) (k-fold compo§ition) is not only an
S, (b, o) space but also an Ly(c, c0) space. Here it is natural to ask whether
every lo(a) space is isomorphic to some S, (b, o0) space. Our next example
shows that this is not so and hence that even if a dy Kbth.e space E satisfies
Ext(E) = 0, it still does not follow that E = §, (b, o0). This gives a sharper
negative answer to a question of Kashirin [4] whether every regular d,
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K&the space is isomorphic to some S, (b, c0) space, than that given by M.
Kocatepe (Alpseymen) [5].

ExampLE 34. In this example we construct a Aq(a) space E which is
not isomorphic to any S,(b, o) space. Here we would like to thank the
referee for suggesting this proof which is considerably shorter than the
original one. Let & = (¢,) where x? < ¢,(x) < ¢,(x) <... and

Hm of (x)/ @41 (x) =0 for all k, m

where -¢™ denotes the m-fold composition. Let (a,) satisfy a, < a2, (e.g. a,

= 2", and put E = A4(a). Suppose. E = 8, (b, o) for some b and g. In view
of Theorem 3.2 this means E = F = 1y (b) for some ¥ = (), ¥, ..). Now E
= F implies that the diametral dimensions 4(E) and 4(F) are equal, and
hence E and F, both being G, spaces (see [11]), coincide as sets. Therefore
we may assume that a, < ¥ (b,) and ¥ (b,) < ¢(a,) for large n (in particular
b, < ¢(a,) where ¢ = ¢, ,0...0¢; for some suitable k,. We obtain:

1) Given x, choose n such that a,.; <x <a,; hence x <a,<a?.,
< ¢(a,-1) < ¢(x) and

V() < (@) <UD (b) < 0(a) < 0(a2-1) < 0 () < 0@ ().

D g1 (B < Pryr1 (0(a) S Y™ (b,) < 9™ (b,) < o™ (b,)

for some suitable m which contradicts the growth assumption on the ¢s.
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