

STUDIA MATHEMATICA, T. LXXXVIII. (1988)

S_a spaces and vanishing of the functor Ext

h

ZAFER NURLU* (Ankara)

Abstract. $S_{\varrho}(a, r)$ spaces are introduced by V. V. Kashirin [4]. We derive some properties of this class of Köthe spaces and obtain necessary and sufficient conditions for an $S_{\varrho}(a, 1)$ space E to satisfy $\operatorname{Ext}^1(E, E) = 0$ when E is of type d_1 or d_2 . In [7, 8], $\lambda_{\varphi}(a)$ spaces are introduced and shown to be the only d_1 Köthe spaces which satisfy $\operatorname{Ext}^1(E, E) = 0$. We show that the class of $S_{\varrho}(a, \infty)$ spaces coincides with the subclass of $\lambda_{\varphi}(a)$ spaces which consists of those $\lambda_{\varphi}(a)$ spaces where $\Phi = (\varphi, \varphi, \ldots)$, i.e., generated by a single function φ . V. V. Kashirin, in [4], asked whether every regular nuclear Köthe space E of type d_1 is representable as an $S_{\varrho}(b, \infty)$ space, which was answered in the negative by E. Kocatepe (Alpseymen) [5]. We show that even under the additional assumption that ExtE1 (E1, E1) = 0 this is not possible.

Preliminaries. Unless otherwise stated, throughout this work, the letters E, F, \ldots etc. will denote nuclear Köthe spaces $K(a_{kn})$ which have a continuous norm and whose generating matrix (a_{kn}) satisfies $0 < a_{kn} \le a_{k+1,n}$ $\forall k, n$. Following E. Dubinsky [1] we say that $E = K(a_{kn})$ is of type (d_i) , i = 0, 1, 2, 5, if it is generated by a matrix (a_{kn}) which satisfies the corresponding condition below:

 (d_0) For each k, $a_{k+1,n}/a_{kn}$ is nondecreasing in n (in this case E is also called regular).

$$(d_1) \exists p \ \forall k \ \exists m \ \sup a_{kn}^2/(a_{pn} a_{mn}) < +\infty.$$

$$(d_2) \ \forall k \ \exists m \ \forall r \ \sup a_{kn} a_{rn}/a_{mn}^2 < +\infty.$$

$$(d_5) \exists M > 0 \ \forall k \ \forall n \ a_{k+1,n}/a_{kn} \leq (a_{k+2,n}/a_{k+1,n})^M.$$

An $L_f(a, r)$ space, also called a *Dragilev space*, is the Köthe space $E = K(\exp f(r_k a_n))$ where f is an increasing, odd, logarithmically convex function (i.e. $\ln f(\exp x)$ is convex for $x \ge 0$), $a = (a_n)$ is an exponent sequence (a nondecreasing sequence of positive real numbers which approaches infinity rapidly enough to make E nuclear), and (r_k) a strictly increasing sequence with limit $r \in \mathbb{R} \cup \{+\infty\}$. An $L_f(a, r)$ space is isomorphic to an L_f space of type -1 (resp. 1) if r < 0 (resp. $0 < r < +\infty$). Hence basically there are four types of L_f spaces: r = -1, 0, 1, $+\infty$. For any A > 1 the function f(Ax)/f(x)

^{*} This research is partially supported by the Scientific and Technical Research Council of Turkey.

is increasing and either has a finite limit for all A>1 or approaches infinity for all A>1 as $x\to\infty$; accordingly, f is called slowly increasing resp. rapidly increasing. If f is slowly increasing then $L_f(a,r)$ is isomorphic to the power series space of finite type (which is d_2) $\Lambda_0(a)=L_{id}(a,0)$ if $r<+\infty$ or to the power series space of infinite type (which is d_1) $\Lambda_\infty(a)=L_{id}(a,\infty)$, where id denotes the identity function. If f is rapidly increasing, then for all A>1, $f^{-1}(Ax)/f^{-1}(x)$ decreases to 1, while f(Ax)/f(x) and f(x)/x increase to $+\infty$. In this case $L_f(a,r)$ is of type d_1 (resp. d_2) if r=1, ∞ (resp. r=-1, 0). All Dragilev spaces are regular and independent of the choice of the sequence (r_k) .

A regular Köthe space $E = K(a_{kn})$ is called weakly stable (resp. unstable) if the generating (regular) matrix (a_{kn}) satisfies

$$\forall s \; \exists \; p \; \forall \; q \; \exists \; r \qquad \sup_{n} a_{qn} \, a_{s,n+1} / (a_{pn} \, a_{r,n+1}) < + \infty$$

$$(\text{resp.} \; \exists \; s \; \forall \; p \; \exists \; q \; \forall \; r \qquad \lim_{n} a_{p,n+1} \, a_{rn} / (a_{q,n+1} \, a_{sn}) = 0).$$

For concepts not defined and as general references we refer the reader to [1], [6], or [10].

1. S_g spaces. An $S_g(a, r)$ is defined similarly to an $L_f(a, r)$, but the logarithmic convexity of f is replaced by the convexity of g for $x \ge 0$. Below some properties of S_g spaces are stated. The proofs, being immediate consequences of the convexity of g, are omitted.

PROPOSITION 1.1. Let $E = S_a(a, r)$. Then E is regular and:

- (i) If r < 0 then $E \cong S_a(b, -1)$ and E is d_2 .
- (ii) If r = 0 then E is d_2 .
- (iii) If $0 < r < +\infty$ then $E \cong S_a(b, 1)$ and E is d_5 .
- (iv) If $r = +\infty$ then E is d_1 .

PROPOSITION 1.2. Every $L_f(a, r)$ space is an $S_g(a, r)$ space for some g. Proof. The proofs for r = 1, ∞ will be given. The cases r = -1, 0 can be similarly proved.

Let $E = L_f(a, \infty)$; $r_k \uparrow + \infty$. Define $g(2^n) = f(2^n)$ and extend g to an odd function on R via linear segments; hence g is strictly increasing. Since

$$(g(2^{n+1})-g(2^n))/2^n = (f(2^n)/2^n)(f(2^{n+1})/f(2^n)-1)$$

and each factor in the latter product is nondecreasing in n, it follows that g is also convex. Suppose $2^m \le r_k a_n < 2^{m+1}$. Then

$$f(r_k a_n) \leqslant f(2^{m+1}) = g(2^{m+1}) \leqslant g(2r_k a_n),$$

$$g(r_k a_n) \leqslant g(2^{m+1}) = f(2^{m+1}) \leqslant f(2r_k a_n),$$

so $L_f(a, \infty) = S_g(a, \infty)$ as sets and the topologies coincide.

Let $E = L_f(a, 1)$. Since the case f = identity is trivial, assume f increases rapidly. Let $r_k
cup 1$. Let $p_n = f^{-1}(2^n)$, define $g(p_n) = f(p_n) = 2^n$ and extend g to an odd function on R via linear segments; hence g is strictly increasing. Then

$$(g(p_{n+1})-g(p_n))/(p_{n+1}-p_n)=(2^n/f^{-1}(2^n))/(f^{-1}(2^{n+1})/f^{-1}(2^n)-1)$$

and the latter quotient increases with n since f is rapidly increasing. We conclude that g is convex. Now suppose $p_m \le r_k a_n < p_{m+1}$. Then for $r_l > r_k$ and for large n we have

$$g(r_k a_n) < g(p_{m+1}) = 2^{m+1} = 2f(p_m) < 2f(r_k a_n) \le f(r_l a_n),$$

$$f(r_k a_n) < f(p_{m+1}) = g(p_{m+1}) \le g\left(\frac{p_{m+1}}{p_m}r_k a_n\right) \le g(r_l a_n)$$

where the last inequality follows from $\lim_{m} p_{m+1}/p_m = 1$. Therefore $L_f(a, 1) = S_a(a, 1)$ as sets and the topologies coincide.

Remark 1.3. The above propositions show that S_g spaces generalize L_f spaces and moreover exhibit similar properties as L_f spaces regarding the types except for $S_g(a, 1)$ spaces. V. V. Kashirin in [4] gives an example of an $S_g(a, \infty)$ space which is not isomorphic to any L_f space and concludes that S_g spaces form a strictly larger class. A close inspection reveals that $S_g(a, 1)$ spaces may be of type d_1 or d_2 (in which case they are isomorphic to some power series space of finite type; see [1]), or even a cross product of a d_1 space by a d_2 space, which cannot occur for any L_f space.

An $L_f(a, 1)$ space is d_1 iff f is rapidly increasing. The next lemma shows that if an $S_g(a, 1)$ space is d_1 then g resembles a rapidly increasing function, but only at the points a_n so somewhat "locally".

LEMMA 1.4. If $E = S_q(a, 1)$ is d_1 and $0 < r_k \uparrow 1$ then g satisfies:

- (i) $\forall M > 0 \ \forall k \ \exists p, n_0 \ M \leqslant g(r_p a_n)/g(r_k a_n) \ \forall n \geqslant n_0$.
- (ii) $\forall A > 1$ $\lim g(a_n)/g(Aa_n) = \lim g(a_n/A)/g(a_n) = 0$.
- (iii) $g(x)/x\uparrow +\infty$.

Proof. The proofs for (ii) and (iii) will be omitted since they follow from (i). To prove (i) let E be d_1 . Then we may assume that $2g(r_k a_n) \le g(r_1 a_n) + g(r_{k+1} a_n) \ \forall k$ and for $n \ge n_k$. By successive applications we obtain

$$g(r_{k+1} a_n) \leq \frac{1}{2} (g(r_1 a_n) + g(r_{k+2} a_n)) \leq \dots$$

$$\leq g(r_1 a_n) \sum_{j=1}^{m} 2^{-j} + 2^{-m} g(r_{k+m+1} a_n)$$

$$\leq g(r_1 a_n) + 2^{-m} g(r_{k+m+1} a_n) \quad \text{for } n \geq n_{k+m}.$$

By the convexity of g and using the above estimate we have for $n \ge n_{k+m}$

$$r_{k+1} g(r_k a_n)/r_k \le g(r_{k+1} a_n) \le g(r_k a_n) + 2^{-m} g(r_{k+m+1} a_n).$$

Therefore with p = k + m + 1 where m is chosen large enough to satisfy $M \le 2^m (r_{k+1} - r_k)/r_k$ and for $n_0 = n_p$ we obtain the result.

We next show that the classes of S_g spaces for r=1, $r=\infty$ are not disjoint. In the next section this intersection will be completely characterized.

Proposition 1.5. Any unstable $S_f(a, \infty)$ space E is diagonally isomorphic to some $S_a(b, 1)$ space.

Proof. The unstability of E is equivalent to $\lim_n a_{n+1}/a_n = +\infty$. Let $d_n = \inf_{m \ge n} a_{m+1}/a_m$. Then $d_n \uparrow + \infty$. By modifying (a_n) if necessary assume $d_3 > 16$. Define r_k by $r_1 = 1/4$, $r_2 = 1/2$, $r_k = 1 - d_k^{-1/2}$ for k > 2. Then $(1 - r_k)^{-2} \le d_k \le a_{k+1}/a_k$, k > 2 (to avoid repetitions, modify (r_k) slightly so that the inequalities are still valid). Define (s_k) by $s_1 = 0$, $s_k = (1 - r_k)^{-1}$ for k > 1. Then $s_k \uparrow + \infty$ strictly. We have:

(1)
$$(s_{k+1}-s_k)/(r_{k+1}-r_k)$$
 increases with k.

(2)
$$(s_{k+1}-s_k)/(r_{k+1}-r_k) \le d_{k+1} \quad \forall k > 1.$$

Let $b_1=1$, $b_{n+1}=4r_nb_n$ for n>1. Clearly $b_n\uparrow+\infty$. Define g successively at the points

$$\rightarrow r_2 b_n \rightarrow r_3 b_n \rightarrow \dots \rightarrow r_n b_n = r_1 b_{n+1} \rightarrow r_2 b_{n+1} \rightarrow \dots$$

by

$$g(r_k b_n) = \sum_{j=1}^{n-1} f(s_j a_j) + f(s_k a_n)$$
 for $k = 1, ..., n$

and extend g to an odd function on R via linear segments. Clearly g is strictly increasing and $g(r_n b_n) = g(r_1 b_{n+1})$ since $s_1 = 0$. Let m(x, y) denote the slope of the segment joining (x, g(x)) to (y, g(y)) for x < y. To show that g is convex we distinguish two cases:

Case 1: k+1 < n. Using (1) and the convexity of f we have

$$(r_{k+2} - r_{k+1})/(r_{k+1} - r_k) \le (s_{k+2} - s_{k+1})/(s_{k+1} - s_k)$$

$$\le (f(s_{k+2} a_n) - f(s_{k+1} a_n))/(f(s_{k+1} a_n) - f(s_k a_n))$$

from which it follows that

$$m(r_k b_n, r_{k+1} b_n) \leq m(r_{k+1} b_n, r_{k+2} b_n).$$

Case 2: k+1 = n. We have

$$\frac{b_{n+1}}{b_n} \cdot \frac{r_2 - r_1}{r_n - r_{n-1}} = \frac{r_n}{r_n - r_{n-1}} \leqslant \frac{d_n}{s_n - s_{n-1}} \leqslant \frac{a_{n+1}}{(s_n - s_{n-1}) a_n}.$$

By the convexity of f, this is

$$\leq \frac{f(2a_{n+1}) - f(a_{n+1})}{f(s_n a_n) - f(s_{n-1} a_n)} \leq \frac{f(s_2 a_{n+1})}{f(s_n a_n) - f(s_{n-1} a_n)} = \frac{g(r_2 b_{n+1}) - g(r_1 b_{n+1})}{g(r_n b_n) - g(r_{n-1} b_n)}$$

from which $m(r_{n-1}b_n, r_nb_n) \leq m(r_nb_n, r_1b_{n+1})$ follows.

Letting

$$t_n = \exp\left[\sum_{j=1}^{n-1} f(s_j a_j)\right]$$

we obtain $t_n \exp[f(s_k a_n)] = \exp[g(r_k b_n)]$ and hence conclude that $S_f(a, \infty) \cong S_a(b, 1)$ diagonally.

Kashirin in [4] has shown the following result:

Proposition 1.6 Any unstable d_1 Köthe space is diagonally isomorphic to some $S_{\alpha}(a, \infty)$ space.

Let $K(a_{kn})$ be a Köthe space, and (n_i) a subsequence of N. The space $K(b_{kn})$ where $b_{kn} = a_{ki}$ for $n_i \le n < n_{i+1}$ will be called a repeated form of $K(a_{kn})$. In the case of a $S_g(a, r)$ space this is equivalent to repeating terms of $a = (a_n)$, that is, $b_n = a_i$ if $n_i \le n < n_{i+1}$, and $b = (b_n)$ will be called a repeated form of (a_n) . Combining Proposition 1.6 with Proposition 1.5 we obtain

Proposition 1.7. Any repeated form of an unstable d_1 Köthe space is diagonally isomorphic to some $S_g(a, 1)$ and $S_f(b, \infty)$ space.

Proof. Since in Propositions 1.5 and 1.6 the isomorphisms are diagonal, repeating a coordinate a finite number of times does not disturb the isomorphism if we repeat the corresponding coordinate of (a_n) resp. (b_n) the same number of times. This, in turn, still gives us an S_g space of the same type.

2. Vanishing of the functor Ext for S_g spaces. For the definition of the functor Ext $(E, F) = \operatorname{Ext}^1(E, F)$ on the category of Fréchet spaces we refer the reader to Vogt [12]. Consider the following conditions for two Köthe spaces $E = K(a_{kn})$, $F = K(b_{kn})$:

$$(S_1) \quad \exists p \ \forall u \ \exists k \ \forall m, K, R > 0 \ \exists n, S > 0 \ \forall i, j$$
$$a_{mi}/b_{ki} \leq \max \{Sa_{ni}/b_{Ki}, a_{ni}/Rb_{ui}\}.$$

(S)
$$\forall u \exists p, k \forall m, K \exists n, S > 0 \forall i, j$$

$$a_{mi}/b_{ki} \leq S \max \{a_{ni}/b_{ki}, a_{ni}/b_{ui}\}.$$

Write $(E, F) \in S_1$ resp. $(E, F) \in S$ if the corresponding condition is satisfied. To simplify notation we shall write Ext(E) for Ext(E, E). We state the following result of Krone-Vogt [8].

THEOREM 2.1. Let $E = K(a_{kn})$ be a Schwartz space satisfying $a_{kn} > 0$ $\forall k, n$. Then the following conditions are equivalent:

- (i) $(E, E) \in S$.
- (ii) Ext(E) = 0.
- (iii) Every exact sequence $0 \to E \xrightarrow{} F \to E \to 0$, where F is a Fréchet space, splits.
- 2 Studia Mathematica t. 88 z. 1

If E is further d_1 then these conditions are also equivalent to [8]:

(iv) $(E, E) \in S_1$.

Combining Theorem 2.1 and modified forms of some results of M. Kocatepe [5] resp. J. Hebbecker [3] with Proposition 1.7 we obtain the main result of this section:

Theorem 2.2. Let $E=S_g(a,\,1)$ be $d_1.$ Then the following conditions are equivalent:

- (i) Ext(E) = 0.
- (ii) $E \cong S_f(b, \infty)$.
- (iii) $E \cong S_g(c, 1)$ where c is a repeated form of some d with $\liminf_{n \to 1} d_{n+1}/d_n > 1$.

Proof. (iii) is equivalent to the condition that 1 is an isolated point among the limit points of $\{d_n/d_m: n, m \in N\}$, hence in view of isomorphism also of $\{a_n/a_m: n, m \in N\}$. For a discussion of the limit points of (a_n/a_m) see [2]. In [3], Satz 2.6, this condition is shown to be equivalent to (i) for $L_f(a, 1)$ spaces, but in view of Lemma 1.4(i) this result generalizes to d_1 $S_g(a, 1)$ spaces. (i) \Leftrightarrow (iii) can also be obtained from Proposition 2 in [5] with obvious modifications for d_1 $S_g(a, 1)$ spaces. (iii) \Rightarrow (ii) is Proposition 1.7, and finally (ii) \Rightarrow (i) follows from the corresponding results for L_f spaces in [5] or [7] by using Lemma 1.4.

COROLLARY 2.3. Let $E=S_g(a,\infty)$. Then $E\cong S_f(b,1)$ for some b and f iff $S_g(a,\infty)=S_g(c,\infty)$ where c is a repeated form of some d with $\lim d_{n+1}/d_n=+\infty$.

Proof. If $E \cong S_f(b, 1)$ then $\operatorname{Ext}(S_f(b, 1)) = 0$ and by Theorem 2.2(iii) it follows that $S_f(b, 1)$ is a repeated form of some unstable $S_f(c, 1)$. Then the same is true for E. The converse implication is Proposition 1.7.

Corollary 2.4. The intersection class (up to isomorphism) of S_g spaces of type 1 resp. ∞ consists precisely of repeated forms of unstable d_1 Köthe spaces.

Proof. This follows by Proposition 1.7 and Theorem 2.2.

The corresponding results in the case of a d_2 $S_g(a, 1)$ space are already known (see Nyberg [9] and in particular Hebbecker [3] for a complete treatment); in fact, a d_2 $S_g(a, 1)$ space, being also of type d_5 by Proposition 1.1 (iii), is isomorphic to some $A_1(b)$ (see [1]). We cite Satz 1.11 in [3] in the language of Theorem 2.2:

THEOREM 2.5. Ext $(\Lambda_1(a)) = 0$ iff $a = (a_n)$ is equivalent to a repeated form of some unstable exponent sequence.

3. λ_{Φ} spaces and S_g spaces. The $\lambda_{\Phi}(a)$ spaces are introduced in [7]. Definition. Let $\Phi = \{\varphi_k\}$ be a sequence of positive increasing functions satisfying for all x > 0 and k

$$\varphi_{k+1}(x) \geqslant \varphi_k(x) \geqslant \varphi_1(x) \geqslant x^2$$
.

Then the Köthe space $K(a_{kn})$ with $a_{1n} = \varphi_1(a_n)$, $a_{k+1,n} = \varphi_{k+1}(a_{kn})$, $k \ge 1$, where $a = (a_n)$ is some exponent sequence, is denoted by $\lambda_{\varphi}(a)$.

Clearly a $\lambda_{\Phi}(a)$ space is of type d_1 and moreover, by replacing $\varphi_k(x)$ by $x\varphi_k(x)$ if necessary, one can assume that $\lambda_{\Phi}(a)$ is regular. Krone in [7] proves the following theorem:

THEOREM 3.1. Let E be a d_1 Schwartz Köthe space. Then $\operatorname{Ext}(E)=0$ iff $E\cong \lambda_\Phi(a)$ for some Φ and a.

We next show that λ_{Φ} and S_g spaces of infinite type are closely related. Theorem 3.2. The class of $S_g(a, \infty)$ spaces coincides with the subclass of $\lambda_{\Phi}(b)$ spaces where Φ consists of a single function, i.e. $\Phi = (\varphi, \varphi, \ldots)$.

Proof. Let $E=\lambda_{\Phi}(a)$ with $\Phi=\{\varphi,\varphi,\ldots\}$. Without loss of generality assume that $\varphi(x)\geqslant x^4$ $\forall x$ and let $\varphi^{(k)}(x)$ denote $\varphi\circ\varphi\circ\ldots\circ\varphi(x)$ (k-fold composition). Let $a_{kn}=\varphi^{(k)}(a_n)$. Define (p_m) by $p_0=2$, $p_{m+1}=\varphi(p_m)$ for $m\geqslant 0$. Then (p_m) increases strictly. Let $b_n=2^m$ if $p_m< a_n\leqslant p_{m+1}$. Finally define $g(2^m)=\log p_n$, extend via linear segments, and complete to an odd function. Then g increases strictly. To show that g is convex we consider

$$(g(2^{n+1})-g(2^n))/(2^{n+1}-2^n)=2^{-n}\log(p_{n+1}/p_n).$$

Since

$$(p_{n+1}/p_n)^2 = (\varphi(p_n)/p_n)^2 < \varphi(p_n)^2 \leqslant \varphi \circ \varphi(p_n)/\varphi(p_n) = p_{n+2}/p_{n+1}$$

we see that the right-hand side of the considered equation increases with n, and hence q is convex.

Now suppose $p_m < a_n \le p_{m+1}$ (so in particular $b_n = 2^m$). Then

$$a_{k-1,n} = \varphi^{(k-1)}(a_n) \leqslant \varphi^{(k-1)}(p_{m+1}) = p_{m+k}$$

= $\exp[g(2^{m+k})] = \exp[g(2^k b_n)]$

and

$$\exp[g(2^k b_n)] = p_{m+k} = \varphi^{(k)}(p_m) < \varphi^{(k)}(a_n) = a_{kn}.$$

We conclude that $E \cong S_q(b, \infty)$.

Conversely, given $F = S_g(b, \infty)$, define for x > 0, $\varphi(x) = \exp[f(2f^{-1}(\log x))]$. Then it easily follows that $F \cong \lambda_{\varphi}(a)$ where $a_n = \exp[f(b_n)]$.

Remark 3.3. It now follows easily that the popular Köthe space $K(a_{kn})$ where $a_{kn}=\exp \circ \exp \circ \ldots \circ \exp (a_n)$ (k-fold composition) is not only an $S_g(b,\infty)$ space but also an $L_f(c,\infty)$ space. Here it is natural to ask whether every $\lambda_{\Phi}(a)$ space is isomorphic to some $S_g(b,\infty)$ space. Our next example shows that this is not so and hence that even if a d_1 Köthe space E satisfies $\operatorname{Ext}(E)=0$, it still does not follow that $E\cong S_g(b,\infty)$. This gives a sharper negative answer to a question of Kashirin [4] whether every regular d_1

Köthe space is isomorphic to some $S_g(b, \infty)$ space, than that given by M. Kocatepe (Alpseymen) [5].

Example 3.4. In this example we construct a $\lambda_{\Phi}(a)$ space E which is not isomorphic to any $S_g(b,\infty)$ space. Here we would like to thank the referee for suggesting this proof which is considerably shorter than the original one. Let $\Phi = (\varphi_k)$ where $x^2 \leqslant \varphi_1(x) \leqslant \varphi_2(x) \leqslant \ldots$ and

$$\lim_{x \to \infty} \varphi_k^{(m)}(x)/\varphi_{k+1}(x) = 0 \quad \text{for all } k, m$$

where $\varphi^{(m)}$ denotes the *m*-fold composition. Let (a_n) satisfy $a_n \leq a_{n-1}^2$ (e.g. $a_n = 2^{2^n}$), and put $E = \lambda_{\Phi}(a)$. Suppose $E \cong S_g(b, \infty)$ for some b and b. In view of Theorem 3.2 this means $b \cong F = \lambda_{\Psi}(b)$ for some $\Psi = (\psi, \psi, \ldots)$. Now $b \cong F$ implies that the diametral dimensions $b \in E$ and $b \in E$

1) Given x, choose n such that $a_{n-1} \leqslant x \leqslant a_n$; hence $x \leqslant a_n \leqslant a_{n-1}^2$ $\leqslant \varphi(a_{n-1}) \leqslant \varphi(x)$ and

$$\psi(x) \leqslant \psi(a_n) \leqslant \psi^{(2)}(b_n) \leqslant \varphi(a_n) \leqslant \varphi(a_{n-1}^2) \leqslant \varphi(x^2) \leqslant \varphi^{(2)}(x).$$

2)
$$\varphi_{k_0+1}(b_n) \leqslant \varphi_{k_0+1}(\varphi(a_n)) \leqslant \psi^{(m)}(b_n) \leqslant \varphi^{(2m)}(b_n) \leqslant \varphi_{k_0}^{(2mk_0)}(b_n)$$

for some suitable m which contradicts the growth assumption on the φ_k 's.

References

- E. Dubinsky, The Structure of Nuclear Fréchet Spaces, Lecture Notes in Math. 720, Springer, Berlin-Heidelberg-New York 1979.
- [2] E. Dubinsky and D. Vogt, Bases in complemented subspaces of power series spaces, Bull. Polish Acad. Sci. 34 (1986), 65-67.
- J. Hebbecker, Auswertung der Splittingbedingungen S^{*}₁ und S^{*}₂ für Potenzreihenräume und
 L_f-Räume, Diplomarbeit, Wuppertal 1984.
- [4] V. V. Kashirin, On the representation of Köthe spaces of class d in the form of generalized power series spaces and their Cartesian products, Bull. Acad. Polon. Sci. 28 (1-2) (1980), 27-32 (in Russian).
- [5] M. Kocatepe (Alpseymen), On Dragilev spaces and the functor Ext, Arch. Math. (Basel) 44 (1985), 438-445.
- [6] G. Köthe, Topological Vector Spaces II, Springer, New York-Heidelberg-Berlin 1980.
- [7] J. Krone, Zur topologischen Charakterisierung von Unter- und Quotientenräumen spezieller nuklearer Kötheräume mit der Splittingmethode, Diplomarbeit, Wuppertal 1984.
- [8] J. Krone and D. Vogt, The splitting relation for Köthe spaces, Math. Z. 190 (1985), 387-400.
- [9] K. Nyberg, Tameness of pairs of nuclear power series spaces and related topics, Trans. Amer. Math. Soc. 283 (2) (1984), 645-660.

[10] A. Pietsch, Nukleare lokalkonvexe Räume, Akademie Verlag, Berlin 1969.

[11] T. Terzioğlu, Die diametrale Dimension von lokalkonvexen Räumen, Collect. Math. 20 (1969), 49-99.

[12] D. Vogt, On the functors Ext1(E, F) for Fréchet spaces, Studia Math. 85 (1987), 163-197.

DEPARTMENT OF MATHEMATICS MIDDLE EAST TECHNICAL UNIVERSITY Ankara. Turkey

Received October 3, 1985
Revised version May 19, 1986

(2098)