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Asymptotic stability of linear differential
equations in Banach spaces

by

Yu. I. LYUBICH (Kharkov) and VO QUOC PHONG (Hanoi)*

Abstract. Let A be a generator of a strongly continuous bounded semigroup T(t), t = 0.
We prove that il the intersection of the spectrum of 4 and the imaginary axis is at most
countable and A* has no purely imaginary eigenvalues, then the Cauchy problem for the
differential equation x(t) = Ax(t), 1 = 0, is asymptotically stable.

We consider the differential equation
ity %(1) = Ax(1),

in a complex Banach space X, where 4 is a linear closed operator with a
dense domain D(4) = X. The Cauchy problem for equation (1) is stable (i.e.,
by definition, (1) has a unique bounded solution x(r) which depends conti-
nuously on the initial value x(0)eD(A) w.rt. the sup-norm topology) if and
only if the operator 4 generates a strongly continuous semigroup T'(1), t = 0,
which is bounded, i.e.

) szgllT(t)H =M <.

t=0,

This criterion, obtairied by S. Krein and P. Sobolevskii, is equivalent to the
fact that: (i) the spectrum of 4 does not meet the half-plane Re 4 > 0, and (ii)
the resolvents R; = (4 — AI)"! satisfy the Miyadera—Feller-Phillips inequality

5

(3 [|IRYI < n=1,2,..., M=const.

= Red”
These classical results are presented in detail in the monograph [3]. We
notice that, without loss of generality, one can put M = 1, which can be
obtained by introducing the equivalent norm sup,»o||T(r) x||. In this case the
infinite sequence of inequalities (3) is reduced.to one Hille-Yosida inequality

“ IRl <
* This paper was written during the second author's two-year stay at the Khar'kov State

University, US.S.R.
Key words and phrases: one-parameter semigroups, asymptotic stability..
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T(r) turns out to be a semigroup of contractions, and the operator A4 is
dissipative.

The Cauchy problem for equation (1) is said to be asymptotically stable
(as.) if it is stable and
%) lim T(t)x =0

r=ron
for all xeX. This property is of spectral nature. For example, if A4 is
bounded and its spectrum lies in the open left half-plane Re A <0, then the
corresponding Cauchy problem is as. This is directly derived from the
formula
(6) et = —(2mi)~! [N R, dA,
"

where I' is a closed contour in the half-plane Re A < 0 around the spectrum
of A. If the intersection of the spectrum of A with the imaginary axis is not
empty, then the a.s. may not hold. In any case, for as. it is necessary that the
operators A and A* have no eigenvalues on the imaginary axis. Indeed, if
Ax =iox, where aeR, x # 0, then T(t)x = ¢ x does not tend to zero as ¢

— 00. Now let A* f = iaf for some f e X*, f # 0. Then for every solution x()
of equation (1) we have

C LS x(0) = i (x(0)

hence f (x(r)) = f (x(0)) €. If x(t) » 0 as t — oo, then f(x(0)) = 0. Therefore
from the as. it follows that f|D(A4) =0, ie. f = 0.

G. Sklyar and V. Shirman [8] have established that if A is a dissipative
operator such that: 1) A4 is bounded, 2) the spectrum of A4 has at most
countable intersection with the imaginary axis, 3) 4* has no imaginary
eigenvalues, then the Cauchy problem for equation (1) is a.s. However, in
applications to ordinary/partial differential equations and to optimal control
the operator A is usually unbounded. On the other hand, the boundedness of
A has been used essentially in the proof in [8]. The aim of this paper is to
extend the Sklyar-Shirman criterion to unbounded operators. For this we
shall need some simple facts about semigroups of isometries.

Let U(t), t >0, be a strongly continuous semigroup of isometries (in
general, nonsurjective), and let S be its generator.

LemMma. If Red <0, then

™ 1Sx—Ax|| > [Re 4] ||x|l,
Jor all xeD(S).

This lemma is contained in [3]. Here we give a shorter proof.
Proof. We put 1= ~g+in, weR, ¢>0, and consider the vector-

Asymptotic stability 39

valued function u(t) =e *U(t)x, t = 0. It is clear that
(8 lu @)l = e {ix]|.
On the other hand,

td t
u(ty=x+| u(c) dt =x+ [e™# U (t)(Sx— Ax) dr.
o dt 0
Therefore
e —1
® [Ju @l < [Ixl + 0 (IS — Ax]].

Comparing (8) and (9), we get (7).

From the lemma it follows that the half-plane {i: Rel < 0} lies in a
regular component of the operator S (see [1]). It is known that the number §
=dim {f: S*f = 4f} does not depend on A belonging to the same regular
component. Therefore for generators of isometry semigroups one can define
the deficiency number § as the dimension of the eigenspace {f: S*f = Af},
Rel < 0. It is clear that if iR ¢ specS, then 6 =0, and hence specS < iR.

We notice that the equality 6 = 0 is equivalent to the extendability of
the semigroup U (t) to a strongly continuous group of isometries U(t), — 0
<t <o [4]. Indeed, the necessity of the condition § =0 is obvious.
Conversely, if 6 =0, then, by (7) and the Hille-Yosida theorem, —S is the
generator of a strongly continuous semigroup of contractions V (1), t > 0. For
every xeD(S) we have

dt

Therefore U () V() =1 for all ¢t > 0. (See also [7])

THEOREM. Let the operator A generate a bounded strongly continuous
semigroup T(t), t = 0. If the intersection of the spectrum of A with the
imaginary axis is at most countable and A* has no imaginary eigenvalues, then
the Cauchy problem for equation (1) is asymptotically stable.

Proof. We assume without loss of generality that the operator A is
dissipative, ie. T(f) is a semigroup of contractions. Then the functions
IT(# x|, t =0, are nonincreasing for each fixed x, and hence the following
limit exists:

(10) I(x) = tim|T@x|l, xeX.

[ id- )

—d— {U@vex) =[S, U®Iv@x=0.

I(x) is a seminorm in X, moreover, [(x) < |/x||. We have to show that I/(x)
= 0. For this, we consider the subspace L=kgrl and suppose, ‘on the
contrary, that L X. In the quotient space X = X/L the seminorm !
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generates the norm 1, and the semigroup T(t) acts in X in a natural way,
because L is an invariant subspace for all operators T(r), t = 0. Sincé
I(T(s)x) = 1(x), xe X, the corresponding operators T'(f) in X are isometric.
The semigroup of isometries T(f) is strongly continuous, because the semi-
norm [ is dominated by the original norm in X.

Now we take the completion E of X w.r.i. the norm T We get a Banach
space E and a strongly continuous semigroup U (t) of isometries in it, the
extension by continuity of the semigroup T(r). Let S be the generatc;r of
U(1). We show that spec S —specA. Let A¢specA, R, = (4", Since

(1 [(Ry x) = im ||[R, T(t) xI| < [|Ryll (),

the resolvent R, has a natural extension to a bounded operator R,in E If
Rel > 0, then

o

Ryix=—[(T@W)x)e *dt, xeX.
0

This implies

0

Rif=—[(U@®)R)e™dt, ZzecE.

0

Therefore R, coincides with the resolvent R, (S) for all A
the Hilbert identity #0) for sll 4 Red > 0. Now by

R,—Ry=(u—-DR;R,, 1, p¢spec4,
hence

R,~Ry(8) =(u—AR,(S)R,, Rel>0, uéspecA.
Therefore ImR, < D(S) and

(S—-ADR, =I+(u—NR,,

which implies (S—puI) R, = 1. Analo
pe¢specS (and R, = R,(S).

From the inclusion specS —specd it follows the intersecti
spec S N iR is at most countable. Buf in this case specglact i;ihear::iqtf}rlz::‘c:tfgg
specS is a‘t most pountable. Moreover, spec§ s (), since § is a, generator of a
group of isometries (see [5]). Thus spec S is a nonempty at most countable
clo.sed subset of iR. Therefore it contains an isolated point iweiR. To this
point corresponds the Riesz projection P s (), commuting with § anci with all
U(t). The §ubspace Q=1ImP is invariant for § and for all U (t), and the
correspond.mg semigroup of isometries U,0)=U(@1)|Q is -generatéd by the

gously, we get R, (S~ ul) = I|D(S). Thus
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bounded operator S, = S|, specS,, = {iw}. It is well known that isometries
with one-point spectrum are scalars (see eg. [6]). From this and from the
spectral mapping theorem, valid for uniformly continuous semigroups, it
follows that S, = iw. Therefore Q is the eigenspace of S with eigenvalue iw.
Then every linear functional heImP*, h+ 0, is an eigenfunctional for S
with the same eigenvalue. Now we extend the functional k to the whole space
X using the sequence of homomorphisms X — X - E. We get a nonzero
functional f e X* which is an eigenfunctional for A* with eigenvalue iw; a
contradiction.

Remark. Under the conditions of the theorem the operator A also does
not have imaginary eigenvalues, since the Cauchy problem is a.s. Therefore, if
the Banach space X is reflexive, then in the formulation of the theorem we
can require the absence of imaginary eigenvalues of A instead of A*.

CoRrOLLARY. If the spectrum of the generator A of a bounded strongly
continuous group does not intersect the imaginary axis, then the Cauchy
problem for equation (1) is as.

Remark. The assumptions of the main theorem do not imply the
stronger conclusion

(12) ‘zurmxu dt < o0

even in the case of a bounded generator (see [2]).
On the other hand, we note that the system may be as. even if
spec A N iR is uncountable (cf. [8]).
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C,-Estimates for certain kernels on local fields
f by
DAN TIMOTIN (Bucuregti)

Abstract. We give necessary and sufficient conditions for certain operators defined on
I*(K) (K a local field) to belong to Schatten-von Neumann ideals. The operators considered are
defined by a type of integral kernels.

1. The purpose of this paper is to extend to the case of a local field K
the results proved in [9] for the real case. They concern necessary and
sufficient conditions for certain kernels to give rise to operators.(on L*(K))
belonging to Schatten—von Neumann classes (for the theory of Schatten—von
Neumann classes, see, for instance, [1]). Though the main ideas are the same
as in [9], their .actual application needs several adaptations to the new
context. . .

In order to present the resulis, we have first to establish the notation
and to remind some facts from the theory of local fields; the basic reference
for this topic is [7].

Let K be a local field, that is, a locally compact, nondiscrete, totally
disconnected field with the valuation | |. We write © = {xe K, |x| <1}, O*
=IxeK, |x =1}, B={xeK, |x| <1}. It is known that there exists pe®P
such that P = pD (this p will be fixed in the sequel). The residue space T/
is a finite field; let Q be a complete set of representatives for it. If card Q = g,
then the image of K* in (0, co) under the valuation | | is the multiplicative
subgroup. of (0, ®) generated by g; also |p| = g"'. We have P
= {xeK, |x] < ¢7%}, and we will write S, = {xeK,|x| =q7*}; & will be the
characteristic function of 9. & = &(K) will denote the space of finite linear
combinations of characteristic functions of balls.

The Fourier transform on K is defined as follows: let y be a fixed
character on K that is trivial on O but is nontrivial on B! Then, for

fel (K),
R ENRGPTRES

The standard properties of .the Fourier transform can be found in [7,
Chap. II]. . .
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