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Logarithmically concave fanctions and
sections of convex sets in R"

by
KEITH BALL (Cambridge)

Abstract. We prove that if /i R*— [0, o) is an even logarithmically concave function on
R¢ and p > 1, then ||x| ==(j':',/'(rx)r" Ydr)~ Y defines a seminorm on R* (provided it is finite
everywhere). This result is used to provide estimates on the least constant y, (k > 1) with the
property that for neN, n > k, every n-dimensional normed space E has a representation on R”
with unit ball C, say, such that if H and K are k-codimensional subspaces of R" then
[HACYK NC| < .

1. Introduction. In this paper we prove a number of related results
concerning logarithmically concave functions and convex sets in R"

Throughout the paper we will denote volume in a Euclidean space by |-|
as well as using this symbol for the usual Euclidean norm of a vector.

The first of the principal results is that every logarithmically concave
function on R" naturally generates a collection of norms on R" which can be
used to simplify the study of the original function. This fact is then applied
to a problem concerning the volumes of sections of convex sets. The first
result is essentially an inequality which bears some similarity to those of
Prékopa [6] and Leindler [5]. The latter problem was considered by Hensley
[4] who proved that for each k = 1, there is a constant y, so that for every
n >k, every n-dimensional normed space E has a representation on R", with
unit ball C, say, such that for any two k-codimensional subspaces H and
ol R", .

|H Nl
Kng St

By applying our first result we shall obtain a considerable improvement in
the order of magnitude of the estimates for y,.

The case k=1 of the above result was used by Bourgain [2] in
obtaining inequalities for maximal functions of functions of several variables.

It should be remarked that these bounds on the ratio of volumes of
sections of convex sets generalize, to the setting of arbitrary convex sets,
results proved for the cube [—4%, 41" = R" by Hensley [3], Vaaler [7] and the
present author [1], They can also be regarded as complementing the well-
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known result of F. John on the Banach-Mazur distance of an n-dimensional
normed space from /3.

Hensley showed that there is a constant M such that if Q, is the central
unit cube in R" then for every (n— 1)-dimensional subspace H of R",

<HNQ <M

The best possible constant here, namely \/E, was obtained in [1], in which
there is also a simple proof of the lower bound 1. The paper of Vaaler
extends the lower bound to sections of Q, by subspaces of arbitrary
dimension.

Given that for n > 2 there are obvious (n— 1)-dimensional sections of @,
with volumes 1 and \/i the fact that 1 <|HNQ,l < \/2 for all H of
dimension n—1 can be restated as follows: for any two (n— 1)-dimensional
subspaces H and K of R", n> 2,

H Q)
Kng <V2

The classical result of John can also be stated in terms of volumes: every
n-dimensional normed space E can be represented on R" (ie. given a
Euclidean structure), with unit ball C, say, so that if H and K are any two 1-
dimensional subspaces of R" then

|HAC|
KnCl

<Jn.

2. Definitions and preliminary results. Recall that a function f: R*
— [0, o0) is said to be logarithmically concave (log. concave) if the function
log f: R* —[—o0, o0) is concave (with the usual convention regarding — o).

The appearance of such functions in connection with convex sets is a
consequence of the Brunn—Minkowski inequality which we state as a lemma.

LemMa 1. If A and B are nonempty measurable sets in R” and Ae[0, 1]
then

1) AA+(1= 2B/ > A4 +(1—A)|B)'". =

The convexity of the exponential function yields as an immediate
consequence the slightly weaker inequality
@ |AA+(1—2) Bl > 4] [B[* .

The following easy lemma is a restatement of inequality (2) which
motivates the consideration of log. concave functions.

LeMMa 2. Let C be a compact convex set in R", H an (n—k)-dimensional
subspace of R" (for some 1 <k <n) and e,, ..., e, an orthonormal basis of H*

icm
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Define f: R*— [0, o0) by
TSR

Then f is log. concave. m

In all our results concerning the volumes of sections of unit balls of
normed spaces we shall always use a particular representation of an n-
dimensional normed space E on R". To specify this we make the following
definition.

DEFINITION. A measurable set C < R" will be called isotropic if there is a
constant M, such that

[ <x, > dm(y) =
A

/1/‘) = I(H+Zlg (:‘i) M C|

Mc|x|*  for all xeR"

where m is the Lebesgue measure on R", ie. if C has isotropic inertia tensor.
Similarly a function f: R*—[0, co0) will be called isotropic if there is a
constant M, such that

[ <%, yO2 f(y)dm(y) = M;|x* for all xeR*.
R

Plainly a convex set € = R” is isotropic if and only if its characteristic
function xc: R"— [0, o) is isotropic.

We may reformulate the condition for isotropy in coordinate form as’
follows: a set C is isotropic if and only if there is a constant M. such that

|y,y,dm(y) Mcéy;  for all i and j
where ;; is the Kronecker symbol. A similar reformulation may be made for
functions f: R* — [0, c0).

That any n-dimensional symmetric convex set C has a linear transforma-
tion which is isotropic may be observed as follows. Define an operator T R”
— R" by

Tx = [<x, y)ydm(y).
d

Then T is a strictly positive Hermitian operator and so has a strictly
positive, and hence invertible, square root S, say. The symmetric convex set
§7LC is isotropic since

[ pd2dm(y) =

sle

[ {x, S™ 1z dm(S ' 2)
= (det )~ 1j(x Stz >t dm(z)

= (det§)"! [ (8™ x, 2)? dm(2)
C
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=(detS)"1 {87 x, [<S7 ' x, z>zdm(z)>
¢

=(detS)"1 {§7!x, TS~ 'x)
=(detS)™* {x, ST TS xd
=(det S)"*|x|2.
So any n-dimensional normed vector space has a representation on R" with

isotropic unit ball. Similarly, if : R*— [0, c0) is a function for which
<6 »>2 f()dm(y) <o for all xeR*
R

then there is a linear transformation S such that the function x i 1(8x) is
isotropic.

Before proceeding to the principal results we shall prove some lemmas
concerning log. concave functions on R.

LEMMaA 3. Suppose p >0, @: [0, 00) — [0, c0) is convex with »(0) =0,
g: [0, 00) — [0, w0) is decreasing and integrable and

0

£g(¢(x))x”dx = [g(x)xPdx.
0
Then for all t >0,
Tg((p(x))x"dx < ?g(x)x"dx.

Proof. Fix ¢ > 0. By the convexity of ¢ and the fact that g is decreasing
we have

«© © t p+1 o
3) lIg(fp (9)xPdx < !g (gf—zx)xpdx = [#r)] ‘P{l)g(x) XPdx.
Similarly
. t t Jptiew
4 > — )
4 gg(wx))x"dx > [(P(t)J g g(x) x? dx

If o(r) = ¢ then by (3),

o0 . o o
fa(e)xrdx < | g(x)xPdx < {g(x)xPdx.
t (1) t
If (t) <t then let G(r) = -7~ 1 Jog(x)x?dx for r > 0. Since g is decreasing
on [0, o), s0 is G, and hence by (4),
t T

[9(0()xPdx > "1 G (1) > 171 G (1) = [g(x) x dx.
0
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Combining this with the hypothesis we obtain

Ta(o0)xdx < ] g(x)x7dx

t t

as required. m

In the next lemma we convert the distributional inequality of Lemma 3
into an inequality between L,-integrals.

Lemma 4. Let f: [0, 00) = [0, ) be decreasing with log f concave. Then
for 0 p<qg <o, .

SOET (p+ 17 [ f (%) x#dx]P*! SJ"(O)”F(q+1)”“[§f(>€)xpdx:l"”.

o)
0
Proof. We may write f(x) = f(0)e”¥® where ¥ is convex, increasing
on [0, c0) and ¥ (0) = 0. Let g(x) = e~ ** where

A=[f O (p+1)/ ] f(x) xPdx]H@+D .
0 .
is chosen so that
[ eV xeP dy = j"e—)'xxpdx.
0 0

Then f(x)/f (O =g(A ' () and |3 g(A~ ¥ (x)xP d?c = f;o g(x) xPdx.
Hence, taking ¢ = A~ 'y and applying Lemma 3 we obtain

0ff(x)x"dx < f(0) fe"xPdx  for all £ <O.
t !

But since for any function h >0 we may write
o) o0 oo
fh(x)xtdx =(g—p) [t#"7"" [ h(x)xPdxdt
0 0 t

this inequality gives

[/09x0dx < f(0) [ e xtdx = f(O) T (g+ /A,
[} 0

and the desidred result follows by substituting for 4. m

3. Norms generated by log. concave functions. This section is devoted to
the principal theorem concerning log. concave functions.
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THEOREM 5. Suppose f: R¥ — [0, o) is an even log. concave function with
0 <(pmf <ocoand p21. Then

[1£ )t dr 7, x %0,
) =< L
0, x =0,

defines a norm on R*.

Proof. It is easily checked that 0 < ||x|| < oo if x 3 0 by virtue of the
facts that f is log. concave and 0 < {f < 0. The homogeneity of || || is a
consequence of the evenness of f and the form of the integral.

So it suffices to show that if x, y s£ 0,

[l e+ YI < 2 l1xl+5 vl
Define functions g, k, m: [0, 00) — [0, o) by

g0 =[f(rx), h)=[fFy), m@)=[(Gr(x+y),
and let
A=[[grr=tdr] e,
0
(5) B= [Th(r)r""ldr]"l/”,
o

C= [?m(r)r”'1 dr]=t»,
0

We wish to show that 2/C < 1/4+1/B, ie. that

2AB
6 Cz———.
©) A+B
Now if r, s, te(0, c0) and 2/t = 1-/r+1/s then with A =s/(r+s) we have 4t
= Ar = (1—4)s and hence $t(x+y) = Arx+(1—1)sy. Since f1s log. concave,
St (x+) = frx)* f(sy)' 74 ie.

m(t) = g(r)* h(s)* 2.
So g, h and m satisfy the inequality
W) m(e) = sap {g (7D RO U+ 1fs = 2/t).

We claim that for any functions g, h, m on [0, cv) satisfying (7),
inequality (6) holds where 4, B and C are defined by (5). To prove this claim,
we may assume that g, h and m are bounded, bave compact support in
(0, o0) and are not almost everywhere zero.
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Let & be the number defined by

supg(Hrftt =07+ tsup h(r)rr*?

and 'define G, H: (0, co0) — [0, c0) by
G =g Hur 1,
Then sup G = sup H = q, say, and we have

* @ du_* |
[G@du= [ gt ~?5 = [g()rr™ dr = 47,
0 o ' R

Hw) =h(0 u~Yu=r-1,

}’H(u) du = (0B
0

Now suppose u, v, we(0, 0) and u+6v = 2w. T}lxen
G ()t 00) ()0l 00)
1 et 00) [ J00/(u+600) Jo+ 1
= g (w10 g1y Lyt o) [[a] [_1;:' ]
=y (,.)SI(r +4d) h(s)'/(’”’ [,J/(f"‘-?) (()S)r/(r“f-S)]p*r 1

where r = 1/u, s = 1/(0v).
Now setting A = s/(r+s) we have r*(fs)*~* < Ar+(1—2)8s and so the
above expression is dominated by

rs Pt ST I E N A |
g(r)""”’h(S)”(’”’[(1+9);;§} =g(ry" ”h(S)"“[TJ WP
1+0 Pt o 1

since 1/r+1/s = 2/w™1,
So defining M: (0, c0) — [0, c0) by

/] +1
M(w) = [L”gﬁ]p mw=Y)w= =1,

we have
M (W) = sup {G ()0 g (p)Ple+0: 44 0y = 2w},

oo ) p 1

[ M (w)dw = Fﬂ} cr.
0

¥4

Now suppose 0 <z <a=supG=supH. If u and v are such that
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G(w), H(v) >z, then M (3(u+0v)) >

{w: M(w) =

z. Hence
>z} +40{v: H{v) 2

(where the addition and scalar multiplication of sets is performed in the
usual Minkowski fashion). Since both sets on the right-hand side are
nonempty, we may apply the (1-dimensional) Briinn-Minkowski inequality to
obtain

zZ}oi{u G =

p(bo: M) > 2)) 2 $u(fe: 6@ > 2)+30u(lv: HE) > z))

where u is the Lebesgue measure on the line. Hence

[MW)dw = [u(M > z)dz 2 3 [u(G > wdu+310 [u(H = v)dv
0 o 0 0

=3 [GWdu+16 [ H(v)dv.
[} (V]

Equivalently, in terms of 4, B and C:
p+ 1
[JZ—OJ CP = 5A”+50(0B)".
So
27 2 PlAr+60B)y"
CP 2 ———— (AP+0(OB)) = | — | | ———r
(1+0)P“( +0(05y) [1+9J [ 1+0 J

J[_2 T[a+eeB T
“l1+6 146 |’

the last inequality being a consequence of Holder’s inequality since p > 1.
24B 2(A—0B)* S 24B

Hence
cs % [A+62 B:I _
1460 1+90 A+B (A+B) (146>~ A+B
which is the desired inequality (6). m

4. Volumes of sections of convex sets. The principal result in this section

will be deduced from the existence of bounds (depending only on k) on the
expression

SO [ x]? £ (x)dm(x
R

valid for all isotropic even log. concave functions f: R* — [0, o) which
satisfy

[f(x)dm(x)=1.
RE

icm
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Note that an even log. concave function f attains its maximum value at
0 since for any xeR%,

0) > Vf (0 (=%) = f(x).

The lower bound on the above expression will depend only on this fact and
has been observed by Hensley [4]. For completeness we include a simple
proof.

LemMA 6. Let fi R*— [0, c0) be measurable with

[fdmx) =1, f)<fO) for all xeR*.
R
Then

FOWL[ e dma] >
R

where vy is the volume of the Euclidean ball of radius 1 in R*.
Proof. Define a probability P on R* by

= {fdm.

Then since f(x) < f(0) for all x, P(Ix] <) <y, t £(0), for all t = 0. Define
F: R—7T0, 1] by
0, t<0,
F(t)=<ut*f(0), 0<t<s,
1, s<t,

where § = (1, f(0))” /. Then P(jx| <) < F(z) for all ¢ and so

[lx[zj(x)dm x) = 2§rp(|x| t)dt

o

>2jt(1—F(t))dl

0

=2}'t(1~—ukt"f(0))dt
4]

0, (0)+ (e £ (0)~**

k
k+2 T k+2
as required. m -

We now move to the problem of obtaining a reverse inequality. It is

readily checked that, for k > 1, the expression

SO {162 f () dm ()]
R
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may be arbitrarily large for even log. concave functions satisfying
{fdm=1,
RE

so for us to obtain a uniform bound, some extra condition on f is required.

Now for a positive linear map S of determinant 1, the function fg = f0S is
even and log. concave with

{ fedm=1.
RE

It is elementary that the expression

TsQ)F[ [ IxI? f5.(0) dm(x)]'2
R*
is minimized over positive linear maps S with determinant 1 when S is
chosen so that f is isotropic. The isotropy condition is thus the one desired.
With regard to obtaining our bounds we define the following two
constants. Let A4, be the least number such that for any isotropic symmetric
convex set C in R%,

(8 JIxI? dm(x) < kA, |C|' 72,
(o}

and let B, be the least number such that for any isotropic even log. concave
function f* R* — [0, ),

) L [ |2 f (x)dm(x) < kBy [ [ f (x)dm()]* ***.
I'd R
Observe that (8) may be rewritten
(100 v, [ l6I7* 2 doy- 1 () < (k+2) A [ve | (101 doy_ 1 (O)]* T2
sk=1 sk 1
(where oy, is the normalized rotation invariant measure on the unit sphere
$*~! in R¥) for any norm on R* which gives rise to an isotropic unit ball.

Theorem 5 and Lemma 4 together determine precisely the relationship
between A, and B,.

THEOREM 7. With the above notation
B, =10 Ay < €2 A,.

Proof. It is easily checked that
(k+1)(k+2)
(k!)Z/k

using the fact that for a norm ||-|| on R, the function f: R* — [0, o) defined
by f(x) = exp(—||x]|) is log. concave. (This will also be clear from our proof

B, > A,

icm
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of the reverse inequality and the fact that there is equality in Lemma 4 for
functions of the form t+re™* on [0, c0))

For the reverse inequality, suppose that f: R*-— [0, c0) is an isotropic
even log. concave function. Using Theorem 5 define 2 norm on R* by

[c5]

X = [(k+2) | £rx) "1 dr] ™Y+ for x o2 0.
0

It is an immediate consequence of the isotropy of f that this norm yields
an isotropic unit ball and hence satisfies inequality (10). So

SO [ 152 £ () dm(x) = £ O kv, [ [ SOV dr oy, 0)
R

g1 0

kv,
= 1 (0)2k =% || ~k~2 :
SO I 107 o 0
<k1‘1kf(0)2/k[vk l ”(J“-kdo'k—l]l-‘_zlk
gk=1 .

=k f(O*(v, | [(k+2) [ £00)FF+  dr]oe+Ddg, )%
sk=1 0

=k(k+2) Ac(v, |
sk=1

Now, the function r — f(rf) is decreasing and log. concave on [0, o) and so
by Lemma 4 with p=k~—1 and ¢ = k+1 we have

(/02 (!) SO <1 drpk+ g, Y+ DI

F(0)%* E]’(r@) e g (_(l]cf%#ﬁ‘-(:i S0y k=1 gyt 2k,

Hence

JO [ 1x[2 f (x) dm (x)
R

kflk+2) o0
< k(k+2) 4, (uk i (m.'fi’fiﬂ.,)

(k- 2)/k
(=D “("’)’Hdrdwni)

sk=1 0
_ Rl Dk+2) A, (kv | O[u £ (rO)r*= 1 dr do.. Y+ 2%
(k1> k=10
k(k+1)(k+2) A
= L-EE)Y(}-Z/;—--)-—" (,Ec F () dm(x))t 2,
Hence
(k+1(k+2)
k= (k!)iﬁ;—”" k- W
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In the next lemma we obtain a simple upper bound on A,. The resulting
bound on B, is then used in Theorem 9 to obtain an improvement of
Hensley’s result on volumes of sections of convex sets. For the purposes of
this lemma it is most convenient to drop the isotropy condition on the
convex set C and deal instead with an expression which is invariant under
linear transformations and reduces to

[1x|% dm (x)
c

when C is isotropic.
Lemma 8. If C is a symmetric convex set in R* with |C| =1 then

) k k k

o fleonv {£x, ..., +x}> ] d <z,

g _C[Jc nv {+x, +x.} :'[I1 m(x) < (k+2>

where Conv{ixlf,v..., +x,} is the convex hull of the 2k vectors
Xy, £
In consequence,
k (k1)t*
*Sak+2)

Proof. Let ||-|| be the norm on R* determined by C. Suppose
0y, ..., 0,81, Then the set

conv{+&— +—?—L}
B |22 e 1A

is a subset of C and hence has volume at most 1. Therefore

[conv {+6,, ..., £6,}?
=
[Tl

Hence

[ fleonv{txy, ..., £} []dm(x)
¢ ¢

k . [conv {40y, ..., j:(),c
- g dag-1(0)
[k+2jr k(s".‘r‘)" [Thedr*= [Tda-1 @)

k
<[m;‘hvz _f Hai”—'%nd‘rk-—l(ai)

(k= 1yk

[k+2TI = [k
+2

This completes the first part of the lemma.
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Now suppose C is isotropic. For x4, ..., x.&C,
2k
lcony { x4, ..., £} = p-]det X|

where X = (x;)) is the matrix with entries x; = (x;);. So

I'= {lconv{tx;, ..., £x}>[Tdm(x)

ok
k
= :,2 Z Z &(o7) j n(xi)u'(i) (-’Ci)z(i)ndm(xz)-
( ) ouSy reSy ck

If ¢ and © are distinct permutations in the symmetric group Sy then there is
an index i for which o (i) # t(j) and hence by the coordinate form of the
isotropy condition

5o (X0 dm () = 0.

¢
Hence

[ =

ky)z ) |ﬂ D20 [T dm(x)

oS ¢k
k

4
kl)2 T (67" [ dmaf = 5 [ am )
Hence by the first part of the lemma,
| k)YE [k
K [l dm( < ©0— (__-).
¢

The fact that this holds for an arbitrary isotropic symmetric convex set C of
volume 1 is exactly the statement that

(k) k
Tt
S 4(k+2)
Tueorem 9. If C is an isotropic symmetric convex set in R", k <n and H
and K are k-codimensional subspaces of R" then

IHAC| _ (k(k+1)(k+2) v,
K ( S < (hme? k)2,

Proofl, Assume without loss of generality that |C| = 1. Let M be such
that

| <a, x)* dm(x) = M?|a* for all aeR".
¢

For H a k-codimensional subspace of R" let ¢,. ..., g be an orthonormal

6 ~ Studin Muthemnticn . B8 2.
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basis of H* and define f = fy: R*— [0, o) by
s,y B =|H+Y L&) nC|.

Then f is an isotropic even log. concave function with

[fdmx) =|Cl =1, fO)=[HNC].

R
By Lemma 6 we have

1/k \/" M> \/ k
3

ie.

ks
(1) |H ”C\ M = (k+2)k/2

By Theorem 7 and Lemma 8
(k+1)(k+2) k(k+1)

F(O* M* < B, = TEG A < D
ie.
k(K + 1))2
(12) |HOC|‘M“<(—§F&W.

Now since M is independent of the original choice of subspace H, we
may combine inequalities (11) and (12) to conclude that for any two k-
codimensional subspaces H and K,

[HNC| <(k(k+1)(k+2))"/2vk
KnCl 2k (k)12

5. Concluding remarks. We remark that using the full strength of the
Brunn—Minkowski inequality, we find that the function f defined in the proof
of Theorem 9 has the property that /Y% is concave on its support. The
functions r + f (rx) then also have this property and applying Lemma 3 to
the function g given by g(x) = (1—Ax)""* for suitable 1, instead of the
function x—e”**, we may obtain a slightly stronger inequality between the
expressions

Tx"“f(rx)dx and ofx“'lA)“(r‘x)d)c
0 0

than that used in Theorem 7. This in turn gives a slightly better constant in

icm
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Theorem 9. In particular, for k =1 we may obtain the bound

e
Jrn+ ) (n+2) <6

Thus for n =2 the bound is \/5. and we recover the result of John in this
very special case.

It is natural to ask whether we can find absolute bounds on the volumes
of sections of isotropic convex sets (of a given volume) rather than bounding
them relative to one another. As an immediate consequence of the above we
have, for example:

ProrosiTioN 10, Let C be an isotropic symmetric convex set in R" of
volume 1. Then for any (n—1)-dimensional subspace H of R,

2 \1/2
(—») <|HNC| < /ne.
3n
Proof. By the k =1 case of (11) and (12), we have

1 1
—— K |H CI'M<—=
z\ﬁ\' nc| <h

where M |a| = ([, <a, xY*dm(x))"/* for all aeR". But by Lemma 6 and

Lemma §
1/2 (1 1/(20)
"“""_2‘.‘:;:‘1‘.:“.."’““""" s M S n En.) .
Jnta ol 2| 2
Combining these we obtain

(2 vl <n+2 2 H ol < 2o
3n n (e < J2

<. Jme. m
7

The lower bound in the above result, depending as it does on n, seems
likely to be far from best possible. An improvement would result from (and
imply) an improvement in the bound for 4, given in Lemma 8. Such an
improvement would automatically transfer to give stronger estimates in
Theorem 9. We conjecture that in fact (4,), is bounded by some constant;
possibly the number A; ==y,

Using Theorem 9, this conjecture may be reformulated in a number of
ways. The following are examples:

1) There is a constant § > 0 such that for every symmetric convex set C
in R" of volume 1 there is a l-codimensional subspace H of R" such that
[HNC| > 4.

2) There is a constant & > 0 such that if C is an isotropic symmetric
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convex set in R" of volume | then for every 1-codimensional subspace H of
R, |HNC| > 6.

3) There is a constant M such that if C is an isotropic symmetric convey
set in R" of volume 1 then

m(C A B(M /n) > 1,

where B(M \/ﬁ) is the Euclidean ball of radius M N .
4) There is a constant M such that for every symmetric convex set (' in
R" of volume 1 there is an ellipsoid & of volume at most M" such that

60 >4

We may remark that such bounds do hold uniformly for the unit balls
of spaces with a l-unconditional basis. This follows from the observation
that such a space can be represented on R” with an isotropic unit ball C, say,
and with the unconditional basis vectors orthogonal. In this situation the
section of C perpendicular to a basis vector is also the projection of €' onto
the orthogonal complement of that vector.

4 Acknowledgement. This work will form part of a doctoral thesis being
written under the supervision of Dr. B. Bollobds whose advice and encoura-
gement have been invaluable.
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On the strong maximal function and rearrangements
by
TERRY R. McCONNELL* (Syracuse, N.Y,)

Abstract. We provide sufficient conditions for almost everywhere finiteness, integrability
and membership in weak L' of the strong maximal function on T2, These are the weakest
possible conditions which are invariant under all measure-preserving transformations of T2
which preserve the product structure. We also give examples showing that the conditions are not
necessary.

1. Introduction. There are many points of contact between probability
theory and harmonic analysis.  One of the more striking concerns the
connections between the Hardy-Littlewood maximal operator and its proba-
bilistic counterpart. In this paper we explore similar connections between the
strong maximal operator and a two-parameter probabilistic maximal opera-
tor. The differences between the two maximal operators are related to their
behavior relative to rearrangements which preserve the product structure.

Let X, X,, ... be independent and identically distributed (i.i.d.) random
variables on some probability space (@, &, P). Suppose also each X; has a
uniform on [0, 1) (U(0, 1)) distribution. For Borel functions f on [0, 1) let

n
se(f)= 2 (XD, s*(f)= sup (s.(f)/n).

i=1 1€n<w
Then by classical results of Khinchin and Kolmogorov and of Marcinkiewicz
and Zygmund we have

(L.1) §*(f) <00 as.  if and only if || f]l, < o0,
and

, r 1/ (x)
(1.2) Esg* (/) ~ r,/llei-)»L M= Al/ (x)| (] +10g+ ”f(;{)—l—':)dx
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