‘ @
STUDIA MATHEMATICA, T. LXXXVIIIL. (1988) Im@)

On the differentiation of integrals of functions
from Lo (L)

by
A. M. STOKOLOS (Odessa)

Abstract. The following alternative is established for any translation invariant differentiation
basis B of rectangles with sides parallel to the coordinate axes: either B dxfferenuates the integral
of every summable function, or for every class Lo (L) with ¢(t) = o(Int) as t — ‘oo there is a
function whose integral is not differentiated by B. A geometric characteristic is introduced which
permits to decide which class, L or Llog* L, is precisely differentiated by a given basis. Also,
a scale of non-translation invariant bases of rectangles with sides parallel to the axes is con-
structed which differentiate precisely the classes Ly (L) intermediate between L and Llog* L.
The results obtamed together with the theorems of Lebesgue and Jessen, Marcinkiewicz and
Zygmund, yield a* complete description of the behaviour of differentiation bases of rectangles
with sides parallel to the axes. Applications to the theary of multiple Fourier series and
extensions from R? to the multidimensional case -are also given.

1. Introduction. A differentiation basis at a point xe R is a collection B(x)
of bounded open subsets of RY containing x such that there is a sequence
{R} =B(x) with diamR,—»0 as k—oo. The family B

= {R: ReB(x), xe R} is then called a differentiation basis in R¥. A differen-
tiation basis is called translation invariant (briefly: a TI-basis) if it contains
all translates of any of its elements.

If a basis B has the property that for each R in B, if xe R then ReB(x)
then B is called a Busemann—Feller basis (a BF-basis).
We define the upper and lower derivatives of the integral of a locally
integrable function f at a point x with respect to a basis B by
Dp(ff,x)= sup limsuplRy™* { f0)dy,

Ry B k— Ry
diam Ry —0

Ds([f, x)= inf hmmflei“lff(y)dy
Ry)=B(x) k-~
diam Ry =0

We say that a basis B differentiates the integral of f if Ds([f, x)
=Dy([f, ¥) = f(x) ae. If B differentiates the integral of every function
fe®(L) (for the definition of the classes ®(L), see e.g. [14, p. 6507) then we
say that B differentiates @ (L); if for every function g on R, with g(9) 1 0 as
t— oo there exists an feg(L)®(L) with Dy([f, x) = + 0 ae., then we say
that B does not differentiate o(®(L)). Finally, B differentiates precisely ®(L)
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(written BeD(®(L)) if B differentiates #(L) and does not differentiate
o(®(L)). ‘

We denote by By(RY), s =1, ..., N, the Busemann-Feller TI-basis con-
sisting of all rectangular parallelepipeds R, where

R={(x, ..., xy)eR": o, <x; <oy+y, i=1,..., N,
with y; =1y for j=1,...,s}.

The following classical results are fundamental in the theory of differen-
tiation of integrals in RY:

. —By(R") differentiates L(R") (H. Lebesgue [7], 1910).

—B,(R) differentiates L(log* L) *(R") (B. Jessen, J. Marclnklewwz
and A. Zygmund [5], 1935).

— B, (R") does not aifferentiate o(L(log* LY¥~*)(R) (S. Saks [9], 1935).

—B,(R") differentiates L(log* L) *(RY),s =1, ..., N—1 (A. Zygmund
[16], 1967).

— B,(R™) does not differentiate o (L(log™ L)¥ " *)(R"), s =1, ..., N—1 (see
e.g. [12, Theorem 2]; [81).

It follows from the above results that the differentiation properties of a
basis can be improved by making it sufficiently rare. A. Zygmund "proposed
the following rarefaction of the basis B, (R?) (see [4, Ch. 6, § 4]).

Let B be the TI-basis consisting of the rectangles for which

<d <D <1, where d, D are the lengths of the smaller and larger sides
respectwely Is it then true that B differentiates L./log* L? R. Moriyén
proved (see [4, App. iV]) that this is not the case: B does not differentiate
o(Llog™ L). This shows that a rarefaction of this kind does not improve the
differentiation properties of the basis.

It turns out that no rarefaction within the class of TI-bases permits
the differentiation properties of bases to be improved in a continuous way.
More precisely, if B is a TI-basis then either B differentiates L, or B does not
differentiate o(Llog* L).

In the present paper we prove the above alternative and show how to
rarefy a basis in order to obtain a basis which differentiates precisely a given
class Le(L) intermediate between L and Llog™ L.

The main results of this paper were announced in [13].

The author would like to express his deep gratitude to Professor V. G.
Krotov, under whose guidance this work was done, for formulating the
problems, valuable advice and constant attention.

2. Main results. All differentiation bases considered in this paper are BF-
bases consisting of rectangular parallelepipeds with edges parallel to the
coordinate axes.

In order to clarify the idea of the problem, we formulate and prove our
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main results in the case of R? which, for the most cases, is typical. N-
dimensional versions are considered in Section 4.

First, we introduce a geometric characteristic of a basis consisting of
rectangles. Let B = B;. For every rectangle ReB we denote by R* the
concentric rectangle of minimal measure. containing R with side-lengths of
the form 2%, ke Z. Thus to every basis B we attach, in a natural way, another
basis B* = {R*: ReB}, called the basis associated to B.

Further, we will say that two rectangles R and R’ are comparable, and
write R ~ R’, if there is a translation placing one of them inside the other.

‘Otherwise we call them incomparable and write R 4 R'.

We say that a basis B has property (S) if
S) Ve>0 VkeN3I{RY_,cB* R R (i#)),
. diamR; <, i=1,..., k;.

ie. we can find an arbitrary number of arbitrarily small pairwise 1ncompa-
rable rectangles in the associated basis.

Property (S) permits us to formulate a criterion to decide which of the
classes L or Llog™® L is precisely differentiated by a given TI-basis:

TreoreM 1. Let B be a TI-basis with B = By. Then if B has property (S)
then it does not differentiate o(Llog* L), and if B fails property (S) then it
differentiates L.

In connection with this theorem, the problem arises whether there exist
at all bases of rectangles with sides paralle] to the coordinate axes which
differentiate precisely a given class Lo(L) intermediate between L and
Llog* L. An answer is given by the following theorem.

TueoREM 2. Let ¢ (t) be an increasing concave function with ¢ (0) = 0 and
such that ¢(t)/Int is decreasing for t =ty > 1. Then there is a basis B with
B < B, such that Be D(Lo(L)).

3. Proofs of the main results. The main tool in the proof of Theorem 1 is
the following lemma.

Lemma 1. Suppose a basis B has property (S). Then for arbitrary ¢ >0
and ke N there are sets @ = O (e, k) and Y = Y (¢, k) such that

1) @cY, diamY <e,
() |Y| = k2*~1|@],
(3 VxeY 3ReB*(x): diamR <& |RNO|/R =27F

Proof. By property (S) we can find k+1 pairwise incomparable rec-
tangles {R,}¥., in B* of diameter less than &. Let |pr; R, =2"", [pry R,| =
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2_"“; v=0, ...,k where pr; E, i = 1, 2, is the projection of the set E on the
corresponding coordinate axis and |-| denotes the Lebesgue measure of the
corresponding dimension. Assume that mg > ... > my, ny < ... <m. Define

J =[0,2"™Ix[0,27"],
= {x=(x', x»: Vi,j (0<1i,

j<k): rml(x)+r (xz)—Z}mJ
Y——{x—(x x%): Vz](0<]<v

i<k rm (x1)+r,. (%) =2}nJ,
Y= U Y,
v=0

where r,,(t) are the Rademacher functions.

As can easily be seen, @ is a union of 272K2%7"02™0T™ digioint
rectangles whose projections are dyadic-rational intervals of length 2™ " and
27 respectively, and Y, is a union of 27%27"0F™ 27" ™ disioint rectangles
whose projections are dyadic-rational intervals of lengths 2™™ and 27™
respectively. Hence |@] = 272%1J|, |Y,| = 27%|J], [J]| =2""27",

Further, it is easily seen that

v—1 .
[%aU Y <HE, v=2,..,k
p=1
Therefore
k
Y] > ZIYVI $(k+1)27J] = $(k+1) 2410,

and so (1) and (2) are proved.

Let now v be any integer between 0 and k, and let R be any of the
rectangles that form Y,. It follows from the definitions of ® and Y, that
@ cY,, ReB* and

IRNO| _|%,n6| 0] _1
IR| 1%, Iy 2

which implies (3) and completes the proof of the lemma.
Remark 1. Write

M f(x) = sup |R|~ jlf(y)ldy

ReBj(x)
diamR <z

for the truncated strong maximal operator. Then Lemma 1 essentially means
that for arbitrary ¢ >0 and keN there are sets ® and Y such that
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Y < {x: M*ye(x) >27%} and so

[{x: Mfye(x)>27%} = cj xo ln* Xe > dx,

“with ¢ independent of e, k, ©. This inequality is a converse of the well-

known weak type estimate for the strong maximal operator. Such inequalities
are of great importance in differentiation theory and constitute the main tool
both for proving positive results and for constructing counterexamples. For
more details, see [1]-[3], [10].

We now turn to the proof of Theorem 1.

Suppose_that a basis B has property (S), and let g(t) |0 as t-»oo
Denote by B the basis obtained from B by dilation with coefficient §.
Clearly, B also has property (S), and applying Lemma 1 to it we obtain
sequences of sets {@}2,, {%}&, such that diamY, |0 as k— oo and
Zk k2¥1@,] < o0.

Then there are numbers me N, k=1, 2, ..., such that

(4) kfl k2@ my, = o0, ,;1 9(29k210, m, < 0.
Moreover, let o, be numbers such that a; Too as k— co and
©) kzi g (04 2% kay 2¢|@y my < 0.

Write

j
No=0, N;= z m, j=1,2,...
i=1
We define sequences of sets {E;}i1, {Gi}iZ: by
E,=0;, G,=Y, for Ny, <k < N;.

Then by (4)
o w (=]
Y G = 3, |Yim; =% Y j210,m; =0
k=1 i=1 =1

Since diam G, | 0 as k — oo, by the well-known Calderén lemma (see e.g. [15,
Ch. XIII, Lemma (1.24)]) there are translations 7, such that

6) limsupt; Gyl = 1. -
k-

Define
S} = “jszz,‘E,,(x)’ Nioy<k< N, f(x)= Sk“)gfk(x)
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Putting & () = tg(t)log* ¢t we obtain by (5)

4]

[ o(fe)ax< ¥ | q>(f,,(x))dx=_iqn(ajzf);@j;mj@o,

10,112 k=11[0,1]2

and so feg(L)Llog™ L([0, 1]%.

On the other hand, by (6) almost every point x belongs to an infinite
sequence of sets 1, Gy. Since 1, G, and 7, E, satisfy a relation of the type (3),
for any xet,G, with Nj_; <k < N; we can find a rectangle ReB*(x)
such that

J

IR [£O)dy > IR [ fuydy = L2EROwEL S o
R R IR|

Since «; Too as j— oo (k— o), we conclude that 55*({f, x) = +c0 ae. on
[0, 1% and the obvious relation Dy (| f, x) = Dy ([ f, x) completes the proof
of the first part of Theorem 1.

In the proof of the second part we will use the following known facts.
Let B’ be a TI-basis generated by translates of rectangles from a monotonic
family {R,},>, R, = R, for a > B. Then B’ differentiates L, and almost every
point is a Lebesgue point with respect to B'. Consequently, the integral of
any summable function is differentiated at almost every point by any basis
B" regular with respect to B’ (see [11, Ch. I, 5.3(d) and 1.8]). But it is not
hard to see that if a basis B fails property (S), then B* decomposés into
a finite number of bases generated by monotonic families of rectangles, and
into a collection of rectangles with diameters greater than some &, > 0.
Hence B* differentiates L, and since B is regular with respect to B* (see [11,
Ch. I, 1.8]), it follows that B also differentiates L and the proof of Theorem 1
is complete.

We now turn to the proof of Theorem 2. As is known, the differentiation
properties of a basis are closely related to its covering properties. In this
connection we introduce the following property (Vy) of weak overlapping,
where ¥ is an increasing convex function with ¥ (0) = 0. We say that a basis
B has property (V) if there are constants ¢>0(G=1,2,3), npeN, meeN
(no <mg) such that for any system {R,},., =B we can find a subsystem
{R,,} satisfying

@ ¥(e Crn, () —mo))dx < ¢, TRy
where W= {x: ZXRG‘(x) = mo},
i

® U R| < e TIRy
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(for the particular case of property (Vm, see [4, App. II]). Without loss of
generality we can assume that ¢, > 1.
We define the maximal operator corresponding to the basis B by

Mgy f(x) = sup |RI™* [If (¥ dy-
ReB(x) R
LeEMMA 2. Let ®(t), ¥(t) be Young conjugate convex functions with & (1)

satisfying the A, condition. Assume that a basis B has property (V). T! hen the
maximal operator My is of weak type L+®(L):

© [{x: Mpf()>aH<ca [ (fUA+BASA)dy

Mpf>a)

for all fe Ln®(L) and 4> 0.
Proof. Let
{x: Mgf(9>2}=UR,, R.eB, IR [If(Idy>42.
x Ry

Take {R,} satisfying (7), (8). Define
U=URs, W= {x: Titn, (¥) > mol:
Then :
Zle,l\Z jIf(y)l I(Zx )|f|
l %. 'f Lay-+m, j@dy

U

f 2o, oy, 1)
i A}
=T+, (2> 1).
By the Young inequality

Ji < jqj(q (ZXR,; —no))dy+j¢< 2 |f|>d =J3+Js.

w

Since 2c, > 1 and ¥(f) is convex, we obtain by @)

J3 S—l‘“f W(CI(ZXR,‘ ”'"o))dy <3Y IR,
2, T g 7

and since @ () satisfies the 4, condition,

<es [@( SRy,
U
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It follows that
ATIR < o [(F112+ (1),
and so
s Mp f ) > Al = [UR] < es TIR <o [ (UA+(SY)ay,
which completes the proof of Lemma 2. =

Using Lemma 2 and a standard technique (see e.g. [2, Ch. II, § 1) it is
easy to obtain the following lemma. :

LemMa 3. Let &(t), ¥ (t) be Young conjugate convex Junctions with &(r)
satisfying the A, condition. Then if a basis B has property (Vy) then B
differentiates ®(L).

The following lemma gives a method of constructing bases which
differentiate precisely @ (L), provided certain covering properties of a simple
collection of sets are known. In the present section we restrict our attention
to the classes Lo (L) which are close to L; more precisely, it will be assumed
that the inverse function to ¢(t), denoted by ¥ (t), satisfies the 4, condition:

(d3) ¢;>0,t>0 Vixte: tY(E)< ¥c, r).
(For the general version, see Section 4.)

Lemma 4. Let ¢(t) be an increasing concave Sunction with ¢ (0) =0, and
suppose W (1), the inverse function to ¢ (2), satisfies the A, condition, Moreover,

suppose there are a collection of bounded open sets ¢ = {Ri}, j=1,2,...,
i=1,2,..., n;, and constants ¢, > 0, mgy, noe N such that

(10) IRI=IRY, j=1,iv=1,..,n,
1) Vj>1 V{Rj} < {Ri}:
u{ ¥ (cs (; XR{k(x)""o)) dx < C9§ IR],
j

where W, = {x: Zxkfk(x) = me},
k

and such that there are measurable sets E; and numbers ;, ;100 as j— oo,
satisfying
IR?if\Eﬂ C10

(12 R’ >,

j=1, i=1,..,mn,

no
(13) |(=J1 Rl| > ciidio(A)IE), j>1.

e ©
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Then there is a basis B whose every element is a dilation of some member of ¢
and such that B differentiates precisely Lo(L).

Proof. Since (10)-(13) are dilation invariant, we can assume without
loss of generality that

Ejc UR O IP j>1,
i=1

and introduce the notation

nj .
(14) I1=[0,17% X' = pl R,
k
o =[(eWE)"], =3 o
F=
Clearly,
(15) Y | X9 = co.
j=1

We now start constructing the basis in question. L_et {m,}2, be an
increasing sequence of positive integers tending to 1F1t.imty, to be 2deﬁned
later. Let So =0 and let neN, S,_; <n<S,. We divide I into m} equal
squares I):

m2

1=Un, =m? v=1,..,m
v=1
Denote by H dilation with coefficient m; ! taking X* into I} and let
2

RS =HYRY, H,= U (XY, B, =IRy.
v=1

In this notation )
ny n .
Hi(xY = Hy(R}) = Y Ry

i=1 i=

We now show that the numbers m, can be chosen so rapidly increasing
that [limsup H,| = 1. .

At the jthnstep of our construction we add to the collection B the sets
Ry, v=1,...,m}, i=1,..,m, wher_e S,,_l‘ .<j g.S"' Th«? numbers n, de-
pend in general on j. Therefore to avoid additional indexation, from now on
we write 7i; in place of n.

Let m; = 1. Then UrL, Ri < I. Choose m, so large that

16 U (U 9RY) # O} < min2™ B, 27 (A= IHD)
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and let A, ={v: I3 nH, =@}, A, = {v: I} 8H, # Q}. Obviously
NHy = (U B)o(U n),
ved vedq

and therefore

|U I >0=1H)-| U 5.

vedy vedy
But it is easily seen that

U I3 < U5 Ba(U oRE) # 0},

vedy

so that from (16) we obtain
| U 13| <4(1-|H,)
vedy

and hence

Ivgl | =41~ |H,).

Moreover, it is clear that [H}(X")|/[I3| = |H,/\Il =]H,), and so |H3 (XY

= |H,| - |I}|. Consequently,
I(I\H)\H,| < |[(I\H)\ U H(XY)|
vedy

=1—|H1|—IHzf'lLi 3 < (L=31H,) (1 -4 |Hy)).
Ve, 1
Suppose that we have already chosen m, ..., m,_, in such a way that

v A4 q—l ﬁp mi i
0 WonEn U, G, U o+ o)

. — q—l
<min(2794,_, 2741\ U HY)), ¢=3,..,n-1
s=1 ’

(18) INU B[ <TT0-4HD, 1<p<r<n-1,
s= s=p
Choose m, large enough that -
n~-1 Kp m2
(19) I I T orv i (3= A
19) [{U Y, U U Ry~ o)< min277g,-., 271U H))

and put

n—1 -
A = {v: I,”.n’L;)q H =0} Aj={: I:na(nulH,)qu)}

=q
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where g is a fixed integer between 1 and n. Obviously,

n—1 "p 2 i
U Le{un:inU U U Ry =0}

ved? p=1i=1v=

It follows from (19) that

n—1 - n—1
|U n<iinu H{ <3\ U H.
v s=1 .
Moreover,
n—1
U H.e(U Byo(U L),
s=q veA'{ VEA;
and hence
n-1 n—1
|U Bj=|I\U B[] U B>$|I\U H,.
vssA'll 5=4q \'EA; s=q
Since |Hy(X")| = |H,||I}], we therefore obtain

ved”

n n—-1
U B <[\ U H)\ U HZE)
s=q s=q
1
n—1 n
=NV H|-H)-| U B < [T-3H]).
s=q ved] s=gq
The choice of the numbers m, is thus fully described, and clearly

InU H|<[TQ-3H), Va=1.
s=gq s=q

The infinite product on the right diverges to zero provided Z:i H,| = 0,
and this follows easily from (15). Indeed, by dilation, |H,| = | X¥ with S,_,

<n<S§S,, and so

0 © Si ]
YIHI=Y Y [Hl=Y elXY=co.
n=1 k=1 n=S—1+1 k=1
But then we have |limsupH,| =1, and therefore almost every point xel
belongs to an infinite sequence {R,™'} with diameters tending to zero.
We will show that the collection {R}} has property (V¢), and so if we
adjoin to it all dilated copies of R}'%, we obtain a basis B which differentiates
Lo (L). .
We introduce additional notation to simplify the writing. Instead of Ry
we will write R, where o = (k, i, v) is a multiindex. In this notation, extract-
ing a subsequence {R,™'} from a sequence {Ry'} means that we take a
subsystem {R,}ges» A’ = A4, Of a system {R,},c4 With some set of indices A.
Below we use both notations, which should cause no confusion.
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Let therefore {R,},., = B. Without loss of generality we may assume

that A4 is countable and write {R,},., in the form {R,“k“'h’}. Put
v V’hs v
Yk = U R;lk k] Yk = U Y;( N
s v

We will. show how to choose a subsystem of {Ry}eeq With the weak
overlapping property (V). Let

- == k—.l_
=Y, %={K\R:RcUT¥), k2
i=1

Obviously, |, %| =|U&, % Furthermore, put
=T, L={K\R: ®nd(U H=0}), k>2,
1

i=

and, finally, let

Define
vA={Ur: Kef, ané(ij D£0), is2.
s
It follows from (17) that [v(¥)| < 27*|Uiz} 7] and clearly
10 8+10 o0l >1 § .

i=1

But
Ue@l< Y p@i< ¥ 27U 7)< 7
i=2 i=2 i=1 =1
Therefore
'iyl Y;! > |1L=Ji Y:’_l(yzv(:)l > It=U1 Y;'~,1U }7"
that is,
21U >0 7 =|0 v.
i= i=1 i=1

Trhls Iclile;ns that JU‘,,E " R,f, < 2|UREA,R,’, and an inequality of the type (8) is
proved. Further, it is easily seen that the sets Y, are pairwise disjoint and on
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each of them we have a (V) estimate by condition (11) of the lemma. Hence

vj;?’(cg(a;’xka(x)—no))dx= > !l’(cs(zjxxa(x)-no))dx

LiZ1 Uy acd]
<c9 Z ' U.Ra1<69 Z IRaID
ijZ1 acd] aed’

where W = {x: ZﬁsA’ XRE (x) = mo}, Ui,j = UzeA{Ra'

We have thus established estimates (7) and (8), ie. property (V).
Moreover, since ¥ satisfies the 4, condition, its conjugate function is
equivalent to t¢(f) (see [6, Th. 6.1]), and we conclude by Lemma 3 that B
differentiates L (L).

We now show that B does not differentiate o(Le(L)). Let g(r) | 0 as ¢
— c0. Then there are numbers w,e N, 0 < w, < w,, such that

(20) 3 wel XA = co,
k=1
1) S W XX /3 () < <o,

k=1
where the J1; are taken from condition (12) of the lemma. Write
& = % @ (7 A/ @ (4), where v, T oo slowly enough that

(22)  a=o(gl) V) as k—oo. _

In every I! with S,_; <n < S,_,+w, we place H}(E,), a delated copy of E,

(the dilation H} has been defined at the beginning of the proof). Put
2

0 U HE), Secy <n<Seoitwy
n = Yv=1

Q, Si-1tw <n< S,
and define the functions

S =nhto, (0, Se-1<n<S, f(¥)= i‘:{l:ﬁ.(x)

\

Write F(t) = g(#)te(t), t = 0. Obviously,

[F(f()dx <

I k

o Sk—1twk

jF(fk(x))dx=Z Y FrAlQl

k=1 n=Sp_q+1

Ms

L]
-

9 (0 A) Vi A @ (Vi A Wi | En
1

Ms

k

8

< Wi g (4 4 @ (A |E .
1 .

k
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By (21), (22), (13) we obtain
JF(f () dx < e12 2 wi | XM /g (A) < 0.
T 3

Thus feg(L) Lo (L)([0, 11%.

We now show that Dp(]f, x)=+oc0 ae on [0, 1] By repeating
the considerations used in the construction of the basis it is not difficult to
show that almost every xel belongs to an infinite sequence {R}’:'h’}.
If S,_; <, <Se-1+W, then we obtain by (12) (writing R = R{*" for
simplicity)

qy
IR {700y > IR | £, 0y > 2RO A B
R R IRI-
Since y, T oo as k— oo, it follows that Dy(ff, x) = + o0 ae. on [0, 11% ie. B
does not differentiate o(Le(L))([0, 11%. Decomposing R* into a union of
unit squares we obtain a basis in R2 Thus the proof of Lemma 4 is
complete.

2 Cy3 V-

Using Lemma 4 it is not difficult to prove Theorem 2. First, we need
some additional information about the function ¢(t). We show that

23 @(ab) < p(a)+ ¢ (b),

Indeed, we obviously have ¢(ab)/In(ab) < ¢(a)/Ina and ¢(ab)/In(ab) < ¢ (b)/Inb,
Va, b > to, ie. ma/ln(ab) < ¢(a)/¢(ab) and Inb/In(ab) < ¢ (b)/¢(ab). Adding
the last two inequalities gives (23). For the inverse function ¥ () we then obtain

Va,b>t,.
4

(24) Y(@P®d) < ¥(a+b), Va b>t,

Further, let c,4 = @(to)/to. By the concavity of ¢(t) we have
(25) o) < cyat, Vizt,.
Hence

PO = ¥(0) P() < ¥(p0)+1) < P((crs+1)1),
ie. ¥(r) satisfies the 45 condition:

Vi to,

(26) tY)< Plcyst), Vizt,.
We introduce the function
tT2P(@), t>0
F t — H E)
® {O, t<0.

By (26), 1> ¥ () < P(c351)/cys, and so
@7 P(t) <ci6F(c17t),

icm
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Put
(28)

Without loss of generality we assume that ¥(my) > 1. For m = 2m, set

1 Yo ] .
=[O,milx[o,m}, i=mg, ..., Mp+m,

_ 1 ¥ (mo) _
E, = [O, Y’(mo+m)] x[O ], A = ¥ (mo+m).

T ¥ (mo+m)

We prove that {R}"},f';":o'" satisfiles relations of the form (10)~13). The
equality (10) is obvious, (11) will be proved later, and now we establish (12)
and (13). It is easily seen that

RP OB _[Ba __¥m) 1 L

RF IR ¥(me+m)~ Plmo+m) Inm

my = [cy7t5+2].

Ry

Further, it follows from (24) that

Y(@i+m X
'—W} = Y’(mo) > 1, Vi = to-
Thus there exists a ‘constant c;5 > 0 such that
my+m [m/mg—1] mg+m
2 IRY| < 2my Z |R-!'-lmo| < Cy8 | U R?'l,
i=mgp i=1 i=mq
and hence
motm 1 m mo+m
R > —m|R] = >
|‘=L£,0 ‘I Cis IR7Y cig ¥(mo+m) = 2cy8 F(mo+m)
_(mo+m) ¥(mo+m)  ¥(mo)
B 245 ¥ (mo) ¥(mo+m)®
(mo+m) ¥ (mo+m)
=~ |E | > A 2 Em .
ey VBl > 619 @ () En

We have thus proved (12) and (13). To prove (11), take neN, my
<n<mo+m, {ij}i; < {mg, ..., mo+m}, ig =0, 1/¥(i,41) = 0. Set

Wo={x: 3 tgm(®) = mo+1},
=1 i

et 1 } {W(iv_k-o W(iv-o}
WG, 6 | Fme+m)’ Flme+m) |

J={ F(z": Ygm (¥) = 1) dx,
i

Wy d=1
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By the definition of F (1) we obtain

n n v—1
J=jF(Z XRm(x)~1)dx’ U= U U Ev,k-
U j=1 ij v=mo+1 k=m0

Clearly, |E, ) < Y (i,-)/(¥(,) ¥ (mo+m)), and it can easily be seen that
Y Agm(¥) =k+1, VxeE,,.
j=1 x'j

Hence

n v=1 "
I< Y ¥ [ F(Y tee0—1)dx
vEmot+1 k=mo Eyy  J=1

n v=1 1 n v-1 p{;(k) Y/(l )
= FRIE, € g 2o
v=)§(:)+l k=27:n0 S W (mo+m) vemgtl kemg K2 V()

But k > mgy 2> to, i,—y 2 iy 2 mg > to, and so Y (i,.,) Y (k) < ¥ (i,-,+k), and
since it is easily seen that i,_,+k <i,, we finally obtain
1 d Jet i (A 2n
ST T S .
V(mo+m) onost ximg k> V(1) ¥(mo+m)

On the other hand, }7., ;R;;'l = n/¥(my+m). By (27) and (28) we obtain for
m = 2my

m mymotm, - ud i
VA{R} < {RI}iln, - Wj W (e (3 ()= 1)) dx < czoj; IRE]

m j=1 i

where W, = {x: 3 2p.(x) = mo+1},
j=1
and (11) is proved. All conditions of Lemma 4 are therefore satisfied, and the
proof of Theorem 2 is completed by using the conclusion of that lemma.

Remark 2. It follows from Lemma 2 that the maximal operator
corresponding to the constructed basis has weak type L+ ¢ (L).

4. N-dimensional analogues and some generalizations. All definitions
introduced in Sections 1-3 carry over without change to the case of several
variables. Theorems 1 and 2 also remain valid, with B, understood as
B, (I?"). The proof can be reduced to a two-dimensional argument by
considering projections on two-dimensional coordinate hyperplanes.

The important and essentially new element in our proof of Theorem 2 is

Lemma 4. The same method yields the following more general result which is
of independent interest:

Lemma A. Let &(r) and &*(t) be Young conjugate convex functions with

e ©
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& (1) satisfying the A, condition. Let ¢ ={Rj}, k=1,...,m, neN, and
(E,}%, be collections of bounded open sets in R¥ and A, a sequence of numbers
with 4,700 as n— oo such that there are constants ¢; >V,1i=0, ..., 6, satis-
fying the following conditions for all ne N:

@ IRi =IRjl, k,j=1,...,m,
@) YRLB=1 = {RENZ.:

[ 2*(cs(T tgy (—ca))dx <y Y IRE
We V=1 ky =

s
where W, = {x: Y xR‘,‘, (%) = e},
v=1 v

IRk NE, _ cs

iii —_—2z= k=1,..,m,
() Rl ~ 4,

(iv), U_Jl Ry = cs P(A)|E,.

Then there is a basis B(R") whose every element is a dilation of some
member of o and such that B(R") differentiates precisely ®(L)(R").

Lemma A gives a method of constructing bases in R comsisting of
elements of a given type and differentiating precisely the classes @(L) (RM.

The results obtained have applications in the theory of multiple Fourier
series. Let {m}, {m} be two sequences of positive integers tending to infinity,
and let g, (f, X) be the (C, 1) means of the Fourier series of a function
f(x) on the rectangle [0, m] x[0, m;]. From the method of proof of Theo-
rem (2.14) in [15, Ch. XVII] it follows that if [ f is not differentiated by the
TI-basis consisting of rectangles of the form [0, n; '] x [0, m; '] then

limsupa, . (f, ¥) = +oo ae. on [0, 2n]2
ko0

On the other hand, if feLlog™ L([0, 2x]?) then
im o,.(f,x)=f(x) ae on [0,2r]

nm—+ o0

(see [5]). Proceeding by analogy with the proof of Theorem (3.1) in [15, Cl.l.
XVII] it is not difficult to show that if {[0, n,] x [0, mJ}i%, is a monotonic
family of rectangles then for all f in L([0, 2n]%)

im 6, m, (f, X) = f(x) ae on [0, 2m]2.
k— o0

Combining the above and the proof of Theorem 1 we obtain the
following alternative for any sequences {m}, {m;} of positive integers tending

2 —~ Studia Mathematica 88/2


GUEST


120 A. M. Stokolos

to infinity: either g,, ., (f, x) converges to f(x) ae. for all feL([0, 2n]?), or
for any function g(f) with g¢g(t)|0 as t—oo there is an
feg(L)Llog* L([0, 2r]? such that

Emsup oy, m (f, ) = +00  ae. on [0, 2n]%
k—o0

Analogous results hold for (C, a, f) summability (0 <a < 1,0 <f < 1).
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On subspaces of H' isomorphic to H'
by
PAUL F. X. MULLER (Linz)

Abstract. We show that any subspace of H' which is isomorphic to H* contains a
complemented copy of H'. H' is proved to be primary.

Introduction. This work is best regarded as an appendix to the book
Symmetric Structures in Banach Spaces by W. Johnson, B. Maurey, G.
Schechtman and L. Tzafriri ([JMST]), where the result analogous to our
Theorem 1 is proved for L7 spaces (1 <p <o0).

We use their notation and follow their arguments rather closily.

1 feel obliged to indicate at which point the treatment of H' spaces
requires different tools than that for L? spaces (1 <p<oo) .

In trying to find complemented subspaces in the range of embeddings -On.
P, IMST rely on the following martingale inequality duq to E. M. Ste;n.
Given an increasing sequence of o-fields (F)en in [0, 1] w1§h correspcindmg »
conditional expectations (E,),.x, for any 1 < p < co there exists C p_eR such
that for any sequence of measurable functions (f).y the following holds:

(3 1B APP? < G (3 AP

There exist examples (cf. [St], p. 105) showing that this inequality does
not hold for p=1 or p=oco. '

Here we modify the selection process of [JMST] 1? such a way that
projections can be constructed which are bounded on H'. At this pomt the
third component of the vector measure used below becomes crucial.

Definitions and notation. Recall that H' is the closed linear span of the
L*-normalized Haar system

{hy: (n)esd} where of = {(n): neN, 0<i<2"~ 1}
under the norm
1/llgs = SN, SN =Can ha)' 2,

with f =Y ay by
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