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On a subalgebra of the algebra C ([0, 1])
whose maximal ideal space is a torus

by

LEONID BREVDO (Huntsville, Ala.)

Abstract. A subalgebra of C([0, 1]) whose maximal ideal space is a two-dimensional torus
is constructed.

1. Introduction. In this paper we give an answer to one of the questions
formulated by Gelfand [3] some time ago. Namely, we construct an analytic
antisymmetric subalgebra of the algebra C([0, 1]) of all the continuous
complex-valued functions on the interval [0, 1] whose maximal ideal space is
a two-dimensional torus. Our construction essentially follows that used by
Hoffman and Singer [5] to give an example of a subalgebra of C([0, 1])
whose maximal ideal space is a two-dimensional sphere. We select a nowhere
dense arc y on the torus T and show that Wermer’s [2] algebra of functions
continuous on T and analytic on T'\y is nontrivial and moreover its space of
maximal ideals is T

2. Plane integral of the derivative of the elliptic sine. The automorphism
group of the torus T contains a torus. Namely: to every point e T there
corresponds an automorphism ¢z T =T, @g(Z) = (z+¢)™. In the following
instead of @g(Z) we will write z+¢. Consider a conformal mapping @ of
the square [—1, 0] x[0, 1] on the upper half-plane {Imw > 0} such that
B(0) =0, &(~1/2) =0, (—1) = —1, &: [(~1,0),(~1/2, 0] >[(~1, 0),
(=00, 0)], @: [(—1/2,0), (0, 0)] —[(0, 0), (co, 0)]. P(z) can be continued by
symmetry to a meromorphic function on the rectangle [—1, 0] x[—1, 1]
and further to a meromorphic function on the plane. The Riemann surface of
this function is a torus. On the torus T obtained by the factorization z,
~ z,<>zy —z, = 2m+ 2ni, where m and n are integers, it has two first order
poles at the points (—1/2, 0) and (1/2, 0); we will denote it as before by & (z).
For the construction of the function ®(z) called the elliptic sine see e.g. [6].

Consider the expression

) || @@-d)dz ndz,

1 2
By vEg

where Imd =0, § > 0, E! and E? are two squares with sides of length s


GUEST


106 L. Brevdo

parallel to the coordinate axes and with centers at (—1/2, 0) and (1/2, 0)
respectively. For § > s/2 the integral (1) exists since the poles of @' (z— ) are
in this case outside E!u E2. Let s/2 <& < 1/8. From the construction of
&(z) it follows that

jj(b(z 8)dz ndz = _fj(b’(z 8)dz A dz,

x 6EJ
where ;E! is the square symmetric to E! with respect to the line Rez = 4. In
the rectangle [0, 1] x[—1, 1] we have

) =f(z)+;’—‘i—/5,

where f(z) is regular in the rectangle and A4 is a nonzero constant. Therefore
A
@) =f (Z)*m

and we have

i[ ®(z—0)dz ndz
oy B}
dz A dz

- ” f/(Z“é)dZ /\EE—'A ” m

2 1, 52
5Esl VEg oEg VEg

=0(s, 9).

Assume that for every s and § that satisfy s/2 < § < 1/8 we have Q (s, 6)
= 0. Then lim,_, Q(s, 8)/s* = 0. But this limit is equal to

m280_ (f'(l/z O+ (1/2+0)~ A(( e 1))

This means that for any é < 1/8

s—*O

@ 2455 = 128+ (1/2+),

which gives a contradiction, because the limit as § —0 of the left-hand side
of (2) is infinite while the limit of the right-hand side is finite and is equal
to 2f'(1/2).

It follows therefore that there exist 8, and s, such that

| @(z—30)dz ndz 0.

EL UE2

Let 50”50
| ” @' (z—30)dz A dz| = a, max | (z—8) =M
L uE . zeEslo uE2 o
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Let y; —E} be a simple Jordan curve with E;\y1 = Eg; and u(Ej \yy)

< gf2, where ¢ = af(4M), and u is the Lebesgue measure on the plane. Here
the bar denotes closure. Such curves are known to exist. Let y, be a

translation of y, by the vector (1, 0), so that y, CEso’ E,O\Vz =EZ and
#(ESO\'})Z) <¢/2. We have

| [ & (—50)dz n d

Y1Wra
=| ([ @'(—b0)dz rndz— il &' (z—80)dz A d|
E;‘OUE 2 &), wE )\r10r2)
2 |a-| if &' (z—3o)dz A dzl|.
€y UEZ)\01ur)
But

[ {f ' (z—60)dz A dz} 2Mu[(E;, v ER)\ (3, Uyl < 2Me = a/2.

(Eslo UESZO)\(H wr2)
Therefore
®) | | #(—b0)dz Adz| > a/2.

Y1vr2
3. Function continuous on T and analytic on T'\y. Consider the function

Fig)y= [[ ®(-2)dl ~dL.
Y1UVY2

It is defined and analytic at all the points of the torus except at the points of
the three curves 99,0, ¥~1,0," 71,0 Obtained from the curve y, by the transla-
tions (1/2, 0), (—1/2, 0) and (3/2, 0) respectively. F (z) # constant, since F (z)
is analytic at z = §, and [F'(6,)| > a/2 by the inequality (3).

F(2) is uniformly continuous on T\(yg,0U?-1,0V 1,0)- Indeed, &(z) has
two simple poles at z = +1/2, therefore

®(2) = e g (2),

B
1/2 z+1/2

" where 4, B are constants and g(z) is regular in the square [—1,1] x
-1, 1]. Therefore for a point z in the vicinity of the arc y,, we have

[ ®C-2)dt Adl = [ gC—z)dl ndl

71012 71072
+ﬁ dgAdc+jj£ / A df
+H d{/\dé’+ﬁ ¢ Adl.

1/


GUEST


108 L. Brevdo

The first three integrals on the right-hand side of this equality are uniformly
continuous for z close to yo,o because g(z) is analytic, and 1/({—z—1/2) and
1/({ ~z+1/2) are analytic on y, and y, respectively for any z in the vicinity
of y,0. The fourth and fifth integrals have the same property by the Denjoy
lemma [1]. (See also Arens [4].) The same argument applies to the neighbor-
‘hoods of the arcs y_;,o and y;,. This fact combined with the analyticity of
F (z) outside 70U y-1,0 Y 71,0 Proves the uniform continuity of F(z) on the
set T\{yo,0 W ¥-1,071,0)- Thus F(z) can be extended by continuity to the
entire torus 7. We will denote this extended function by the same notation
F(z).
It is easy to see that F(z,) = F(z,) whenever z, —z, = 1. We have

Fiz))= || ®¢—z)dl ndl = [[ ®(—z,—dl Adl

Y1vrz T1ur2
= [f o(-D-z)d ndl
?1VY2

=[[(E-V=z)d ndl +[[S((—1)~z)d ndl
=[O —z)dl A dl+ [[B(—z)dl A dL = F(z),
Y2 71

where we have used the fact that the real period of ®(z) is equal to 2, from
which it fol]ows that

P((~D=2)lyy =P~ S((=D—2)lp2 = (-2

since {y{} = {y2} —1. It.follows that F(z) may be considered as a function on
a torus which is obtained by the factorimation of the plane given by z;
~ zy<2y—2Z, =m+2ni, where m and n are integers. This factorization
identifies the arcs y; and y,.

4. Wermer's family of functions on a torus. We have constructed,
- therefore, a nonconstant function F(z) continuous on a torus and analytic
outside some nowhere dense arc. Since in the construction of the function @
at the beginning of Section 2 the rectangle [—2, 0] x[0, 1] instead of the
square [ —1, 0] x [0, 1] could have been used, we may assume that the torus T
is the square [—1, 1] x[—1, 1] with the corresponding identification of the
sides. Also, we may assume that the arc y outside which F(z) is analytic is
located in some small neighborhood of the center of the square.
Following Wermer [2] consider the family of functions

F(z2)
4 [F (2)—F (20 +1/2)]1[F (2)~F (zo—1/2)] ® (z—2,)
where zo+1/2¢y, zo—1/2¢7.
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Note that in line two of (4) the function @ (z) is identical to that constructed
in Section 2. All thi» functions of the family are continuous on T and analytic
on T\y, since ®(z) is meromorphic on T with two simple poles at z = +1/2.

Let us show that this family separates points of the torus. Assume on
the contrary that there are two points z,, z,e T, z; # z,, such that

®) : F(zy) = F(z,)
and that for any z, that satisfies z,+1/2¢y, zo—1/2¢y we have
6)  [F)=F(zo+1/29][F (1)~ F (20— 1/21 & (z, — o)
= [F(22)= F (20 + /9] [F (z3) — F (20— 1/2)] & (25— zo).

From (5) and (6) it follows that
(7) [F(z1) = F(zo+ 1/2][F (1) F (20— 1/2] [® (2, — 20) — P (25— 20)] = 0.

For |zp| <& with ¢ small enough, z,+1/2¢y and zo—1/2 ¢y implyiné
that (7) holds in the entire neighborhood of the origin in which the first two
factors of the left-hand side of (7) are analytic functions and the third factor

is a meromorphic function with at most four simple poles. Therefore there is
an open subset of the set {|z)] <&} on which all the factors of (7) are"

" analytic. From the uniqueness theorem it follows that either F (zo+1/2) or

F(zo—1/2) is constant on the torus, or the equality
D(zy—20) = P(22—20) .

bolds on the torus identically for all z,. The first possibility is an obvious
contradiction. From the second possibility it follows that @(z) = D (z+(z,
—z,)) which can be true only if z; = z, on the torus, in contradiction tp the
assumption that z; # z,.

S. Maximal ideal space of Wermer’s algebra on a torus. Let A4,(T) be the
algebra of functions continuous on the torus T and analytic on the comple-
ment of the arc y. By the maximum principle its restriction to yis a
subalgebra A, of the algebra C([0, 1]) which is isometrically isomorphic to
A,(T). Let B,(T) be the subalgebra of 4, (T) genérated by the family (4) and
let B, be its restriction to y. Then B, = C([0, 1]) and B,(T) = B,. Applying
Wermer’s argument [2], one may show that any function from B,(T) maps
the complement of y and y itself onto the same set, meaning, in particular,
that the image of y is a Peano curve. Another consequence of this is that the
algebra B, is analytic. B, is antisymmetric since so is B, (T). It is easy to see
that the algebras 4,(T) and 4, are also analytic and antisymmetric.

The algebra A,(T) is isomorphic to a subalgebra of the algebra of
functions, analytic on {Imz > 0}\7 and continuous on {Imz > 0} where 7 is

a nowhere dense arc which has nonzero two-dimensional Lebesgue measure.
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Such isomorphism can be obtained by a conformal mapping of the rectangle
onto the upper half-plane. Applying analytic continuation through {Imz
= 0} by symmetry we may claim that A,(7) is isomorphic to a subalgebra of
the algebra of functions analytic on C\(y'U7,) and continuous on C where 7,
is the reflection of ¥ with respect to Imz =0, and C denotes the complex
plane. Applying the method used by Hoffman and Singer [5] to- prove
Theorem 5, we arrive at the conclusion that the maximal ideal space of the
algebra 4,(T), and also of the algebra 4,, is a torus.
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Regular quasimultipliers of some semisimple
Banach algebras

by

JOSE E. GALE*(Zaragoza)

Abstract. If 4 is a complex nonunital Banach algebra with dense principal ideals we
denote by QM. (4) the pseudo-Banach algebra forméd by Esterle’s regular quasimultipliers of A.
We study the character space A4 of QM (A) for several concrete algebras 4. In particular, for

every nondiscrete metrizable coljnpactly generated abelian group G with dual group I we prove
that BI' is homeomorphically embedded into L'(G)” (if G is compact BT equals L*(G)?). We also

note that there is a relationship between @M, (L' (G)) and the space P(G) of pseudomeasures on
G. If G is compact, QM,(L*(G)) = P(G). §

Intreduction. Let 4 be a complex nonunital commutative Banach alge-
bra possessing dense principal ideals -and such that 4*= {0}, where A*
={aeA: ab=0 for all be A}. A quasimultiplier T of A is an unbounded
operator on A whose domain is a dense principal ideal; so T can be written
as a quotient T =a/b where a,beA and [bA]™ =A. We put QM(A)
={T: T is a quasimultiplier of 4}. A quasimultiplier T = a/b is said to be
regular if there exist A >0 and ce(\;2,[b"A4] satisfying sup,||A"T"¢|| <
+00; let QM. (A) = {Te QM (A): T regular}. These notions and related ideas
were introduced by Esterle in [5] to study the problem of existence of
topologically simple radical Banach algebras.

The set QM,(A) is a pseudo-Banach algebra (see [1], [8]), i.e. it can be
represented as an inductive limit of Banach algebras. To obtain this represen-
tation one needs the following definition. Two commutative Banach algebras
A and B are said to be similar if there exist a commutative Banach algebra D
with dense principal ideals and two continuous homomorphisms @: D — A,
¥: D— B such that ¢ (D), y (D) are dense ideals in A, B respectively. Then:

.
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