- icm®
- [5] I. Feldman, I. Gohberg and A. Markus, Normally solvable operators and ideals associated with them, Izv. Moldavsk. Filiala Akad. Nauk SSSR 1960, no. 10, 51-70; AMS Transl. 61 (1967), 63-84.
- [6] S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York 1966.
- [7] I. Gohberg and M. Krein, Fundamental theorems on deficiency numbers, root numbers, and indices of linear operators, Uspekhi Mat. Nauk 12(2) (1957), 43-118; AMS Transl. Series 2, Vol. 13.
- [8] K. Jörgens, Linear Integral Operators, Pitman, London 1982.
- [9] T. Kato, Perturbation theory for nullity, deficiency, and other quantities of linear operators, J. Analyse Math. 6 (1958), 261-322.
- [10] -, Perturbation Theory for Linear Operators, Springer, New York 1966.
- [11] E. Makai, Jr. and J. Zemánek, The surjectivity radius, packing numbers and boundedness below of linear operators, Integral Equations Operator Theory 6 (1983), 372-384.
- [12] A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in C(S)-spaces, Bull. Acad. Polon. Sci. 13 (1965), 31-36.
- [13] A. Pietsch, Operator Ideals, North-Holland, Amsterdam 1980.
- [14] M. Schechter, Quantities related to strictly singular operators, Indiana Univ. Math. J. 21 (1972), 1061-1071.
- [15] —, Riesz operators and Fredholm perturbations, Bull. Amer. Math. Soc. 74 (1968), 1139-1144.
- [16] -, Principles of Functional Analysis, Academic Press, New York 1971.
- [17] H.-O. Tylli, On the asymptotic behaviour of some quantities related to semiFredholm operators, J. London Math. Soc. 31 (1985), 340-348.
- [18] L. Weis, Perturbation classes of semi-Fredholm operators, Math. Z. 178 (1981), 429-442.
- [19] R. Whitley, Strictly singular operators and their conjugates, Trans. Amer. Math. Soc. 13 (1964), 252-261.
- [20] K. Ylinen, Measures of noncompactness for elements of C*-algebras, Ann. Acad. Sci. Fenn. Ser. A 6 (1981), 131-133.
- [21] B. Yood, Properties of linear transformations preserved under the addition of a completely continuous transformation, Duke Math. J. 18 (1951), 599-612.
- [22] J. Zemánek, Geometric characteristics of semi-Fredholm operators and their asymptotic behaviour, Studia Math. 80 (1984), 219-234.
- [23] -, The semi-Fredholm radius of a linear operator, Bull. Polish Acad. Sci. 32 (1984), 67-76.
- [24] —, On the Δ-characteristic of M. Schechter, in Proc. 2nd Internat. Conf. on Operator Algebras, Ideals, and their Appl. in Theor. Physics, H. Baumgärtel et al. (eds.), Teubner, Leipzig 1984, 232-234.
- [25] —, The stability radius of a semi-Fredholm operator, Integral Equations Operator Theory 8 (1985), 137-144.

UNIVERSITY OF CALIFORNIA AT IRVINE Irvine, California 92717, U.S.A.

Received May 26, 1986 (2174) Revised version May 25, 1987

On uncountable unconditional bases in Banach spaces

STUDIA MATHEMATICA, T. XC. (1988)

by

LECH DREWNOWSKI (Poznań and East Lansing, Mich.)

Abstract. If a Banach space with an uncountable unconditional basis (v_j) contains an isomorphic copy of $l_1(A)$ or $c_0(A)$ for some uncountable set A, then the basis (v_j) has "large" subbases of l_1 -type, or c_0 -type, respectively (Theorems 1 and 2). This generalizes the results obtained by S. L. Troyanski in 1975 for Banach spaces with symmetric bases.

In Theorems 1 and 2 below, we extend to Banach spaces with uncountable unconditional bases the following result of Troyanski [6, Corollaries 1 and 2]:

Let F be a Banach space with a symmetric basis $(v_j)_{j\in J}$. If F has a subspace isomorphic to the Banach space $l_1(A)$ [resp., $c_0(A)$] for some uncountable set A, then the basis $(v_j)_{j\in J}$ is equivalent to the natural basis of the space $l_1(J)$ [resp., $c_0(J)$].

Our results show that if the basis $(v_j)_{j\in J}$ is merely unconditional, then it must contain large l_1 - [resp., c_0 -] subbases. Unlike in [6], where the above result was obtained via some renorming considerations, our arguments will be purely combinatorial. The l_1 part of Troyanski's result plays a crucial role in the author's recent paper [1]; the present work is, in a sense, a continuation of [1].

In general, our Banach space terminology and notation is that of [4] and [5].

Throughout, F will be a (nonseparable) Banach space with an uncountable unconditional basis $(v_j)_{j\in J}$. Recall (cf. [5], [6]) that this means that for every y in F there is a unique family of scalars $(t_j)_{j\in J}$ such that $y=\sum_{j\in J}t_jv_j$ (unconditional convergence or summability). Let $(v_j^*)_{j\in J}\subset F^*$ be the dual family, biorthogonal to $(v_j)_{j\in J}$. Then, for y in F, we define the support of y as

$$s(y) = \{j \in J: \ v_j^*(y) \neq 0\};$$

clearly, $|s(y)| \le \aleph_0$. (|A| denotes the cardinal number of the set A.) The natural unit vector bases in the spaces $l_1(A)$ and $c_0(A)$ will be denoted by $(e_n^i)_{n \in A}$ and

¹⁹⁸⁰ Mathematics Subject Classification: Primary 46B15, 46B25.

Key words and phrases: Banach space, uncountable unconditional basis, l_1 -subbasis, c_0 -subbasis.

^{2 -} Studia Math., 90.3

 $(e^0_\alpha)_{\alpha\in A}$, respectively. Instead of saying that an unconditional basic family $(u_\alpha)_{\alpha\in A}$ is equivalent to the basis $(e^1_\alpha)_{\alpha\in A}$, we will often say that it is of l_1 -type; c_0 -type is understood similarly.

Conventions: Let \mathfrak{m} , \mathfrak{n} be cardinal numbers. Then $\mathfrak{n} \leqslant_r \mathfrak{m}$ means $\mathfrak{n} = \mathfrak{m}$ when \mathfrak{m} is regular (i.e., $cf(\mathfrak{m}) = \mathfrak{m}$), and $\mathfrak{n} < \mathfrak{m}$ otherwise. Similarly, $\mathfrak{n} \leqslant_c \mathfrak{m}$ means $\mathfrak{n} = \mathfrak{m}$ when $cf(\mathfrak{m}) > \aleph_0$, and $\mathfrak{n} < \mathfrak{m}$ otherwise. (cf(\mathfrak{m}), the cofinality of \mathfrak{m} , is the smallest cardinal \mathfrak{a} such that a set of cardinality \mathfrak{m} can be written as the union of \mathfrak{a} subsets, each having cardinality strictly less than \mathfrak{m} .)

In the proof of Theorem 1 we will need the following combinatorial result (see [2, p. 87]):

LEMMA 1. Let $(S_a)_{a\in A}$ be an uncountable family of finite sets. Then, if $n \leq {}_r|A|$, there exists $B \subset A$ with |B| = n and a finite set S such that

$$S_{\beta} \cap S_{\beta'} = S$$
 for all distinct β , β' in B .

THEOREM 1. Suppose F has a subspace isomorphic to $l_1(A)$, where $\mathfrak{m}=|A|>\aleph_0$. Then, if $\mathfrak{n}\leqslant_{\mathfrak{r}}\mathfrak{m}$, there exists $J'\subset J$ with $|J'|=\mathfrak{n}$ such that the subbasis $(v_i)_{i\in J'}$ is of l_1 -type.

Proof. By assumption, F contains an unconditional basic family $(w_{\alpha})_{\alpha \in A}$ of l_1 -type; thus $a \sum |t_{\alpha}| \leqslant \|\sum t_{\alpha}w_{\alpha}\| \leqslant b \sum |t_{\alpha}|$ for all (t_{α}) in $l_1(A)$ and some constants a, b. It is well known (and easily verified) that if for each α in A we choose a vector w'_{α} in F so that $\|w_{\alpha}-w'_{\alpha}\| \leqslant r$, where $0 \leqslant r < a$, then $(w'_{\alpha})_{\alpha \in A}$ is also an unconditional basic family of l_1 -type. Using this fact, and cutting off sufficiently distant "tails" in the expansions of w_{α} 's with respect to the basis (v_j) , we may assume that $|s(w_{\alpha})| < \aleph_0$ for all α in A. It is clear that there must exist a $k \in N$ such that if

$$A' = \{\alpha \in A \colon |s(w_{\alpha})| = k\},\$$

then |A'| = m if m is regular, and |A'| > n otherwise.

Now, by Lemma 1, we can find a finite subset L of J and a subset A'' of A' such that $|A''| = \mathfrak{m}$ if \mathfrak{m} is regular, $|A''| > \mathfrak{m}$ otherwise, and

$$s(w_{\alpha_1}) \cap s(w_{\alpha_2}) = L$$
 for all distinct α_1 , α_2 in A'' .

Moreover, it is easy to see that we may also assume that the subbasis $(v_j)_{j \in K}$, where $K = \bigcup \{s(w_a): \alpha \in A''\}$, is seminormalized, i.e.,

(1)
$$0 < c = \inf\{\|v_j\|: j \in K\} \le \sup\{\|v_j\|: j \in K\} < \infty.$$

Consider the operator $T: F \to F$ defined by $T(y) = \sum_{j \in L} v_j^*(y) v_j$. It is finite-dimensional, hence compact; therefore, if $S = \mathrm{id}_F - T$, then ker S is finite-dimensional, and S maps closed subspaces onto closed subspaces (cf. e.g. [3, Lemma 2]). It follows that there exists $A''' \subset A''$ with A'' - A''' finite

such that the restriction of S to the closed linear span of $(w_\alpha)_{\alpha\in A'''}$ is an isomorphic embedding. In particular, if $w'_\alpha=S(w_\alpha)$ (= $w_\alpha|(J-L)$), then $(w'_\alpha)_{\alpha\in A'''}$ is an unconditional basic family of l_1 -type, and |A'''|=|A''|. Moreover, the vectors w'_α , $\alpha\in A'''$, have pairwise disjoint supports and, denoting m=k-|L|, we have

(2)
$$|s(w'_{\alpha})| = m$$
 for all α in A''' .

Since $(w'_{\alpha})_{\alpha \in A'''}$ is of l_1 -type, there exists a y^* in F^* such that $y^*(w'_{\alpha}) = 1$ for all α in A'''. For each α in A''' choose a $\varrho(\alpha)$ in $s(w'_{\alpha})$ so that

$$|y^*(v_{\rho(\alpha)})| = \max\{y^*(v_j)|: j \in s(w'_\alpha)\}.$$

Then, using (1) and (2), we have

$$\begin{split} 1 &= |y^*(w_{\alpha}')| \leqslant \sum_{j} |v_{j}^*(w_{\alpha}')| \, |y^*(v_{j})| \leqslant |y^*(v_{\varrho(\alpha)})| \sum_{j} |v_{j}^*(w_{\alpha}')| \\ &= |y^*(v_{\varrho(\alpha)})| \sum_{j} \frac{1}{\|v_{j}\|} \|v_{j}^*(w_{\alpha}')v_{j}\| \leqslant (mB/c)|y^*(v_{\varrho(\alpha)})| \, \|w_{\alpha}'\| \\ &\leqslant (mBM/c)|y^*(v_{\varrho(\alpha)})|, \end{split}$$

where B is the unconditional basis constant of $(v_j)_{j\in J}$, and $M=\sup\{\|w'_\alpha\|:\alpha\in A'''\}<\infty$. Thus $\inf\{|y^*(v_{\varrho(\alpha)})|:\alpha\in A'''\}>0$; therefore, since by (1) $(v_{\varrho(\alpha)})_{\alpha\in A'''}$ is a bounded unconditional basic family in F, it must be of l_1 -type. This concludes the proof: $J'=\{\varrho(\alpha):\alpha\in A'''\}$ is as required.

Remark. An inspection of the proof shows that, replacing $l_1(A)$ with $l_p(A)$, we have an analogue of the above result for unconditional bases in p-Banach spaces, 0 .

LEMMA 2. Let $(y_{\beta})_{\beta \in B}$ be a family in F consisting of nonzero vectors with pairwise disjoint supports. Let $\varrho \colon B \to J$ be any choice function such that $\varrho(\beta) \in s(y_{\beta})$ for every β in B. Then there is an increasing sequence (B_n) of subsets of B with union B such that, for every $n \in N$, the families $(y_{\beta})_{\beta \in B_n}$ and $(v_{\varrho(\beta)})_{\beta \in B_n}$ are seminormalized, and

$$(y_{\beta})_{\beta \in B_n} > (v_{\varrho(\beta)})_{\beta \in B_n},$$

i.e., $\sum_{\beta \in B_n} t_\beta v_{\varrho(\beta)}$ converges whenever $\sum_{\beta \in B_n} t_\beta y_\beta$ converges.

Proof. It is enough to set

$$B_n = \{ \beta \in B \colon n^{-1} \leqslant \|y_{\beta}\| \leqslant n, \ n^{-1} \leqslant \|v_{\varrho(\beta)}\| \leqslant n, \ |v_{\varrho(\beta)}^*(y_{\beta})| \geqslant n^{-1} \}.$$

Suppose a series $\sum_{\beta \in B_n} t_\beta y_\beta$ converges unconditionally to some y in F. Then the (unconditionally converging) expansion of y with respect to the basis (v_j) is $\sum \{t_\beta v_j^*(y_\beta)v_j\colon \beta \in B_n,\ j\in s(y_\beta)\};$ in consequence, the "subseries" $\sum_{\beta \in B_n} t_\beta v_{e(\beta)}^*(y_\beta) \times t_\beta v_{e(\beta)}^*(y_\beta)$

 $\times v_{\varrho(\beta)}$ converges unconditionally. Finally, since $|v_{\varrho(\beta)}^*(v_\beta)| \geqslant n^{-1}$ for all β in β_n , also the series $\sum_{\beta \in B_n} t_\beta v_{\varrho(\beta)}$ converges unconditionally.

THEOREM 2. Let $T: c_0(A) \to F$ be a continuous linear operator whose range has the density character $\mathfrak{m} > \aleph_0$. Then, if $\mathfrak{n} \leqslant {}_{\mathfrak{m}}\mathfrak{m}$, there is a subset A' of A and a subset A' of A such that $|A'| = |J'| = \mathfrak{m}$, $A' = \mathbb{m}$, $A' = \mathbb{m}$ is an isomorphic embedding and the subbasis $A' = \mathbb{m}$ is of $A' = \mathbb{m}$.

Proof. By [1, Lemma 4], the set $\{\alpha \in A: T(e_{\alpha}^{0}) \neq 0\}$ is of cardinality m; hence, by [1, Lemma 3] and Lemma 2 above, it contains a subset A' with |A'| = n such that for some injective function $\varrho: A' \to J$ both the families $(T(e_{\alpha}^{0}))_{\alpha \in A'}$ and $(v_{\varrho(\alpha)})_{\alpha \in A'}$ are seminormalized, $(T(e_{\alpha}^{0}))_{\alpha \in A'} \succ (v_{\varrho(\alpha)})_{\alpha \in A'}$, and the vectors $T(e_{\alpha}^{0})$, $\alpha \in A'$, have pairwise disjoint supports. Thus $(T(e_{\alpha}^{0}))_{\alpha \in A'}$ is an unconditional basic family, and since $(e_{\alpha}^{0})_{\alpha \in A'} \succ (T(e_{\alpha}^{0}))_{\alpha \in A'}$ (by the continuity of T) and $(v_{\varrho(\alpha)})_{\alpha \in A'} \succ (e_{\alpha}^{0})_{\alpha \in A'}$ (because the former family is seminormalized), the assertions of the theorem, with $J' = \{\varrho(\alpha): \alpha \in A'\}$, follow easily.

Remark. As the identity operator from $l_1(A)$ into $c_0(A)$ shows, the l_1 -version of the above result is false.

Examples. In the two examples below, we show that the distinction between the cases cf(m) = m and cf(m) < m in Theorem 1, as well as the cases $cf(m) > \aleph_0$ and $cf(m) = \aleph_0$ in Theorem 2, is essential.

Let $(J_n)_{n\in\mathbb{N}}$ be a sequence of pairwise disjoint infinite sets whose cardinal numbers $\mathfrak{m}_n=|J_n|$ form a strictly increasing sequence, let J be the union of these sets, and let $\mathfrak{m}=|J|$. Then $\mathrm{cf}(\mathfrak{m})=\aleph_0<\mathfrak{m}$.

For each n, let \mathscr{D}_n be the class of all n-subsets of J_n , and let $(K_\alpha)_{\alpha\in A_n}$ be a family of pairwise disjoint n-subsets of J_n with union J_n . Thus $|J_n|=|A_n|=\mathfrak{m}_n$. If K is a subset of J_n , let e_K be its characteristic function; $e_j=e_{(j)}$. The usual l_1 - and c_0 -norms are denoted by $\|\cdot\|_1$ and $\|\cdot\|_{\infty}$, respectively.

1) For each $n \in \mathbb{N}$ let $F_n = (l_1(J_n), |||\cdot|||_n)$, where

$$|||y|||_n = \max(n^{-1} ||y||_1, ||y||_{\infty}).$$

Then

(3)
$$n^{-1} \|y\|_1 \le \|y\|_n \le \|y\|_1$$
 for all $y \in l_1(J_n)$.

Since $|||e_j|||_n=1=||e_j||_1$ for all $j\in J_n$ and $|||e_K|||_n=1=n^{-1}\,||e_K||_1$ for all $K\in \mathscr{P}_n$, it follows that

(*) the estimates (3) cannot be improved on any subspace $l_1(K)$ of $l_1(J_n)$, where $K \subset J_n$ and $|K| \ge n$.

For $\alpha \in A_n$, let $u_{\alpha} = e_{K_{\alpha}}$. Then, for every (t_{α}) in $l_1(A_n)$,

$$\left\| \left\| \sum_{\alpha \in A_n} t_{\alpha} u_{\alpha} \right\|_{n} = \max \left(n^{-1} \sum_{\alpha \in A_n} n |t_{\alpha}|, \sup_{\alpha \in A_n} |t_{\alpha}| \right) = \left\| (t_{\alpha}) \right\|_{1},$$

and so $(u_{\alpha})_{\alpha \in A_n}$ is isometrically equivalent to $(e_{\alpha}^1)_{\alpha \in A_n}$.

Now, consider the l_1 -sum of the spaces F_n ,

$$F = \left(\sum_{n=1}^{\infty} F_n\right)_{l_1};$$

F can be thought of as a space of functions defined on J, and each F_n can be identified with the subspace of functions vanishing off J_n . Then $(e_j)_{j\in J}$ is a 1-unconditional basis of F. For each n, it contains a subbasis, viz., $(v_j)_{j\in J_n}$, of cardinality m_n that is of l_1 -type. Moreover, F has a subspace, viz., $[u_\alpha\colon\alpha\in A]$, $A=\bigcup_n A_n$, isometric to $l_1(A)$, where |A|=m. Nevertheless, as is easily seen

using (*), the basis $(e_j)_{j\in J}$ does not have any l_1 -subbasis of cardinality m.

2) For each $n \in \mathbb{N}$ let $F_n = (c_0(J_n), |||\cdot|||_n)$, where

$$|||y|||_n = \sup_{K \in \mathcal{P}_n} \sum_{j \in K} |y(j)|.$$

Then

(4)
$$||y||_{\infty} \le |||y||_{n} \le n ||y||_{\infty}$$
 for all $y \in c_0(J_n)$.

Since $||e_j||_n=1=||e_j||_\infty$ for all $j\in J_n$ and $|||e_K|||_n=n=n\,||e_K||_\infty$ for all $K\in\mathscr{P}_n$, it follows that

(**) the estimates (4) cannot be improved on any subspace $c_0(K)$ of $c_0(J_n)$, where $K \subset J_n$ and $|K| \ge n$.

For $\alpha \in A_n$, let $u_{\alpha} = n^{-1}e_{K_{\alpha}}$. Then we verify easily that $(u_{\alpha})_{\alpha \in A_n}$ is isometrically equivalent to $(e_{\alpha}^0)_{n \in A_n}$. Let

$$F = \left(\sum_{n=1}^{\infty} F_n\right)_{c_0}.$$

Then $(e_j)_{j\in J}$ is a 1-unconditional basis of F and, for each n, it has a c_0 -subbasis of cardinality \mathfrak{m}_n . Moreover, F has a subspace isometric to $c_0(A)$, $|A|=\mathfrak{m}$. Nevertheless, (**) implies that the basis $(e_j)_{j\in J}$ does not have any c_0 -subbasis of cardinality \mathfrak{m} .

Acknowledgement. The author is grateful to Dr. A. Ortyński for the compactness argument in the proof of Theorem 1.

References

- L. Drewnowski, On symmetric bases in nonseparable Banach spaces, Studia Math. 85 (1987), 157-161.
- [2] I. Juhasz, Cardinal Functions in Topology, Math. Centre Tracts, Amsterdam 1971.
- [3] N. J. Kalton, Quotients of F-spaces, Glasgow Math. J. 19 (1978), 103-108.
- [4] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer, Berlin 1977.

L. Drewnowski

196

[5] I. Singer, Bases in Banach Spaces II, Springer, Berlin 1981.

[6] S. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253-263.

INSTYTUT MATEMATYKI UNIWERSYTETU im. ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY Matejki 48/49, 60-769 Poznań, Poland

and

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY East Lansing, Michigan 48824-1027, U.S.A.

Received July 4, 1986
Revised version May 27, 1987

(2190)

STUDIA MATHEMATICA, T. XC. (1988)

\mathscr{L}_{π} -Spaces and cone summing operators

by

P. J. MANGHENI (Edinburgh)

Abstract. Let E be a real Banach lattice, X a real Banach space, and T: $E \to X$ a linear operator. Suppose $1 \le p < \infty$ and that there is a constant K > 0 such that for all $n \in N$ and any u_1, \ldots, u_n in E

$$\left(\sum_{i=1}^{n} \|Tu\|^{p}\right)^{1/p} \leqslant K \sup \left\{ \left(\sum_{i=1}^{n+1} \langle \varphi, u_{i}^{p} | \lambda^{p} \rangle^{1/p} : \varphi \in \text{ball } E_{+}^{*} \right\}.$$

We show that T has a (sub)factorization through a class of Banach lattices closely related to the $L_p(L_1)$ -spaces. We recover as special cases some classical results on p-absolutely summing operators.

1. Introduction.

1.1. DEFINITION. Let E be a Banach lattice, X a Banach space and $1 \le p < \infty$. A linear operator $T: E \to X$ is cone p-summing if there is a constant K > 0 such that for each positive integer n and any vectors u_1, \ldots, u_n in E,

$$\left(\sum_{j=1}^{n} \|Tu_{j}\|^{p}\right)^{1/p} \leqslant K \sup\left\{\left(\sum_{j=1}^{n} \langle \varphi, |u_{j}| \rangle^{p}\right)^{1/p} : \varphi \in \text{ball } E_{+}^{*}\right\}.$$

We denote by $\hat{\pi}_p(T)$ the least K for which this inequality holds for all n and all choices of n vectors in E; and $\hat{H}_p(E, X)$ is the set of cone p-summing operators $E \to X$.

1.2. Remarks. When p = 1 these operators have been studied by Schaefer [7].

Let $1 \le p < \infty$, let E be a Banach lattice and X a Banach space. Let $\Pi_p(E,X)$ denote the p-absolutely summing operators $E \to X$ in the sense of Pietsch [6] and $C_p(E,X)$ the p-concave operators $E \to X$ in the sense of Lindenstrauss and Tzafriri [4]. Then we have the relations:

- (i) $\Pi_n(E, X) \subseteq \hat{\Pi}_n(E, X) \subseteq C_n(E, X)$.
- (ii) $\Pi_p(E, X) = \hat{\Pi}_p(E, X) = C_p(E, X)$ whenever E is a C(K)-space.
- (iii) $\hat{H}_1(E, X) = C_1(E, X)$ for all E and all X.

A British Council/Association of Commonwealth Universities Fellowship at the University of Edinburgh 1985/6 made the preparation of this work possible.