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On uncountable unconditional bases in Bamach spaces
by

LECH DREWNOWSKI (Poznaf and East Lansing, Mich.)

Abstract. If a Banach space with an uncountable unconditional basis (v;) contains an
isomorphic copy of [,(4) or co(A) for some uncountable set A4, then the basis (v;) has “large”
subbases of I;-type, or cg-type, respectively (Theorems 1 and 2). This generalizes the results
obtained by S. L. Troyanski in 1975 for Banach spaces with symmetric bases.

In Theorems 1 and 2 below, we extend to Banach spaces with uncountable
unconditional bases the following result of Troyanski [6, Corollaries 1 and 2]:

Let F be a Banach space with a symmetric basis (v),.,. If F has a subspace
isomorphic to the Banach space I,{4) [resp., ¢y(4)] for some uncountable set
A, then the basis (v)),; is equivalent to the natural basis of the space
L (J) [resp., co(7)].

Our results show that if the basis (v));.; is merely unconditional, then it
must contain large I,- [resp., c,-] subbases. Unlike in [6], where the above
result was obtained via some renorming considerations, our arguments will be
purely combinatorial. The [, part of Troyanski’s result plays a crucial role in
the author’s recent paper [1]; the present work is, in a sense, a continuation
of [1].

In general, our Banach space terminology and notation is that of [4]
and [5].

Throughout, F will be a (nonseparable) Banach space with an uncountable
unconditional basis (v)),.;. Recall (cf. [5], [6]) that this means that for every y
in F there is a unique family of scalars (t),.; such that y = ¥ ¢;v; (uncon-

et
ditional convergence or summability). Let (vf),, = F* be thje dual family,
biorthogonal to (vj),;. Then, for y in F, we define the support of y as

s@) = {jeJ: vf () #0};

clearly, |s(¥)] < N,. (|4] denotes the cardinal number of the set 4.) The natural
unit vector bases in the spaces I,(4) and c,(4) will be denoted by (e,),.4 and

1980 Mathematics Subject Classification: Primary 46B15, 46B25. )
Key words and phrases: Banach space, uncountable unconditional basis, /;-subbasis, cg-sub-
basis. ‘
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(€2 ) e > Tespectively. Instead of saying that an unconditional basic family (u,),. 4
is equivalent to the basis (el),.,, we will often say that it is of I;~type; c,-type is
understood similarly.

Conventions: Let m, n be cardinal numbers. Then n < m means n =m
when m is regular (i.e, cf(m) = m), and n < m otherwise. Similarly, n < m
means n = m when cf(in) > X,, and n < m otherwise. (cf(im), the cofinality of
m, is the smallest cardinal a such that a set of cardinality mt can be written as
the union of a subsets, each having cardinality strictly less than m.)

In the proof of Theorem 1 we will need the following combinatorial result
(see [2, p. 87]):

LemmA 1. Let (S,),.4 be an uncountable family of finite sets. Then, if
n < |4, there exists B < A with |B| = n and a finite set S such that

8snSy =S for all distinct B, p' in B.

THEOREM 1. Suppose F has a subspace isomorphic to 1,(A), where
m = |A] > Nq. Then, if n < ;m, there exists J' < J with |J'| = n such that the
subbasis (v));ey is of li-type.

Proof. By assumption, F contains an unconditional basic family (w,),.,
of I,-type; thus a). [t,] < || tw| <5 It for all (z,) in I,(4) and some
constants a, b. It is well known (and easily verified) that if for each o in 4 we
choose a vector w; in F so that |w,—~w,| < r, where 0 <r < g, then (w)),., is
also an unconditional basic family of I,-type. Using this fact, and cutting off
sufficiently distant “tails” in the expansions of w,'s with respect to the basis ©),
we may assume that |s(w,)| < N, for all o in 4. It is clear that there must exist a
ke N such that if

A = {ae A: |s(wy)| =k},

then [A4'] = m if m is regular, and |4’| > n otherwise.
Now, by Lemma 1, we can find a finite subset L of J and a subset A" of 4’

such that |4”] = m if m is regular, |4”| > n otherwise, and
sw,)ns(w,,) = L for all distinct «;, o, in A",

Moreover, it is easy to see that we may also assume that the subbasis (Vx>
where K = | ) {s(w,): xe 4"}, is seminormalized, i.e.,

) 0 <¢=mf{|lo)]: jeK} < sup{|lv,|: je K} < 0.
Consider the operator T: F—F defined by T(y) = Zv}“(y)uj. It is

A , . JeL

ﬁn}te-dlmensmnal, hence compact; therefore, if § = idF—’F, then kerS is
finite-dimensional, and S maps closed subspaces onto closed subspaces
(cf. e.g. [3, Lemma 2]). It follows that there exists 4" = A” with A" — A" finite
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such that the restriction of S to the closed linear span of (w,), 4~ is an
isomorphic embedding. In particular, if w, = S(w,) (= w,(J—L)), then
(Wi)aeu 18 an unconditional basic family of I,-type, and |4"| = |4”|. Moreover,
the vectors w,, weA’’, have pairwise disjoint supports and, denoting
m = k—|L|, we have

@ Is(wWl = m

Since (Wy)yeq- is of I;-type, there exists a y* in F* such that y*(w}) = 1 for
all & in A™. For each o in A" choose a ¢(«) in s(w;) so that

for all « in A"

V*(0, ) = max{y*(v)l: je s(wi}-
Then, using (1) and (2), we have
L= y*wl < X loFwl ly* @)l < ¥ (@)l 2 10F Wl
i I}

1
= |y* (UQ (a))' Z T

i ”U]H
< (mBM/0)]y* (v, ),

where B is the unconditional basis constant of (v));.;, and M = sup{|w.|:

e A"} < o. Thus inf{ly*(v,): a€A4”}>0; therefore, since by (1)

(v, @ear 18 @ bounded unconditional basic family in F, it must be of I;-type.
This concludes the proof: J' = {g(0): €A™} is as required. =

llof (Waojll < (mB/e)y* (v, @)l Wl

Remark. An inspection of the proof shows that, replacing [,(4) with
1,(4), we have an analogue of the above result for unconditional bases in
p-Banach spaces, 0 < p < 1.

LemMa 2. Let (yg)pep be a family in F consisting of nonzero vectors with
pairwise disjoint supports. Let g: B—J be any choice function such that
2(B) e s(yy) for every B in B. Then there is an increasing sequence (B,) of subsets
of B with union B such that, for every ne N, the families (y,)gep, and (Ugp)sen, 7€
seminormalized, and

Odses, > OoIpenns
ie, Y tyv,s converges whenever Y. tgy, converges.
= peBn

Proof. It is enough to set
B, ={BeB: n~' < [lysll <n, n7E < vyl <, ofn Ol =07}
Suppose a series ». t;y, converges unconditionally to some y in F. Then

BeBn . o
the (unconditionally converging) expansion of y with respect to the basis (v)) is

Y {tu¥(ypv;: BeB,, jes(yy)}; in consequence, the “subseries” EB tavdm (V) X
BeBn
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X Dyqy cONverges unconditionally. Finally, since [vfs(ys) = n™" for all fin g,
also the series ) t;v,, converges unconditionally. m
€0y
THEOREM 2. Let T co(A)—F be a continuous linear operator whose range
has the density character m > N,. Then, if n < ;m, there is a subset A’ of A and
a subset J' of J such that |A'} = |J'| = n, T|cy(A4') is an isomorphic embedding and
the subbasis (v);.; is of cy-type.

Proof. By [1, Lemma 4], the set {xe A: T(el) 5 0} is of cardinality m;
hence, by [1, Lemma 3] and Lemma 2 above, it contains a subset 4’ with
|4’ =n such that for some injective function ¢: A'—J both the families
(T(eD)seqr and (Vy0)),esr are seminormalized, (T(e9))en > Wyaes» and the
vectors T'(ey), a € A, have pairwise disjoint supports. Thus (T(ez))‘,‘E 4 18 an
unconditional basic family, and since (€9),es > (T(e2)),es (by the continuity
of T) and (v, )ues > (€2)seqr (becatise the former family is seminormalized), the
assertions of the theorem, with J' = {o(a): weA'}, follow easily. m

Remark. As the identity operator from [,(4) into ¢,(4) shows, the
I;-version of the above result is false.

ExampLES. In the two examples below, we show that the distinction
between the cases cf(m) = m and cf(m) < m in Theorem 1, as well as the cases
cf(m) > X, and cf(m) = ¥, in Theorem 2, is essential.

Let (J,),.n be a sequence of pairwise disjoint infinite sets whose cardinal
numbers m, = |J,| form a strictly increasing sequence, let J be the union of
these sets, and let m = |J|. Then cf(m) = X, < m.

For each n, let 2, be the class of all n-subsets of J,, and let (K,),,, be a
family of pairwise disjoint n-subsets of J, with union J,. Thus |J,| = |4, =1,
If K is a subset of J,, let ex be its characteristic function; e; = e(;. The usual
l;- and cy-norms are denoted by |||, and [|,, respectively.

1) For each neN let F, = (I,(J,), Il'lll,), where

Iylll, = max(n=* {iylly, Iyl)-
Then
3) n iyl <Hlll, < Iylly  for all yel, (J,).

Since |llefll, =1 = lle;|; for all jeJ, and |ledll, =1=n"* llegll, for all
Ke2,, it follows that

() the estimates (3) cannot be improved on any subspace I, (K) of [,(J,),
where K < J, and |K| > n.

For aed,, let u, = ex,- Then, for every (t,) in I,(4,),

fl § tta |l = max(n™t ¥ nlt,l, sup It,)) = 1@l

2EAn acdy

and SO (u,),.,, is isometrically equivalent to (€3)ne ™
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Now, consider the /;-sum of the spaces F,,

F = (n§1 Fn)ll;

F can be thought of as a space of functions defined on J, and each
F, can be identified with the subspace of functions vanishing off J,. Then (¢));.,
is a 1-unconditional basis of F. For each n, it contains a subbasis, viz., (v));.;,, of
cardinality m, that is of /,-type. Moreover, F has a subspace, viz., [u,: e A],
A= U A,, isometric to I, (4), where [4| = m. Nevertheless, as is easily seen

using (x), the basis (e));; does not have any I,-subbasis of cardinality m.

2) For each neN let F, = (co(J,), lIllll,), where
liIyll, = sup ¥ Iy(i)l-

Ke?, jeK
Then
Q] IVl < Myl < iyl

Since [llell, = 1 = ll¢;|,, for all jeJ, and [lleglll, = n = nlleg]|, for all K e 2,,
it follows that

(%)

for all yecy(J,)

the estimates (4) cannot be improved on any subspace c,(K) of ¢4(J,),
where K < J, and |K| > n.

For aecd,, let u, = n"lexu. Then we verify easily that (u,),.,, is isometrically
equivalent to (e0),.,,. Let . .

Then (e});, is 2 1-unconditional basis of F and, for each », it has a ¢,-subbasis
of cardinality m,. Moreover, F has a subspace isometric to ¢,(4), |4] = m.
Nevertheless, (++) implies that the basis (e;);.; does not have any c,-subbasis of
cardinality m.

Acknowledgement. The author is grateful to Dr. A. Ortynski for the
compactness argument in the proof of Theorem 1.
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& -Spaces and cone summing operators
by
P. J. MANGHENI (Edinburgh)
Abstract. Let E be a real Banach lattice, X a real Banach space, and T: E—X a linear

operator. Suppose 1 < p < co and that there is a constant K > 0 such that for all ne N and any
Uy, .oy thy in E

@“'fi,, S7)Uz; e ball EX}.

(T I Tupry <

i=1

ieh)
Ksup {( 3 <
i=1

We show that Thas a (sub)factorization through a class of Banach lattices closely related to the
L,(L,)-spaces. We recover as special cases some classical results on p-absolutely summing
operators.

1. Introduction.
1.1. DeriNiTION. Let E be a Banach lattice, X a Banach space and

1 < p < 0. A linear operator T: E— X is cone p-summing if there is a constant
K > 0 such that for each positive integer n and any vectors u, , ..., 4, in E,

(}: 17wl <

We denote by #,(T) the least K for which this inequality holds for all » and all
choices of n vectors in E; and IT o(E, X) is the set of cone p-summing
operators E—X.

KS“P{(Z o, lu |>”)1/p g eball EX% }

12. Remarks. When p = 1 these operators have been studied by
Schaefer [7].

Let 1 < p < oo, let E be a Banach lattice and X a Banach space. Let
1,(E, X) denote the p-absolutely summing operators E—X in the sense of
P1ctsch [6] and C,(E, X) the p-concave operators E—X in the sense of
Lindenstrauss and Tzafrm [4]. Then we have the relations:

(@ m,(E, X)CHp(E X) e C,(E, X).
(ii) H o(E, X} = I (E, X) = C,(E, X) whenever E is a C(K)-space.
(iii) 1'[ (E, X) = ( X) for all E and all X.

A British Council/Association f Commonwealth Universities Fellowship at the University of
Edinburgh 1985/6 made the preparation of this work possible.
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