L. Drewnowski

196

[5] I. Singer, Bases in Banach Spaces II, Springer, Berlin 1981.

[6] S. Troyanski, On non-separable Banach spaces with a symmetric basis, Studia Math. 53 (1975), 253-263.

INSTYTUT MATEMATYKI UNIWERSYTETU im. ADAMA MICKIEWICZA INSTITUTE OF MATHEMATICS, ADAM MICKIEWICZ UNIVERSITY Matejki 48/49, 60-769 Poznań, Poland

and

DEPARTMENT OF MATHEMATICS MICHIGAN STATE UNIVERSITY East Lansing, Michigan 48824-1027, U.S.A.

Received July 4, 1986
Revised version May 27, 1987

(2190)

STUDIA MATHEMATICA, T. XC. (1988)

\mathscr{L}_{π} -Spaces and cone summing operators

by

P. J. MANGHENI (Edinburgh)

Abstract. Let E be a real Banach lattice, X a real Banach space, and T: $E \to X$ a linear operator. Suppose $1 \le p < \infty$ and that there is a constant K > 0 such that for all $n \in N$ and any u_1, \ldots, u_n in E

$$\left(\sum_{i=1}^{n} \|Tu\|^{p}\right)^{1/p} \leqslant K \sup \left\{ \left(\sum_{i=1}^{n+1} \langle \varphi, u_{i}^{p} | \lambda^{p} \rangle^{1/p} : \varphi \in \text{ball } E_{+}^{*} \right\}.$$

We show that T has a (sub)factorization through a class of Banach lattices closely related to the $L_p(L_1)$ -spaces. We recover as special cases some classical results on p-absolutely summing operators.

1. Introduction.

1.1. DEFINITION. Let E be a Banach lattice, X a Banach space and $1 \le p < \infty$. A linear operator $T: E \to X$ is cone p-summing if there is a constant K > 0 such that for each positive integer n and any vectors u_1, \ldots, u_n in E,

$$\left(\sum_{j=1}^{n} \|Tu_{j}\|^{p}\right)^{1/p} \leqslant K \sup\left\{\left(\sum_{j=1}^{n} \langle \varphi, |u_{j}| \rangle^{p}\right)^{1/p} : \varphi \in \text{ball } E_{+}^{*}\right\}.$$

We denote by $\hat{\pi}_p(T)$ the least K for which this inequality holds for all n and all choices of n vectors in E; and $\hat{H}_p(E, X)$ is the set of cone p-summing operators $E \to X$.

1.2. Remarks. When p = 1 these operators have been studied by Schaefer [7].

Let $1 \le p < \infty$, let E be a Banach lattice and X a Banach space. Let $\Pi_p(E,X)$ denote the p-absolutely summing operators $E \to X$ in the sense of Pietsch [6] and $C_p(E,X)$ the p-concave operators $E \to X$ in the sense of Lindenstrauss and Tzafriri [4]. Then we have the relations:

- (i) $\Pi_n(E, X) \subseteq \hat{\Pi}_n(E, X) \subseteq C_n(E, X)$.
- (ii) $\Pi_p(E, X) = \hat{\Pi}_p(E, X) = C_p(E, X)$ whenever E is a C(K)-space.
- (iii) $\hat{H}_1(E, X) = C_1(E, X)$ for all E and all X.

A British Council/Association of Commonwealth Universities Fellowship at the University of Edinburgh 1985/6 made the preparation of this work possible.

However, there are significant differences between cone p-summing operators on the one hand and p-absolutely summing operators and p-concave (p > 1) on the other. For example:

- (a) All p-absolutely summing operators are weakly compact; but, say, the identity operator on any AL-space is cone p-summing for any $p \ge 1$, without being weakly compact unless the space is finite-dimensional.
- (b) For $1 , the identity operator on an infinite-dimensional <math>AL_p$ -space is p-concave but it is not cone p-summing.
- 1.3. A PIETSCH DOMINATION THEOREM. Let E be a Banach lattice, X a Banach space, $1 \leq p < \infty$, and $T \colon E \to X$ a cone p-summing operator. Then there is a probability measure v on $U_+ = \text{ball } E^*_+$ (the positive part of the norm dual of E) and a constant K > 0 such that for all $u \in E$

$$||Tu|| \leq K(\int_{U_+} \langle \varphi, |u| \rangle^p \nu(d\varphi))^{1/p}.$$

Proof. This is an application of the Hahn-Banach separation and Riesz representation theorems, identical to the proof for p-absolutely summing operators [3].

In this note we obtain a realization of the above domination result as a (sub)factorization through a class of operators that is closely related to the $L_p(L_q)$ -spaces.

2. Preliminaries.

2.1. DEFINITION. Let E, F be Banach lattices. A map $u: E \to F$ is order continuous if for every (upward) directed set (x_{α}) in E with sup $x_{\alpha} = x$, we have $ux = \sup ux_{\alpha}$ in F.

A map u: $E \to F$ is positive if $u(E_+) \subseteq F_+$; and a map w: $E \to F$ is regular if w = u - v, where u, v: $E \to F$ are positive.

2.2. Definition. Let S, T be compact topological spaces, $\pi\colon T\to S$ be a continuous surjection, ν a measure on S and $1\leqslant p\leqslant \infty$. A linear operator $u\colon C(T)\to L_p(\nu,S)$ is π -modular if $u(f\cdot g\circ \pi)=g\cdot u(f)$ for all f in C(T), and all g in C(S). We set

$$\mathscr{L}_{\pi}^{\times}(C(T), L_{p}(v, S)) = \{u \mid u \text{ π-modular and } u \text{ order continuous}\}.$$

When S is Stonean we define the space $\mathscr{L}_{\pi}^{\times}(C(T), C(S))$ in a similar fashion. This class of operator spaces has been studied by Haydon [2], and our definitions are extensions of Haydon's idea.

2.3. Notes. The structure of \mathscr{L}_π^\times -spaces seems to be of considerable intrinsic interest. In particular, if we define

$$\mathcal{L}_{\pi}(L_p(u), L_q(v)) = \{u \mid u: \ L_p(\mu, T) \to L_q(v, S), \ u(f \cdot g \circ \pi) = g \cdot u(f)$$
 for all $f \in L_p(\mu)$, and all $g \in C(S)$

then it can be shown that:

- (i) Every operator in $F=\mathscr{L}_\pi(L_p,L_q)$ is regular; so F is a Banach lattice.
- (ii) If $1 \le p < q \le \infty$ and ν has no atoms then $\mathcal{L}_{\pi}(L_p, L_q) = \{0\}$.
- (iii) If $1\leqslant q< p\leqslant \infty$, $\mathscr{L}_{\pi}^{\times}(L_p,L_q)$ -spaces are ultrastable.
- (iv) If π : $[0, 1] \times [0, 1] \to [0, 1]$ then for $1 \le p$, $q \le \infty$, q'+q=qq', and 1+1/p=1/q+1/r, we have

$$\mathscr{L}_{\pi}^{\times}(L_{q'}([0, 1] \times [0, 1]), L_{r}[0, 1]) = L_{p}(L_{q}),$$

the $L_q[0, 1]$ -valued, Bochner p-integrable functions on [0, 1].

2.4. PROPOSITION. Let E be any Banach lattice. Then there are compact Hausdorff spaces S, T and a continuous surjection π : $T \rightarrow S$ such that E embeds as a sublattice of the Banach lattice $\mathscr{L}_{\pi}^{\times}(C(T), C(S))$.

Proof. Let $U_+=$ ball E_+^* , $U_{++}=\max$ ball E_+^* , the maximum being taken in the canonical order on E^* . Given $\varphi\in U_{++}$ define

$$N_{\varphi} = \{ u \in E: \langle \varphi, |u| \rangle = 0 \},$$

the absolute kernel of φ . Set $E_{\varphi}=$ completion of E/N_{φ} with norm $\|\hat{u}\|=\langle \varphi, |u| \rangle$, $u\in \hat{u}\in E/N_{\varphi}$. Then E_{φ} is an AL-space [7]; so E_{φ}^* is an AM-space with unit. Let $C=(\sum_{\varphi\in U_{++}}^{\Phi}E_{\varphi}^*)_{\infty}$. Then C is a commutative C^* -algebra so that C=C(T), T a compact Hausdorff space; more explicitly, T is the Stone–Čech compactification of $\bigsqcup_{\varphi\in U_{++}} T_{\varphi}$, where $E_{\varphi}^*=C(T_{\varphi})$ for $\varphi\in U_{++}$.

Now let U_{++}^{e} be the set of extreme points of U_{++} (so that the weak* closure of U_{++}^{e} is the Shilov boundary of E_{+} considered as the cone of continuous positive real functions on the weak* compact set U_{+}), and set $C(S) = l_{\infty}(U_{++}^{e})$. Then S is the Stone-Čech compactification of U_{++}^{e} ; and C(S) embeds as a subalgebra of C(T) via $f \mapsto (f(\varphi)1_{\varphi}) \in C$, where 1_{φ} is the unit in E_{φ}^{*} , $\varphi \in U_{++}$. This embedding induces a continuous surjection π : $T \to S$. More explicitly, $\pi(t_{\varphi}) = \varphi$ for all $t_{\varphi} \in T_{\varphi}$ and $\varphi \in U_{++}$.

Since S is Stonean, $\mathscr{L}_{\pi}^{\times}(C(T),C(S))$ is a Banach lattice. Indeed, it is a 1-injective Banach lattice [2] being a projection band in the Dedekind complete 1-injective Banach lattice $\mathscr{L}(C(T),C(S))=\left(\sum_{\phi\in U_{\pi}^{*}}^{\oplus}C(T)^{*}\right)_{\infty}$. We now define

$$J: E \to \mathscr{L}_{\pi}^{\times} (C(T), C(S))$$

as follows: Given $u \in E$, $f \in C(T)$, $\varphi \in U_{++}^{e}$ define

$$(Ju)(f)(\varphi) = \langle J_{\varphi}u, f_{\varphi} \rangle$$

where $f=(f_{\varphi})\in C(T)=(\sum_{\varphi\in U_{++}^s}^{\oplus}E_{\varphi}^*)_{\infty},\ J_{\varphi}\colon E\to E_{\varphi}$ is the lattice homomorphism in the construction of $E_{\varphi},\ \varphi\in U_{++}$ [7, p. 243], and \langle , \rangle is the duality $(E_{\varphi},E_{\varphi}^*)$.

Clearly $(Ju)(f) \in C(S)$. Moreover, for $u \in E_+$

$$\begin{split} \|Ju\| &= \sup\{ |(Ju)(f)(\phi)|: f \in \text{ball } C(T), \ \phi \in U^{\bullet}_{++} \} \\ &= \sup\{ |\langle J_{\varphi}u, f_{\varphi} \rangle|: f_{\varphi} \in E^{*}_{\varphi}, \ \phi \in U^{*}_{++} \} \\ &= \sup\{ |\langle \varphi, u \rangle|: \ \varphi \in U^{\bullet}_{++} \} = \|u\| \end{split}$$

so that ||J|| = 1. It remains to show that Ju is π -modular and order continuous and that J is a lattice homomorphism.

Let $g \in C(S)$, $f \in C(T)$, $u \in E$, $\varphi \in U_{++}^e$. Then

$$\begin{split} (Ju)(f \cdot g \circ \pi)(\varphi) &= \langle J_{\varphi} u, (f \cdot g \circ \pi)_{\varphi} \rangle = \langle J_{\varphi} u, f_{\varphi} \cdot g(\varphi) 1_{\varphi} \rangle \\ &= g(\varphi) \langle J_{\varphi} u, f_{\varphi} \rangle = g(\varphi)(Ju)(f)(\varphi). \end{split}$$

Thus Ju is π -modular. It is easy to see that it is also order continuous since C(S) is order complete. Finally, let $f \in C(T)$, $u \in E$, $\varphi \in U^{\epsilon}_{++}$. Then since J_{φ} is a lattice homomorphism, we have

$$\begin{split} (J|u|)(\varphi) &= \langle J_{\varphi}|u|, f_{\varphi} \rangle = \langle |J_{\varphi}u|, f_{\varphi} \rangle = \sup\{|(J_{\varphi}u)(g_{\varphi})|: \ 0 \leqslant |g| \leqslant f\} \\ &= \sup\{|(Ju)(g)(\varphi): \ 0 \leqslant |g| \leqslant f\} = |Ju|(f)(\varphi), \end{split}$$

so that J is lattice homomorphism.

- 2.5. PROPOSITION. Let E be a Banach lattice realized as a sublattice of $\mathscr{L}_{\pi}^{\times}(C(T), C(S))$. Suppose $\varphi \in \operatorname{extmax} \operatorname{ball} E_{+}^{*}$. Then there exists a positive linear functional $\lambda(\varphi)$ on C(S) such that:
 - (i) $\lambda(\varphi) \in \text{ball } C(S)^*_+$;
- (ii) $\langle \varphi, |u| \rangle \leq \langle \lambda(\varphi), (J|u|)(1_T) \rangle$, for all $u \in E$, where J is the embedding in Proposition 2.4 above.

Proof. Given $\varphi \in \operatorname{extmax}$ ball E_T^* , define a linear functional on $F = \mathscr{L}_\pi^\times(C(T), C(S))$ by $\tilde{\varphi}(V) = (V1_T)(\varphi)$. Then

$$\|\tilde{\varphi}\| = \sup\{|(V1_x)(\varphi)|: V \in \text{ball } F\} \le 1$$

Thus $\tilde{\varphi} \in \text{ball } F_+^*$. Now given $f \in C(S)$ define

$$\lambda(\varphi)(f) = \sup \{ \tilde{\varphi}(f \cdot V) : V \in \text{ball } F_+ \},$$

where $(f \cdot V)(h) = V(h \cdot f \circ \pi)$ for all h in C(T).

It was shown in [5] that $\lambda(\varphi)$ extends to a positive linear functional on C(S) (which we shall also denote by $\lambda(\varphi)$) satisfying:

- (i) $\|\lambda(\varphi)\| = \|\tilde{\varphi}\|$.
- (ii) $\tilde{\varphi}(V) \leq \langle \lambda(\varphi), V1_T \rangle$ for all V in F_+ .

Now for V = J|u|, u in E, we have

$$\tilde{\varphi}(J|u|) = (J|u|)(1_T)(\varphi) = \langle J_{\varphi}|u|, 1_{\varphi} \rangle = \langle \varphi, |u| \rangle.$$

Hence $\langle \varphi, |u| \rangle \leqslant \langle \lambda(\varphi), (J|u|)(1_T) \rangle$.

- 3. The main result. We conclude with the factorization and some of its specializations to the case of classical Banach spaces. This illustrates the general connections between cone p-summing and p-absolutely summing operators.
- 3.1. Theorem. Let E be a Banach lattice, X a Banach space, V: $E \rightarrow X$ a linear operator and $1 \leqslant p < \infty$. Then V is cone p-summing if and only if V factors as follows:

$$E \xrightarrow{V} X \xrightarrow{i} Z$$

$$W$$

$$\mathcal{L}_{\pi}^{\times}(C(T), C(S)) \xrightarrow{l_{n_{\rho}}} \mathcal{L}_{\pi}^{\times}(C(T), L_{\rho}(\mu, S))$$

where J is a lattice homomorphism, μ is a probability measure on ball E^* , $Z=l_{\infty}(\text{ball }X^*), I_{\infty p}$ is the canonical lattice injection, W is a linear operator such that $\|W\|=\hat{\pi}_p(V)$, i is an isometric embedding, and S, T are compact Hausdorff spaces.

Proof. Suppose $i \circ V = W \circ I_{\infty p} \circ J$. Since $J \ge 0$ and i is an isometry, it suffices to prove that $I_{\infty p}$ is cone p-summing. Let u_1, \ldots, u_n be in $F = \mathscr{L}_{\pi}^{\times}(C(T), C(S))$. Then

$$\begin{split} \sum_{i=1}^{n} \|I_{\infty p} u_i\|^p &= \sum_{i=1}^{n} \left[\sup \left\{ \|u_i(f)\|_p \colon f \in \text{ball } C(T) \right\} \right]^p \\ &= \sum_{i=1}^{n} \left[\sup \left(\int_{S} |u_i(f)(s)|^p \, \mu(ds) \right)^{1/p} \colon f \in \text{ball } C(T) \right]^p \\ &\leqslant \sum_{i=1}^{n} \left(\int_{S} (|u_i| \, \mathbf{1}_T)(s)^p \, \mu(ds) \right)^{1/p} \right)^p \\ &= \int_{S} \sum_{i=1}^{n} \left(|u_i| \, \mathbf{1}_T)(s)^p \, \mu(ds) \right) \\ &\leqslant \mu(S) \sup \left\{ \sum_{i=1}^{n} \left(|u_i| \, \mathbf{1}_T)(s)^p \colon s \in S \right\} \right. \\ &\leqslant \mu(S) \sup \left\{ \sum_{i=1}^{n} \langle \varphi, |u_i| \rangle^p \colon \varphi \in \text{ball } F_+^* \right\}, \end{split}$$

where we have used the fact that $u\mapsto u1_T(s)$, $s\in S$, is a norm one linear functional on F. Hence $\hat{\pi}_p(I_{\infty p})\leqslant \mu(S)=1$ and we now have

$$\hat{\pi}_{n}(V) \leqslant \|W\| \hat{\pi}_{n}(I_{\infty p}) \leqslant \|W\| \mu(S) = \|W\|.$$

Conversely, let V be cone p-summing. Then by the Domination

Theorem 1.3 above, there is a probability measure ν on S such that $\|Vu\| \leq \int_{S} \langle \varphi, |u| \rangle^{p} \nu(d\varphi)$ for all u in E. Let S, T be the topological spaces constructed in Proposition 2.4 above; let J be the lattice homomorphism in that proposition; and define a measure μ on S by

$$\mu(A) := \int_A \lambda(\varphi) \, \nu(d\varphi), \quad A \subseteq S,$$

where $\lambda(\varphi)$, for φ in S, is the linear functional constructed in Proposition 2.5. Then μ is well defined since $\varphi \mapsto \lambda(\varphi)$ is measurable with respect to ν . Hence

$$\begin{split} \| Vu \|^p & \leqslant K \int_S \langle \varphi, |u| \rangle^p \, v(d\varphi), \qquad K = \hat{\pi}_p(V) \\ & \leqslant K \int_S \langle \lambda(\varphi), |u| \, \mathbf{1}_T \rangle^p \, v(d\varphi), \quad \text{by Proposition 2.5 above} \\ & = K \int_S |u| \, \mathbf{1}_T(\varphi)^p \, \mu(d\varphi) \\ & \leqslant K \| \, |u| \, \|_{F_p}^p, \qquad F_p = \mathcal{L}_\pi^\times \big(C(T), \, L_p(\mu, \, S) \big). \end{split}$$

Define \tilde{W} : $I_{\infty_p}JE \to X$ by $\tilde{W}(I_{\infty_p}Ju) = Vu$ for all u in E. Then

$$\|\widetilde{W}(I_{\infty p}Ju)\|^p = \|Vu\|^p \leqslant K \| \|u\| \|_{F_p}$$

so that $\|\tilde{W}\| \le K$. Now Z is an injective Banach space [3] so we can extend \tilde{W} to a linear map $W \colon F_p \to Z$ with $\|W\| \le K$.

We recover the following result due to Schaefer [7]:

3.2. COROLLARY. Let E be a Banach lattice, X a Banach space, and V: $E \rightarrow X$ a cone 1-summing operator. Then there is an AL-space L, a lattice homomorphism $V_1\colon E \rightarrow L$, and a bounded linear operator $V_2\colon L \rightarrow X$ such that $V = V_2 \circ V_1$.

Proof. By the Main Result above we have a factorization

Now $F_1 = \mathcal{L}_{\pi}^{\times}(C(T), L_1(\mu, S))$ is a band in the Banach lattice of regular operators $\mathcal{L}^r(C(T), L_1(\mu, S))$ which in turn is an AL-space [7]. Thus F_1 is an AL-space. Let $V_1 = I_{\infty 1}J$. Then V_1E is a sublattice of F_1 and so the closure of V_1E in F_1 is an AL-space [4] which we shall denote by L. The linear map V_2 : $V_1E \to X$ defined by $V_2(V_1u) = Vu$ is continuous of norm ≤ 1 and its (continuous) extension $L \to X$ will also be denoted by V_2 .

Finally, we recover the factorization of p-absolutely summing operators defined on C(K)-spaces. On these spaces we have already noted in 1.2(ii) above that there is a coincidence of ${}^{\circ}$ concepts.

3.3. Corollary. Let $V: C(K) \rightarrow X$ be a p-absolutely summing operator $(1 \le p < \infty)$. Then V factors as follows:

Proof. In the construction in Section 2 above it suffices to consider $J_{\varphi}\colon C(K)\to E_{\varphi}$ with $\varphi\in K$ (K= the set of evaluation functionals on C(K)). Then $E_{\varphi}=R$ (where R is the space of real numbers) and $C(T)=(\sum_{\varphi\in K}^{\oplus}R)_{\infty}=l_{\infty}(K,R)$. Thus T is the Stone-Čech compactification of K. Moreover, $C(S)=l_{\infty}(K,R)$ so that S=T and $\pi\colon T\to S$ is the identity map. The π -modular operators $u\colon C(T)\to C(S)$ reduce to multiplication by a fixed element of C(S). Thus $F=\mathscr{L}_{\pi}^{\times}(C(T),C(S))=C(T)=C(S)$. Similarly the π -modular operators $u\colon C(T)\to L_p(\mu,S)$ reduce to multiplication by a fixed element of $L_p(\mu,S)$ and we have $F_p=\mathscr{L}_p^{\times}(C(T),L_p(\mu,S))=L_p(\mu,S)$. The rest of the proof proceeds as in the usual p-summing case [3].

References

- [1] D. H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge Univ. Press, 1974.
- [2] R. G. Haydon, Injective Banach lattices, Math. Z. 156 (1977), 19-47.
- [3] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, vol. I, Sequence Spaces, Springer, 1977.
- [4] -, -, Classical Banach Spaces, vol. II, Function Spaces, Springer, 1979.
- [5] P. J. Mangheni, The classification of injective Banach lattices, Israel J. Math. 48 (4) (1984), 341-347.
- [6] A. Pietsch, Operator Ideals, North-Holland, 1978.
- [7] H. H. Schaefer, Banach Lattices and Positive Operators, Springer, 1974.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF EDINBURGH Mayfield Road, Edinburgh EH9 3JZ, Great Britain

Received August 10, 1986

(2200)