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& -Spaces and cone summing operators
by
P. J. MANGHENI (Edinburgh)
Abstract. Let E be a real Banach lattice, X a real Banach space, and T: E—X a linear

operator. Suppose 1 < p < co and that there is a constant K > 0 such that for all ne N and any
Uy, .oy thy in E

@“'fi,, S7)Uz; e ball EX}.

(T I Tupry <

i=1

ieh)
Ksup {( 3 <
i=1

We show that Thas a (sub)factorization through a class of Banach lattices closely related to the
L,(L,)-spaces. We recover as special cases some classical results on p-absolutely summing
operators.

1. Introduction.
1.1. DeriNiTION. Let E be a Banach lattice, X a Banach space and

1 < p < 0. A linear operator T: E— X is cone p-summing if there is a constant
K > 0 such that for each positive integer n and any vectors u, , ..., 4, in E,

(}: 17wl <

We denote by #,(T) the least K for which this inequality holds for all » and all
choices of n vectors in E; and IT o(E, X) is the set of cone p-summing
operators E—X.

KS“P{(Z o, lu |>”)1/p g eball EX% }

12. Remarks. When p = 1 these operators have been studied by
Schaefer [7].

Let 1 < p < oo, let E be a Banach lattice and X a Banach space. Let
1,(E, X) denote the p-absolutely summing operators E—X in the sense of
P1ctsch [6] and C,(E, X) the p-concave operators E—X in the sense of
Lindenstrauss and Tzafrm [4]. Then we have the relations:

(@ m,(E, X)CHp(E X) e C,(E, X).
(ii) H o(E, X} = I (E, X) = C,(E, X) whenever E is a C(K)-space.
(iii) 1'[ (E, X) = ( X) for all E and all X.

A British Council/Association f Commonwealth Universities Fellowship at the University of
Edinburgh 1985/6 made the preparation of this work possible.


GUEST


198 P. J. Mangheni

However, there are significant differences between cone p-summing operators
on the one hand and p-absolutely summing operators and p-concave (p > 1) on
the other. For example:

(a) All p-absolutely summing operators are weakly compact; but, say, the
identity operator on any AL-space is cone p-summing for any p > 1, without
being weakly compact unless the space is finite-dimensional.

(b) For 1 <p < o, the identity operator on an infinite-dimensional
AL -space is p-concave but it is not cone p-summing.

1.3. A PrrscH DoMINATION THEOREM. Let E be a Banach lattice, X a
Banach space, 1 <p < oo, and T: E—X a cone p-summing operator. Then
there is a probability measure v on U . = ball E* (the positive part of the norm
dual of E) and a constant K > 0 such that for all ucE

ITull < K(Uf Co, [uy? v(dp))'”.

Proof. This is an application of the Hahn-Banach separation and Riesz
representation theorems, identical to the proof for p-absolutely summing
operators [3]. =

In this note we obtain a realization of the above domination result as a
(sub)factorization through a class of operators that is closely related to the
L,(L,)-spaces.

2. Preliminaries.

2.1. DeFiNITION. Let E, F be Banach lattices. A map w: E— F is order
continuous if for every (upward) directed set (x,) in E with sup x, = x, we have
ux = sup ux, in F.

Amap w. E—Fis positive if u(E,) = F_; and a map w: E — F is regular if
w = u—v, where u, v: E—~F are positive.

2.2. DerINITION. Let S, T be compact topological spaces, n: T—S be a
continuous surjection, v a measure on S and 1 < p < 0. A linear operator
w. C(T)—> L, (v, 8) is w-modular if u(f*gon) = g-u(f) for all fin C(T), and all
g in C(S). We set

L2 (C(T), L,(v, 8)) = {u|u n-modular and u order continuous}.

When S is Stonean we define the space ¥ (C(T), C(S)) in a similar
fashion. This class of operator spaces has been studied by Haydon [2], and our
definitions are extensions of Haydon’s idea.

2.3. Notes. The structure of %) -spaces seems to be of considerable
intrinsic interest. In particular, if we define

L (Ly(), L)) = {ulu: L, T)> Ly, 8), u(fgon) = g-u(f)
for all fe L (1), and all ge C(S)}
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then it can be shown that:
(i) Every operator in F = Z 4Ly, L) is regular; so F is a Banach lattice.
(i) If 1 <p<g<oo and v has no atoms then &, (L,, L) = {0}.
(i) F1<g<p<oo, £ (L, L,)-spaces are ultrastable.
@iv) ¥ =: [0, 11x [0, 1]-5[0, 1] then for 1 <p,q< W, g'+q=¢qq, and
1+1/p = 1/g+1/r, we have ‘

L7 (L [0, 11x[0, 1), L,[0, 1]) = L(Ly,
the L,[0, 1]-valued, Bochner p-integrable functions on [0,'1].

24. PROPOSITION, Let E be any Banach lattice. Then there are compact
Hausdorff spaces S, Tand a continuous surjection . T— S such that E embeds as
a sublattice of the Banach lattice &5 (C(T), C(S)).

Proof. Let U, =ball E%,U,, = maxball E%, the maximum being
taken in the canonical order on E*. Given pe U, , define

N, = {ueE: <p, [u) =0},

the absolute kernel of ¢. Set E, = completion of E/N » With  norm
lall = <o, [u]>, uede E/N,. Then E, is an AL-space [7]; so E¥ is an
AM-space with unit. Let C=(}3y,, E¥),. Then C is a commutative
C*-algebra so that C = C(T), T a compact Hausdorff space; more explicitly,
T is the Stone-Cech compactification of | L.y, , T,, where EX = C(T,) for
pelU,,.

Now let U . be the set of extreme points of U, , (so that the weak*
closure of U% . is the Shilov boundary of E, considered as the cone of
continuous positive real functions on the weak* compact set U,), and set
C(S) = I, (U% +). Then § is the Stone-Cech compactification of U% . ; and C(S)
embeds as a subalgebra of C(T) via fi—(f(p)1,)e C, where 1, is the unit in
E}, ¢ e U, .. This embedding induces a continuous surjection z: T— S. More
explicitly, n(t,) = ¢ for all t,eT, and ¢eU,,.

Since S is Stonean, £ (C(T), C(S)) is a Banach lattice. Indeed, it is a
1-injective Banach. lattice [2] being a projection band in the Dedekind
complete 1-injective Banach lattice Z(C(T), C(S)) = Y.y, C(T)¥),,. We
now define

J: E= 27 (C(T), C(S)
as follows: Given ueE, fe C(T), pe U% ., define
V(o) = T u. £,
where f=(f,)e C(T) = (Lo , E¥)w: Jo: E-E, is the laitice homomor-

phism in the construction of E,, oe U, , [7, p. 243], and < , ) is the duality
(E,, E¥). o
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Clearly (Ju)(f)e C(S). Moreover, for ueE
17ull = sup{Jw)(/)(@): feball C(T), ¢ U}
= sup{|<Ju, [, f,€E¥, o Uk}
= sup{Ke, w: e U} = [u]

so that ||J|| = 1. It remains to show that Ju is z-modular and order continuous
and that J is a lattice homomorphism.
Let ge C(S), feC(T), ueE, ¢ U% .. Then

(Ju)(fgom)(p) = <Ju, (fgom),> = {Ju, f,ra(0)1,>
= g(@)<{JI 4, f) = gl@)Tw)(f)(e).

Thus Ju is w-modular. It is easy to see that it is also order continuous since
C(S) is order complete. Finally, let fe C(T),u€E, ¢ € U% .. Then since J pisa
lattice homomorphism, we have

@) = {Jplul, fo> = T pul, £,> = sup{l(J,u)(g,): 0 < lgl < f}
= sup{|(Ju)(9)(9): 0 < lgl < S} = lJul(f)(9),
so that J is lattice homomorphism. =

2.5. PROPOSITION. Let E be a Banach lattice realized as a sublattice of -

L3 (C(T), C(S)). Suppose ¢ € extmax ball E% . Then there exists a positive linear
functzonal A(@) on C(S) such that:

@) A(p)eball C(S)%;

(i) <o, [ul) < Qle), Ju)(1.)>, for all ucE, where J is the embedding in
Proposition 2.4 above.

Proof. Given ¢@eextmaxball EX, define a linear functional on
F=23(C(T), CO) by $(V) = (V1g)(¢). Then
1§l = sup{|(Vip)(e)l: Veball F} < 1
Now given feC(S) define

A@)(f) = sup{p(f-V): VeballF,},

where (fV)(h) = Wh-fon) for all h in C(T).
It was shown in [5] that A(p) extends to a positive linear functional on
C(S) (which we shall also denote by A(¢)) satisfying:

O 1) = 9.
(i) @(V) < (Alp), V1p) for all Vin F,
Now for V= Jju|, u in E, we have

UMD = (Tluh(12)(9) = T, lul, 1,> = (o, lul).
Hence <o, [ul) < Ae), lu)(17)). w

Thus @ eball F%.
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3. The main result. We conclude with the factorization and some of its

specializations to the case of classical Banach spaces. This illustrates the

general connections between cone p-summing and p-absolutely summing
operators.

3.1. TreoreM. Let E be a Banach lattice, X a Banach space, V: E»X a
linear operator and 1 < p < 0. Then Vis cone p-summing if and only if Vfactors
as follows:

E ——3 X f—i->z
J| w

R (CIT),Cl8) = ZZ(CIT) Lol SY)
>~p

where J is a lattice homomorphism, u is a probability measure on ball E*,
=l (ball X*), I, is the canonical lattice injection, Wis a linear operator such
that |W|| = #,(V), i is an isometric embedding, and S, T are compact Hausdorff
spaces.
Proof. Suppose ioV'= Wol,,0J. Since J > 0 and i is an isometry, -it
suffices to prove that I, is come p-summing. Let u,...,u, be in
F = ZX(C(T), C(S)). Then

3 L ull? = ztsup{nu(nn, £ eball C(TYT
i=1 i=

— % [sup({ (/O uds)»: £ eball CTIP

=1

M:

(j’(]ull IT)(S)P l,l,(ds))llP)

W

1
i (1 1)) 1(ds)

i=1

=]
S
) sup{ Y (ul 1)o7 55}

n
< u(S)sup{ ¥, <o, lul>?: g eball F1},
i=1
where we have used the fact that ur—uly(s), s€S, is a norm one linear
functional on F. Hence #,(I,,) < u(S) =1 and we now have
#,(V) < Wl #y(Lp) < W (S) = Wl

Conversely, let V be cone p-summing. Then by the Domination
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Theorem 1.3 above, there is a probability measure v on S such that

IVul < §<o, lul)?v(dp) for all u in E. Let S, T be the topological spaces
s

constructed in Proposition 2.4 above; let J be the lattice homomorphism in
that proposition; and define a measure u on S by

wd):= [ Ae)v(dp), AcS,
4
where A(p), for ¢ in S, is the linear functional constructed in Proposition 2.5.
Then p is well defined since ¢ A(¢) is measurable with respect to v. Hence
IVul? <K [<p, u)?v(dg), K =#,V)
s

< K [{Mo), lu|1;)P v(dp), by Proposition 2.5 above
5

= K [ [ul1 () n(dp)
N

<Kl lf,, F,=2L7(C(T), L, S).
Define W: I,,,JE—X by W(l,,Ju) = Vi for all u in E. Then
IW T opJW) P = [ Vie|? < K| fu] Iy,
so that W < K. Now Z is an injective Banach space [3] so we can extend
W to a linear map W: F,—»Z with |[W|| <K. n
We recover the following result due to Schaefer [77:

3.2. CorROLLARY. Let E be a Banach lattice, X a Banach space, and
V: E—X a cone l-summing operator. Then there is an AL-space L, a lattice
homomorphism V. E— L, and a bounded linear operator V,: L — X such that
V="V,oV,.

Proof. By the Main Result above we have a factorization

E'“V—>Xgi>2

F—————F

Now F, = Z5(C(T), L(u, 8)) is a band in the Banach lattice of regular
operators #7(C(T), L, (1, S)) which in turn is an AlL-space [7]. Thus F, is an
AL-space. Let V; = I, J. Then V, E is a sublattice of F, and so the closure of
V,E in F, is an AL-space [4] which we shall denote by L. The linear map
V2t VE—X defined by V,(V,u) = Vu is continuous of norm <1 and its
(continuous) extension L—X will also be denoted by V,. m

Cone summing operators 203

Finally, we recover the factorization of p-absolutely summing operators
defined on C(K)-spaces. On these spaces we have already noted in 1.2(ii) above
that there is a coincidence of ‘concepts.

3.3. CoroLLARY. Let V: C(K)—X be a p-absolutely summing operator
(1 £ p < o). Then V factors as follows:

CiK) —V——x-x —f—>2

R

Proof. In the construction in Section 2 above it suffices to consider
Jpt C(K)—E, with pe K (K = the set of evaluation functionals on C(K)).
Then E, = R (where R is the space of real numbers) and C(T) = (Y& R),
=I,(K,R). Thus Tis the Stone-Cech compactification of K. Moreover,
C(S)=1,(K,R) so that §=T and m T—S is the identity map. The
n-modular operators u: C(T)~ C(S) reduce to multiplication by a fixed
element of C(S). Thus F = 2;(C(T), C(S)) = C(T) = C(S). Similarly the
n-modular operators u: C(T)—L,(u, S) reduce to multiplication by a fixed
element of L, (u, §) and we have F, = £(C(T), L,(u, S)) = L,(1, 5). The rest
of the proof proceeds as in the usual p-summing case [3].

Loly,
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